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Summary

1. The emerging field of ecological immunology demonstrates that allocation by hosts to

immune defence against parasites is constrained by the costs of those defences. However, the

costs of non-immunological defences, which are important alternatives to canonical immune

systems, are less well characterized. Estimating such costs is essential for our understanding

of the ecology and evolution of alternative host defence strategies.

2. Many animals have evolved medication behaviours, whereby they use antiparasitic com-

pounds from their environment to protect themselves or their kin from parasitism. Docu-

menting the costs of medication behaviours is complicated by natural variation in the

medicinal components of diets and their covariance with other dietary components, such as

macronutrients.

3. In the current study, we explore the costs of the usage of antiparasitic compounds in mon-

arch butterflies (Danaus plexippus), using natural variation in concentrations of antiparasitic

compounds among plants. Upon infection by their specialist protozoan parasite Ophryocystis

elektroscirrha, monarch butterflies can selectively oviposit on milkweed with high foliar con-

centrations of cardenolides, secondary chemicals that reduce parasite growth. Here, we show

that these antiparasitic cardenolides can also impose significant costs on both uninfected and

infected butterflies.

4. Among eight milkweed species that vary substantially in their foliar cardenolide concentra-

tion and composition, we observed the opposing effects of cardenolides on monarch fitness

traits. While high foliar cardenolide concentrations increased the tolerance of monarch butter-

flies to infection, they reduced the survival rate of caterpillars to adulthood. Additionally,

although non-polar cardenolide compounds decreased the spore load of infected butterflies,

they also reduced the life span of uninfected butterflies, resulting in a hump-shaped curve

between cardenolide non-polarity and the life span of infected butterflies.

5. Overall, our results suggest that the use of antiparasitic compounds carries substantial

costs, which could constrain host investment in medication behaviours.

Key-words: cardenolides, ecological immunology, host–parasite interactions, monarch

butterfly, self-medication, trade-offs

Introduction

Parasites can significantly reduce host fitness, such that

hosts are under strong selection to evolve antiparasitic

defences. In addition to canonical immunity, including

cellular and humoral immune responses (Schmid-Hempel

& Ebert 2003), many hosts have evolved alternative

defences, such as social immunity or self-medication

(Cremer, Armitage & Schmid-Hempel 2007; Clayton et al.

2010; Parker et al. 2011; de Roode & Lef�evre 2012; de

Roode, Lef�evre & Hunter 2013). Due to the parasite pres-

sures that hosts face in their natural environments, an

intuitive prediction is that hosts should maximize a

diverse arsenal of defences. However, the field of ecologi-

cal immunology has suggested that this does not happen

because immunity is costly (Sheldon & Verhulst 1996;

Rolff & Siva-Jothy 2003). Indeed, many studies have

demonstrated costs of canonical immunity in a wide range

of organisms, including reductions in survival, competitive*Correspondence author. E-mail: ltao@emory.edu
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ability, sexual signalling and reproductive output (Moret

& Schmid-Hempel 2000; Kraaijeveld, Limentani & God-

fray 2001; Zuk & Stoehr 2002; Hanssen et al. 2004; Jacot,

Scheuber & Brinkhof 2004; Baer, Armitage & Boomsma

2006; Duncan, Fellous & Kaltz 2011; Pompon & Leva-

shina 2015). These costs may explain the reported lack of

maximal investment in a wide variety of immune defences,

as well as the temporal and spatial variation in immunity

that is often observed (Hawley & Altizer 2011).

Although there is now growing evidence of costs associ-

ated with canonical immune responses, costs of alternative

defences are still poorly understood. Some authors have

suggested that non-immunological defences may be less

costly (Simone, Evans & Spivak 2009; Elliot & Hart

2010), but others have shown significant costs of beha-

vioural immunity. For example, to avoid parasitism,

water striders (Aquarius paludum insularis) tend to ovipo-

sit at deeper sites. However, such avoidance behaviour

can lead to lower hatching rates of the eggs (Hirayama &

Kasuya 2010). Similarly, in the burying beetle (Nicropho-

rus vespilloides), the social immunity provided by the

smearing of antibacterial substances on larval food

resources by females reduces their survival and reproduc-

tive output (Cotter et al. 2010).

Animal medication is an important non-immunological

defence, whereby animals use antiparasitic compounds

from their environment to protect themselves or their kin

from parasitism (Lozano 1991; Clayton & Wolfe 1993;

Huffman 2003; de Roode, Lef�evre & Hunter 2013; Abbott

2014). Some chemicals are used externally. For instance,

primates and birds rub ants and millipedes on their fur or

feathers to dose ectoparasites with the pungent acids from

ants (Valderrama et al. 2000; Clayton et al. 2010), and

many organisms can fumigate their nests with plant mate-

rials that reduce parasite infection (Christe et al. 2003;

Clayton et al. 2010). Other natural products are used

internally as medicines. Upon parasite infection, ants,

chimpanzees, moths and honeybees can preferentially

choose food with antiparasitic effects (Huffman et al.

1996; Singer, Mace & Bernays 2009; Gherman et al. 2014;

Bos et al. 2015).

Similarly, parasitized woolly bear caterpillars are more

likely to consume pyrrolizidine alkaloids (Singer, Mace &

Bernays 2009). However, although some studies have

demonstrated clear costs of self-medication (Singer, Mace

& Bernays 2009; Bos et al. 2015), others have not (Huff-

man et al. 1997; Christe et al. 2003).

Here, we test for costs associated with the use of

antiparasitic host plants by monarch butterflies. Monar-

chs are commonly infected with the protozoan parasite

Ophryocystis elektroscirrha and use milkweeds (Asclepias

spp.) as their host plants. Milkweeds contain cardenolides,

toxic steroids that disrupt animal Na+/K+-ATPase

(Agrawal et al. 2012), and monarchs that feed on milk-

weeds with higher concentrations of cardenolides experi-

ence lower parasite infection and growth (de Roode et al.

2008, 2011b; Sternberg et al. 2012; Gowler et al. 2015). In

addition, when given a choice between species with high

and low concentrations of cardenolides, infected monar-

chs prefer to oviposit on the high-cardenolide milkweed, a

behaviour that reduces parasite infection and virulence in

their offspring (Lef�evre et al. 2010, 2012). Although

monarchs have evolved considerable resistance to carde-

nolides, they are not fully resistant, and high concentra-

tions of cardenolides have been shown to reduce larval

performance (Zalucki, Brower & Malcolm 1990; Zalucki

& Brower 1992; Malcolm 1994). Thus, this system pro-

vides a useful way to compare the costs and benefits of

consuming antiparasitic plants.

Cardenolides have three components: a steroid back-

bone, a butenolide (lactone) ring and sugar moiety. Dif-

ferent cardenolides vary in their sugar moiety, the

polarity of which determines their biological activity, with

less polar molecules being more toxic (Scudder & Mered-

ith 1982; Rasmann & Agrawal 2011; de Roode et al.

2011b; Agrawal et al. 2012). Because cardenolide concen-

tration and polarity are not necessarily correlated, it is

important to analyse the effects of both concentration

and polarity on the fitness of hosts and parasites. In the

current study, we capitalized on the large variation in car-

denolide concentration and polarity of natural milkweed

species to investigate the costs and benefits of using carde-

nolides as medication against parasites.

Materials and methods

plants, butterflies and parasites

We used eight (sub)species of milkweeds that vary strongly in

cardenolide concentration and polarity: Asclepias asperula, Ascle-

pias curassavica, Asclepias incarnata incarnata, Asclepias incarnata

pulchra, Asclepias linaria, Asclepias perennis, Asclepias physocarpa

and Asclepias tuberosa. Asclepias physocarpa is native to South

Africa, while the other (sub)species are native to Central and

North America. Asclepias incarnata pulchra seeds were purchased

from Georgia Vines (Claxton, GA, USA), whole plants of

A. perennis were purchased from Butterfly Plant Shop (Delray

Beach, FL, USA), and seeds of all other species were purchased

from Butterfly Encounters Inc. (San Ramon, CA, USA). Plants

were grown in 10-cm-diameter pots under natural light conditions

in a glasshouse where daily temperatures varied between 25–

28 °C. For each species, we grew 40 replicates, resulting in a total

of 320 plants.

When the plants were around three months old, we obtained

foliage samples to quantify the cardenolide concentration and

polarity. Briefly, one leaf from the fourth leaf pair (counting from

the top) on each plant was chosen, and six leaf discs (424 mm2 in

total) were taken with a paper hole punch from one side of the

leaf, placed immediately into 1 mL of cold methanol and stored

at �20 °C for the subsequent cardenolide analysis. Another six

identical discs were taken from the opposite side of the same leaf

to estimate the sample dry mass. Immediately after chemical sam-

pling, each plant was randomly assigned to one of two caterpillar

treatments: infected (25 replicates per species) or control (15

replicates per species). Based on prior experience, we know that

not all inoculated butterflies become infected (some can escape
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infection). Therefore, we increased replication in the infection

treatment to obtain sample sizes that are large enough to accu-

rately measure parasite spore load (Lef�evre, Williams & de

Roode 2010).

We collected monarch eggs from five outcrossed lineages in a

laboratory stock obtained from North American migratory

monarchs, and randomly assigned them to treatments. We reared

the newly hatched caterpillars on the remaining fourth leaf from

their individual plant in a Petri dish for 2 days, upon which the

caterpillars became 2nd instar. On the third day, we took a hole

punch from the third leaf pair (counting from the top) of each

plant. For the parasite treatment, 10 parasite spores from a single

clone were deposited onto the leaf disc, which was then fed to its

pre-assigned caterpillar; control caterpillars received leaf discs

without spores. The parasite clone (E25) was generated from a

single isolate taken from an infected, wild-caught Eastern North

American adult monarch collected in 2010 (Sternberg et al.

2013).

In our experiment, we chose to measure cardenolides on day 1

(when commencing larval rearing) rather than on day 3 (when

inoculating caterpillars with parasites) for two reasons. First, the

costs of cardenolides on monarch caterpillars are mostly

expressed in neonates, rather than larger instars (Zalucki et al.

2001). Therefore, the measured cardenolides on day 1 reflect the

cardenolides to which monarch caterpillars are exposed during

their most susceptible life stage. Secondly, our previous work (de

Roode et al. 2011a) has shown that the cardenolide chemistry of

plants fed to caterpillars during the days prior to inoculation has

the same effects on parasite growth as the chemistry of the plant

fed to caterpillars during inoculation. Therefore, the cardenolide

chemistry measured on day 1 should accurately reflect the chem-

istry that reduces parasite infection and growth. It is also impor-

tant to point out that the mechanical damage we inflicted during

chemistry sampling likely had a minimal influence on subsequent

milkweed cardenolides. In general, across different plant species,

mechanical damage (such as punching holes) does not mimic the

changes in plant chemistry induced by herbivores; rather, it is the

chemical cues from herbivores that cause plants to increase the

production of secondary chemicals (e.g. Pontoppidan et al. 2005).

Current studies indicate that this is also the case in milkweeds:

while it is known that caterpillar feeding can induce changes in

cardenolides (Rasmann et al. 2009), studies on A. curassavica, a

highly inducible milkweed (and one of the species used in this

study), have shown that mechanical damage by way of hole

punching 1, 3 or 7 days before parasite inoculation does not

affect the parasite spore load or life span of infected butterflies

(Z.R. Lynch and J.C. de Roode, unpublished results).

After each caterpillar had fully consumed its leaf disc (usually

within 48 h), both the caterpillar and its host plant were trans-

ferred into a clear plastic tube (7�62 cm in diameter, 30�48 cm in

length; Visipak, MO, USA) with 20 venting holes in the lid,

where they were allowed to completely consume their plant.

Because plants were generally not big enough to support the

complete larval development of caterpillars, they were then sup-

plied with a separately grown batch of A. incarnata cuttings until

pupation. This procedure is justified because the effects of milk-

weed chemistry on parasite infection, growth and virulence are

not conferred during the larval development stage following the

infection (de Roode et al. 2011a). We specifically chose A. incar-

nata as supplementary food because of its low cardenolide con-

centration. Importantly, by the time they had finished their

experimental host plants, caterpillars were mostly 5th instars and

had spent an average of 8�5 days on their individual plants, leav-

ing an average of only 1�5 days of pre-pupal development on

these new supplementary cuttings.

fitness measures and chemical analysis

We recorded the survival of caterpillars to adulthood. After emerg-

ing from their pupae, butterflies were placed in 8�9 9 8�9 cm glas-

sine envelopes, stored in a 12 °C incubator and inspected daily

until they died, upon which adult life span of each butterfly was

recorded. This measurement combines both longevity and starva-

tion resistance, both of which are highly correlated with the life

span and lifetime fitness of monarchs under more natural condi-

tions (de Roode et al. 2009). The difference in life span between

infected and uninfected butterflies represents our index of parasite

virulence (Sternberg et al. 2012). After death, the spore load of

each butterfly was measured following described methods (de

Roode et al. 2009). Specifically, they were quantified by vortexing

monarch bodies in 5 mL w and estimating total spore loads using a

haemocytometer slide. Spore load estimates the total number of

spores on a butterfly, which is positively correlated with parasite

transmission potential and negatively correlated with butterfly

resistance and fitness (de Roode et al. 2008). In addition, we mea-

sured butterfly tolerance to infection by measuring the negative

slope between log-transformed spore load and butterfly life span

(Lef�evre, Williams & de Roode 2010).

Analysis of foliar cardenolides followed Tao & Hunter (2012)

using reverse-phase ultra-performance liquid chromatography

(UPLC; Waters Inc., Milford, MA, USA). Peaks were detected

by absorption at 218 nm using a diode array detector, and absor-

bance spectra were recorded from 200 to 300 nm. Peaks with

symmetrical absorption maxima between 216 and 222 nm were

recorded as cardenolides (Zehnder & Hunter 2007). Total carde-

nolide concentration was calculated as the sum of all separated

cardenolide peaks, corrected by the concentration of the internal

standard (digitoxin) and the estimated sample mass. An index of

cardenolide non-polarity for each plant was calculated following

Rasmann & Agrawal (2011) and Sternberg et al. (2012), where

the relative concentration of each peak in a sample was multi-

plied by its relative retention time (relative to digitoxin) and

summed. Resulting values were from 0 to 1 for each plant, with

values close to 1 indicating high non-polarity and a value of 0

indicating high polarity. Note that we specifically created an

index of non-polarity instead of an index of polarity, so that

higher values correspond with greater toxicity. Individual plants

that contained no cardenolides were excluded from the analysis

of non-polarity.

statist ical analysis

The primary goal of the study was to explore the potential costs

of cardenolides on monarch fitness, using eight plant species that

differ substantially in their cardenolide concentration and non-

polarity to create large and biologically relevant variation.

Because caterpillars were fed on individual plants, each with its

own unique chemistry, we used individual butterfly and plant

data as the level of replication in our analyses. In all the follow-

ing models, we used mixed-effects models in which monarch lin-

eage was included as a random factor. To analyse the species
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differences in cardenolide concentration and non-polarity, we

used analysis of variance in which cardenolide concentration (or

non-polarity) was the dependent variable and plant species was

the independent variable. To test whether plant species and para-

site infection affect the survival of individual monarchs to adult-

hood, we used mixed-effects logistic regression models in which

plant species identity, parasite treatment and their interactions

were independent variables, while survivorship of individual

monarchs (0 for failure to reach adulthood and 1 for successful

development) was the dependent variable. To test whether plant

species and parasite infection affect monarch life span, we used a

mixed-effects linear model in which plant species identity, para-

site treatment and their interactions were independent variables

and life span (days) of individual monarchs was the dependent

variable. To analyse whether plant species affects the spore loads

of infected butterflies (an inverse measurement of antiparasite

resistance), we used a mixed-effects linear model in which plant

species was the independent variable and log-transformed spore

load was the dependent variable. Additionally, using both unin-

fected and infected butterflies, we tested whether plant species

affected the tolerance of butterflies to infection; we used a mixed-

effects linear model in which log-transformed spore load and the

interaction between plant species and log-transformed spore load

were independent variables and the life span of butterflies was

the dependent variable.

To investigate whether plant cardenolide concentration and

non-polarity affected caterpillar survival to adulthood, we used

mixed-effects logistic regression models in which cardenolide con-

centration (or non-polarity) was the independent variable and

caterpillar survival was the dependent variable. To examine the

effects of cardenolide concentration and non-polarity on spore

loads, we used mixed-effects linear regression models in which

cardenolide concentration or non-polarity was the independent

variable and the spore load of infected butterflies was the depen-

dent variable. We used the life span of both uninfected and

infected butterflies to test whether cardenolide concentration and

non-polarity affect butterfly tolerance to parasites. Specifically,

we used mixed-effects general linear models in which butterfly

spore load (log-transformed) and the interaction term between

spore load (log-transformed) and cardenolide concentration (or

non-polarity) were independent variables and butterfly life span

was the dependent variable. Finally, we examined the effects of

cardenolide concentration and non-polarity on the life span of

uninfected and infected butterflies in mixed-effects general linear

models. In the model on cardenolide concentration, cardenolide

concentration, parasite treatment and their interactions were

independent variables and life span was the dependent variable.

For non-polarity, to capture the nonlinear relationships that we

observed (see Results), we included non-polarity, the quadratic

term of non-polarity, parasite treatment and their interactions as

independent variables (Sternberg et al. 2012). The nonlinear

model is an explicit test of the hypothesis of an increasing net

cost of self-medication at high foliar cardenolide non-polarities.

Additionally, we performed separate analyses for uninfected and

infected butterflies to explore the effects in more detail. Specifi-

cally, for both treatments, we included non-polarity and the

quadratic term of non-polarity to explore any nonlinear relation-

ships.

Prior to conducting the above analyses, plant cardenolide con-

centrations and butterfly spore loads were log-transformed (natu-

ral log). For all regression models, homogeneity of variance of

dependent variables was confirmed by Levene’s test, and the nor-

mality of errors was confirmed by Shapiro–Wilk normality test.

All statistical tests were performed using R 2.15.3 (R Develop-

ment Core Team 2012); mixed-effects logistic regression models

were performed with the package lme4 1.1-11 (Bates et al. 2014),

and mixed-effects linear models were performed with the package

nlme (Pinheiro et al. 2009).

Results

The eight milkweed species varied substantially in their

foliar cardenolide concentrations (Fig. 1a; F7, 308 =
244�49, P < 0�001). Post hoc comparisons showed that

A. asperula (13�32 � 1�68 mg g�1), A. linaria (14�65 �
1�18 mg g�1) and A. perennis (12�02 � 0�88 mg g�1) had

similarly high cardenolide concentrations, followed by

A. curassavica (2�09 � 0�25 mg g�1) and A. physocarpa

(2�43 � 0�42 mg g�1). Asclepias incarnata incarnata

(0�14 � 0�04 mg g�1), A. incarnata pulchra (0 mg g�1)

and A. tuberosa (0 mg g�1) had very low to undetectable

foliar cardenolide concentrations.

Similarly, milkweed species varied in their foliar cardeno-

lide non-polarity (Fig. 1b; F5, 202 = 159�07, P < 0�001).
Asclepias curassavica (0�74 � 0�01), A. physocarpa

(0�79 � 0�02) and A. incarnata incarnata (0�77 � 0�03) had
indistinguishably high non-polarity, followed by A. linaria

(0�64 � 0�01) and A. asperula (0�56 � 0�02). Although

(a) (b)

Fig. 1. Milkweed species differ in their foliar cardenolide (a) concentration and (b) non-polarity. Cardenolide concentrations in Asclepias

incarnata pulchra and Asclepias tuberosa were 0; therefore, no non-polarity can be calculated for these two species. Data represent

mean � 1 SEM. Species abbreviations: pul = A. incarnata pulchra; tub = A. tuberosa; inc = A. incarnata; cur = A. curassavica;

phy = A. physocarpa; per = A. perennis; asp = A. asperula; lin = A. linaria.
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foliar concentrations of cardenolides in A. perennis were

very high, their cardenolides had the lowest non-polarity

(0�31 � 0�01).
Caterpillar survival to adulthood varied among plant

species (Fig. 2a; v27 = 124�0, P < 0�001). However, neither

parasite infection nor interactions between plant species

and parasite infection affected the survival rate

(v21 = 0�02, P = 0�88; v27 = 9�66, P = 0�21, respectively).

This is expected, because O. elektroscirrha has not been

found to reduce larval survival in previous studies. Life

span of butterflies varied substantially among plant spe-

cies (F6,182 = 6�00, P < 0�001), with infection status

(F1,182 = 105�42, P < 0�001) and with their interaction

(Fig. 2b; F6,182 = 2�74, P = 0�01), the latter of which

demonstrates that plant species affected parasite virulence.

In addition, plant species affected monarch resistance to

the parasite as measured by spore load of butterflies

(Fig. 2c; F6,104 = 6�42, P < 0�001). The tolerance of but-

terflies to infection also varied among plant species

(Fig. 2d; F6,188 = 3�90, P = 0�001). These results are con-

sistent with previous studies (Lef�evre et al. 2010; Stern-

berg et al. 2012).

Overall, foliar cardenolide concentration exhibited a

strong negative relationship with caterpillar survival to

adulthood (Fig. 3a; v21 = 38�78, P < 0�001). The average

survival rate of caterpillars was 80% on species excluding

A. asperula and A. linaria. However, when feeding on

A. asperula and A. linaria, the two species with the high-

est cardenolide concentrations, caterpillar survival rates

were only 42�5% and 2�5%, respectively. When analysing

adult life span of uninfected and infected monarchs in the

same model, we found that life span was unrelated to

foliar cardenolide concentrations (F1,192 = 2�14, P = 0�14;
cardenolide concentration 9 infection: F1,192 = 0�96,

P = 0�33). Although cardenolide concentration was unre-

lated to the spore load of infected butterflies (Fig. 3c;

F1,109 = 0�15, P = 0�70), it increased the tolerance of but-

terflies to infection (spore load 9 cardenolide concentra-

tion, F1,194 = 5�93, P = 0�02).
Cardenolide non-polarity was unrelated to survival rate

(Fig. 3e; v21 = 0�008, P = 0�93). When analysing the effects

of cardenolide non-polarity on life span of uninfected and

infected monarchs in the same model, we found a signifi-

cant interaction between the quadratic term of non-polar-

ity and parasite treatment (F1,107 = 7�19, P = 0�009),
indicating that cardenolide non-polarity affected the life

span of uninfected and infected butterflies differently.

Specifically, higher cardenolide non-polarity was associ-

ated with lower adult life span of uninfected butterflies

(Fig. 3f; linear term F1,42 = 4�23, P = 0�046; quadratic

term F1,42 = 0�46, P = 0�50), whereas in infected monar-

chs, there was a quadratic relationship between non-polar-

ity and life span (Fig. 3h; quadratic term F1,61 = 9�38,
P = 0�003). This nonlinear relationship exists because high

non-polarity was associated with reduced parasite spore

load (Fig. 3g; F1,62 = 17�92, P < 0�001). Because the adult

life span of infected butterflies was strongly negatively

associated with parasite spore load (F1,109 = 33,

P < 0�001), these contrasting associations with cardenolide

non-polarity resulted in a hump-shaped relationship. This

quadratic relationship indicates a trade-off between the

costs (innate toxicity to the monarch) and benefits

(antiparasitic resistance) of non-polar cardenolides.

Discussion

Many animals use environmentally derived secondary

chemicals to combat disease (de Roode, Lef�evre & Hunter

(a) (b)

(c) (d)

Fig. 2. Effects of milkweed species on (a)

monarch caterpillar survival to adulthood,

(b) life span of uninfected (solid bars) and

infected monarch butterflies (hashed bars),

(c) spore loads of infected monarch but-

terflies and (d) tolerance of monarch but-

terflies to parasite infection. Data

represent mean � 1 SEM. Because only

one infected individual that fed on Ascle-

pias linaria survived to adulthood, this

species’ effects on adult butterfly life span,

parasite spore load and tolerance cannot

be shown. Species abbreviations are as in

Fig. 1.
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(b)

(c)

(d)

(e)

(f)

(g)

(h)
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2013). Documenting the costs associated with using these

secondary chemicals in natural systems is important for our

understanding of the ecology and evolution of behavioural

defences. Upon infection by O. elektroscirrha, female mon-

arch butterflies preferentially lay their eggs on A. curassav-

ica, a milkweed with high cardenolide concentrations, when

compared to A. incarnata, a species with low cardenolide

concentrations, because cardenolides can confer antipara-

sitic effects to monarch butterflies (Lef�evre et al. 2010). In

the current study, we unveiled the costs of using cardeno-

lides as medicine. These costs derive from two different

mechanisms: (i) although high foliar cardenolide concentra-

tions increase the tolerance of infected butterflies, they

decrease the survival rate of caterpillars to pupation; (ii)

although cardenolides of high non-polarity decrease the

parasite spore load, they also reduce the adult life span of

uninfected butterflies. This apparent trade-off in the use of

non-polar cardenolides results in a nonlinear relationship

between cardenolide non-polarity and the life span of

infected butterflies. Overall, our results suggest that medica-

tion behaviours can incur substantial fitness costs, which

are mediated by both the concentration and composition of

biologically active secondary metabolites.

Our results are somewhat in contrast with a recent

study (Petschenka & Agrawal 2015) that found limited

costs of high cardenolide concentrations on monarch but-

terflies. However, that study focused on the growth rate

of caterpillars during their first five days of development,

whereas we found that high cardenolide concentration sig-

nificantly reduced caterpillar survival to adulthood and

that high cardenolide non-polarity significantly reduced

adult butterfly life span. Therefore, while negative effects

of cardenolides may be hard to detect in the short term

(but see Zalucki et al. 2001), their costs are more promi-

nent when caterpillars are subjected to them throughout

their larval period.

The combined importance of foliar cardenolide concen-

tration and non-polarity in monarch–parasite interactions

is best illustrated by comparing A. asperula, A. perennis

and A. linaria. These species had the highest – and com-

parable – foliar concentrations of cardenolides, yet varied

substantially in their cardenolide non-polarity and effects

on monarch fitness. In particular, A. perennis cardenolides

had low non-polarity; as a result, this plant species did

not reduce parasite growth, but it also did not incur fit-

ness costs on the monarch host. In contrast, A. asperula,

with cardenolides of intermediate non-polarity, substan-

tially reduced parasite spore load; however, it also

reduced monarch survival and the adult life span of unin-

fected monarchs. Finally, A. linaria foliage, which had

high cardenolide concentration combined with high non-

polarity, resulted in very low caterpillar survival.

Similarly, a recent study found that caterpillars that fed

on A. linaria had lower growth rates than those fed on

other species (Petschenka & Agrawal 2015). As a result,

the most ideal medicinal plant species for monarch butter-

flies is one with cardenolides that are moderately high in

concentration and intermediate to high in non-polarity.

An example of such a species is A. curassavica, on which

monarchs did experience reduced parasite spore loads, but

did not suffer reduced survival. While previous studies of

monarch medication behaviour have focused on choices

between plants with different cardenolide concentrations

(Lef�evre et al. 2010, 2012), we currently do not know

whether female butterflies are able to medicate by choos-

ing among plants of different cardenolide non-polarity.

Additionally, although monarchs display medication

behaviour when they are infected, we do not currently

know whether infected butterflies are able to avoid those

plants on which the costs of medication become too high.

Petschenka & Agrawal (2015) recently found that

monarchs have evolved much greater ability to sequester

cardenolides compared to other danaine specialist herbi-

vores of milkweeds. Nevertheless, high levels of cardeno-

lides can still reduce the activity of Na+/K+-ATPase in

monarchs, targets of cardenolides, consistent with our

findings here. Non-polar cardenolides are especially toxic,

because the lipophilic R group can bind tightly with

Na+/K+-ATPase, reducing its activity to a greater extent.

As a result, sequestration is a highly selective process

where cardenolides with intermediate polarity are prefer-

entially stored (Tao & Hunter 2015). How this sequestra-

tion relates to parasite infection requires further study.

Previous work has shown that high-cardenolide milkweed

reduces parasite infection and growth when fed to cater-

pillars before and during infection, but not when fed after

infection (de Roode et al. 2011a), suggesting that carde-

nolide sequestration regulates fitness costs more than the

antiparasitic benefits of these chemicals.

As an important non-immunological defence, many ani-

mals have evolved the ability to utilize chemicals from the

natural environment against parasites and pathogens,

which can significantly reduce parasite growth and

improve host fitness (Lozano 1991; Clayton & Wolfe

1993; Huffman 2003; de Roode, Lef�evre & Hunter 2013).

Documenting the costs of such medication using natural

variation in antiparasitic substances is not always straight-

forward (but see Singer, Mace & Bernays 2009; Bos et al.

2015). Sometimes, natural levels of variation in the medic-

inal components of diets are unknown, while at other

times they covary with other dietary components. For

example, while nectar alkaloids can reduce the parasite

load in bumblebees, there are other secondary metabolites

in nectar that also have antiparasitic properties, making

Fig. 3. Effects of milkweed foliar cardenolide concentration (a–d) and non-polarity (e–h) on monarch caterpillar survival to adulthood

(a, e), adult life span of uninfected monarch butterflies (b, f), parasite spore load of infected monarch butterflies (c, g) and adult life span

of infected monarch butterflies (d, h). Regression lines indicate significant relationships. Colour coding for different milkweed species fol-

lows Figs 1 and 2.
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explicit tests of costs using natural diet difficult (Manson,

Otterstatter & Thomson 2010; Gherman et al. 2014;

Richardson et al. 2015). Our results, on the other hand,

demonstrate clearly that antiparasitic substances are toxic

for hosts in the absence of parasites. Such costs may

explain the spatial and temporal variation in medication

behaviours. Additionally, the magnitude of costs may deter-

mine whether medication behaviour will be prophylactic

(preventive) or therapeutic (Choisy & de Roode 2014). For

example, self-medication by swallowing whole leaves in

chimpanzees is most frequent during the rainy season when

the risk of gastrointestinal tract nematode infection is the

highest (Huffman et al. 1997). Likewise, baboons only con-

sume berries that are toxic to Schistosoma in areas of high

risk of infection (Phillips-Conroy 1986).

In the monarch system, while infected monarchs prefer-

entially choose A. curassavica, a species with high carde-

nolide concentrations compared to A. incarnata (Lef�evre

et al. 2010, 2012), the effects of cardenolides on perfor-

mance and oviposition behaviour of uninfected monarchs

appear highly variable (Cohen & Brower 1982; Oyeyele &

Zalucki 1990; Zalucki, Brower & Malcolm 1990; Ladner

& Altizer 2005; Petschenka & Agrawal 2015). While some

studies have found that cardenolide concentrations do not

affect oviposition choice (Cohen & Brower 1982), others

have found that females preferentially lay their eggs on

plants with intermediate concentrations of cardenolide

(Oyeyele & Zalucki 1990; Zalucki, Brower & Malcolm

1990). If cardenolides can confer protection against para-

site infection and predation without costs, females should

always preferentially lay their eggs on plants with high

cardenolide concentrations. In contrast, our results sug-

gest that costs associated with high cardenolide concentra-

tions and high cardenolide non-polarity should favour

therapeutic medication behaviours, allowing hosts to ben-

efit from these plant toxins when infected, but avoiding

the costs when uninfected. Additionally, nutritional con-

tent has been shown to affect oviposition choices in other

insects (e.g. Jauset et al. 1998), suggesting that ultimately,

monarch oviposition may be based on a variety of factors,

including defensive and nutritional milkweed chemistry.

More generally, our results demonstrate that the assess-

ment of costs and benefits of antiparasitic compounds

requires an understanding of the chemical composition in

addition to the overall concentration of such chemicals.
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