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Abstract  180 

A Primary Research Paper may contain up to 6 figures and a Short Take up to 2 figures. Authors are encouraged 178 

to provide figures in the size they are to appear in the journal and at the specifications given.  179 

Background. Decline in muscle strength with aging is an important predictor of health trajectory in the 181 

elderly.  Several factors, including genetics, are proposed contributors to variability in muscle strength.  182 

 183 

Methods.  To identify genetic contributors to muscle strength, a meta-analysis of genome-wide 184 

association studies of hand grip was conducted.  Grip strength was measured using a handheld 185 

dynamometer in 27,581 individuals of European descent over 65 years of age from 14 cohort studies. 186 

Genome-wide association analysis was conducted on ~2.5 million imputed and genotyped variants 187 

 190 

(SNPs). Replication of the most significant findings was conducted using data from 6,393 individuals 188 

from three cohorts.  GWAS of lower body strength was also characterized in a subset of cohorts. 189 

Results. Two genome-wide significant (p-value< 5x10-8) and 39 suggestive (p-value< 5x10-5) associations 191 

were observed from meta-analysis of the discovery cohorts.  After meta-analysis with replication 192 

cohorts, genome-wide significant association was observed for rs752045 on chromosome 8 (β=0.47, 193 

SE=0.08, p-value= 5.20x10-10

 199 

). This SNP is mapped to an intergenic region and is located within an 194 

accessible chromatin region (DNase hypersensitivity site) in skeletal muscle myotubes differentiated 195 

from the human skeletal muscle myoblasts cell line. This locus alters a binding motif of the 196 

CCAAT/enhancer-binding protein β (CEBPB) that is implicated in muscle repair mechanisms.  GWAS of 197 

lower body strength did not yield significant results. 198 

Conclusion. A common genetic variant in a chromosomal region that regulates myotube differentiation 200 

and muscle repair may contribute to variability in grip strength in the elderly. Further studies are needed 201 

to uncover the mechanisms that link this genetic variant with muscle strength.Introduction 202 

Loss of muscle strength, “dynapenia,” is a common characteristic of aging and is associated with 203 

increased risk of frailty, falls, hospitalizations and mortality(Marsh et al. 2011; Xue et al. 2010; Moreland 204 

et al. 2004).  In particular, hand grip strength is found to be predictive of overall and exceptional survival 205 

(Willcox et al. 2006) and other key age-related outcomes (McLean et al. 2014; Marsh et al. 2011).  For 206 
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example, poor hand grip strength among healthy middle-aged subjects was found to significantly predict 207 

functional limitations and disability 25 years later(Rantanen et al. 1999).  The biology that drives muscle 208 

strength decline is complex, with hormonal changes, inflammatory pathway activation, mitochondrial 209 

physiology, malnutrition, and exercise all likely playing a role (Gonzalez-Freire et al. 2014; Walston 210 

2012). Further identification of biologically relevant pathways that influence muscle strength 211 

maintenance and decline could be important in the development of future treatment or prevention 212 

strategies.  Hence, genetic approaches to the identification of novel biology may be helpful.    213 

The heritability of muscle strength in older adults has been estimated to be between 40 and 65% 214 

(Matteini et al. 2010; Tiainen et al. 2004).  Previously published reports have been limited to candidate 215 

gene analyses in small cohorts of older adults (Arking et al. 2006; Serena Dato et al. 2012; S Dato et al. 216 

2014).  These studies have highlighted potentially important biologic pathways associated with hand 217 

grip strength but have been unable to identify a significant replicated locus.  In spite of the importance 218 

of this phenotype for health and function, to date, no genome-wide association study (GWAS) has been 219 

published on hand grip strength.  220 

Because of the large, well characterized cohorts represented in the CHARGE consortium, grip strength 221 

and genome-wide genotype data from 17 cohort studies (14 discovery and 3 replication cohorts) of 222 

older adults were included in this meta-analysis.  We sought to identify potential genetic influences that 223 

underlie measures of strength in adults age 65 and older.  224 

 225 

Results 226 

Discovery Set 227 

A genome-wide meta-analysis included 27,581 community-dwelling men and women of European 228 

ancestry from a discovery set of 14 participating cohorts. On average across the cohorts, there were 229 

2,725,778 SNPs analyzed, with SNPs analyzed per cohort ranging from 2,332,998 to 4,930,728.  Sample 230 

size and cohort characteristics are found in Supplemental Table S1.  There were no significant 231 

differences in age, strength or gender distributions between the discovery and replication cohorts.  Q-Q 232 

and Manhattan plots are shown in Supplemental Figures S1-S2.  In the discovery set meta-analysis, 2 233 

SNPs reached genome-wide significance (rs3121278 chr10: p-value = 2.68x10-8 and rs752045 chr8: p-234 

value = 3.09x10-8).  An additional 39 SNPs reached suggestive significance in 8 regions on chromosomes 235 

1 (1 SNP), 5 (2 highly correlated SNPs), 7 (7 SNPs), 8p23 (2 SNPs), 8q12 (14 SNPs), 10 (11 SNPs), 11 (3 236 
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SNPs), and 12 (1 SNP) (Supplemental Table S4).  Chromosomes 1, 5 and 12 loci were not pursued in 237 

subsequent analysis due to the fact that there was only a single SNP in the locus with suggestive 238 

significance. The five regions that remained suggestive are intergenic.  Table 1 shows the lead SNP per 239 

region with meta-analyzed results from discovery, replication as well as combined discovery and 240 

replication cohorts. Regional plots (created using Locus zoom http://csg.sph.umich.edu/locuszoom/) are 241 

displayed in Figure 1. 242 

Replication Cohorts 243 

Significant and suggestive SNPs on chromosomes 7, 8p23, 8q12, 10 and 11 were tested in the replication 244 

cohorts and in the combined discovery/replication set.  First, the most significant discovery SNP, 245 

rs3121278, was significant in the replication (p-valuerep=0.01), yet the effect was in the opposite 246 

direction from the discovery set resulting in a decrease in significance in the combined analysis (p-247 

valuedisc+rep= 6.18x10-5).  Next, SNP rs752045 on chromosome 8p23 showed an association with grip 248 

strength upon replication and the direction was consistent with that of the discovery set (p-valuerep = 249 

4.80x10-3), leading to increased significance in the combined set (p-valuedisc+rep= 5.20x10-10).  Likewise, 250 

the second best SNP on chromosome 11 rs11235843 showed consistent direction and magnitude of 251 

effect in the replication cohorts (p-valuerep = 4.70x10-2) and significance in the combined set increased 252 

(p-valuedisc+rep= 1.19x10-6

Lower body strength 257 

), although it still failed to reach the preset threshold for genome-wide 253 

significance.  Lastly, SNPs in suggestive areas of chromosome 7 and 8q12 showed no effect upon 254 

replication.  Combined results from these regions showed slightly decreased significance, although p-255 

values were still in the range of suggestive association.  256 

A meta-analysis of genome-wide association analysis of lower body strength was conducted as an 258 

secondary muscle strength phenotype. There were no genome-wide significant associations identified 259 

(Supplemental Figure S3). The most significant association was observed for rs16831 on chr11 260 

(P=6.07x10-7

Functional Annotation 264 

; Supplemental Table S5). The closest gene was an uncharacterized gene LOC101929497 261 

approximately 187Mb away. We also looked up the top signals from the grip strength analysis, however 262 

these loci were not significantly associated with lower body strength (P>0.05; Supplemental Table S6). 263 A
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Results from the functional annotation analysis are shown in Table 2.  SNPs in the chromosome 7, 10 265 

and 11 regions showed direct links to the regulatory chromatin states in muscle tissue or accessible 266 

chromatin states according to ChIP-seq and DNase-seq data.  First, top discovery SNPs rs3121278 and 267 

rs752045 were located within accessible chromatin regions in skeletal muscle myotubes differentiated 268 

from the skeletal muscle myoblast (HSMM) cell lines.  The suggestive SNP rs2796549 also was located 269 

within an accessible chromatin region in skeletal muscle myoblasts.  Next, the three suggestive 270 

chromosome 11 SNPs localized to motifs predicted to be regulatory elements, promoters and 271 

enhancers, in skeletal muscle myoblasts.   The top suggestive chromosome 7 SNP rs1819054 was not 272 

shown to affect gene regulatory elements in muscle-related tissues; however, three SNPs within the 273 

region were predicted to localize in regulatory enhancers in skeletal muscle myoblasts.  This 274 

chromosome 7 locus was significantly enriched for enhancer/promoter elements in muscle cells 275 

compared to other muscle types (p-value=9.9x10-5

eQTL Analysis 280 

).  Suggestive SNPs on chromosomes 7, 8p12, and 10 276 

were also predicted to alter binding motifs of the CCAAT/enhancer-binding protein beta, delta and 277 

gamma family (CEBPB, CEBPD, CEBPG), zinc finger protein 263 (ZNF263) and the Nuclear factor kappa 278 

beta (NFkB).     279 

The top five SNPs listed in Table 1 were queried as index SNP in skeletal muscle and brain tissue eQTL. 281 

For the locus on chromosome 10 (rs3121278), a proxy SNP rs3121327 (r2

Discussion 285 

=0.87) was significantly 282 

associated with gene transcript zinc finger protein 33B (ZNF33B) in prefrontal cortex tissue.  No other 283 

associations were observed for the other loci queried. 284 

The combined discovery and replication meta-analysis resulted in increased significance in the chr8p23 286 

locus, exceeding genome-wide significance (rs752045, p-value=3.18x10-10 and rs890022, p-287 

value=4.80x10-8

The chromosome 8p23 locus - rs752045 - is over 500 kb away from the closest gene genome-wide 292 

significant association.  However, according to the ENCODE's DNase-I hypersensitivity data, rs752045 is 293 

located in an accessible chromatin region, indicating possible regulatory activities in skeletal muscle 294 

).  We conducted a genome-wide association analysis of lower body strength in a smaller 288 

sample as a second trait for muscle strength. However, there were no significant genetic associations 289 

observed for lower body strength and the results did not confirm the top signals from the grip strength 290 

analysis.   291 A
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myotubes differentiated from the HSMM cell line. This SNP alters a binding motif of the 295 

CCAAT/enhancer-binding protein beta (CEBPB).  The effect allele (G) decreases a score developed to 296 

define the effect of variants on regulatory motifs (the position weight matrix (PWM) score).  In this case 297 

the PWM score for CEBPB decreased from 11.6 to -0.2, indicating a prediction of decreased binding 298 

affinity of CEBPB. The PWM scores were reported as part of the HaploReg database 299 

(http://www.broadinstitute.org/mammals/haploreg/detail_v4.1.php?query=&id=rs752045). CEBPB is a 300 

transcription factor that regulates genes for inflammatory responses, including the IL-1 response 301 

element in the IL6 gene (Harries et al. 2012). IL-6 levels are strongly related to muscle strength, 302 

functional decline and sarcopenia in older adults (Kilgour et al. 2013; Cesari et al. 2004).  CEBPB is also 303 

important in macrophage function, which plays a crucial role in normal skeletal muscle repair (Rahman 304 

et al. 2012).  In addition, expression of CEBPB in blood leukocytes has been positively associated with 305 

muscle strength in humans, 

SNPs in associated regions on chromosomes 7 and 11 are proximal to genes PLEKHB1 (chr11), FAM3C 308 

(chr7) and WNT16 (chr7), the latter has been associated with bone mineral density, osteoporosis and 309 

fracture risk.  Both loci represent promoters or enhancers in regulatory chromatin states in skeletal 310 

muscle myoblasts in ENCODE and Epigenetic Roadmap data.  PLEKHB1 protein interacts with ACVR1, 311 

which is involved in fibrodysplasia ossificans progressiva (FOP), a rare congenital disorder that causes 312 

bone formation in muscles, tendons, ligaments and connective tissues.  Additionally, SNPs on the 313 

chromosome 7 locus were predicted to alter binding motifs of the CCAAT/enhancer-binding protein 314 

beta, delta and gamma family (CEBPB, CEBPD, CEBPG) and the Nuclear factor kappa β (NFkB).  In 315 

addition to the CEBPB association to muscle discussed above, CEBPD has also been linked to differential 316 

expression of myostatin, a skeletal muscle inhibitory factor that can lead to muscle strength declines 317 

(Allen et al. 2010).  CEBPG likely plays a role in cell growth arrest in the setting of inflammation 318 

activation (Huggins et al. 2013).  NFkB is the nuclear transcription factor that acts as a gate-keeping 319 

molecule for activation of inflammatory signaling (Ershler 2007; Guttridge et al. 2000).   Subtle alteration 320 

in expression of these factors may well alter muscle tissue maintenance with aging and would in turn 321 

lead to grip strength declines.  322 

further supporting the possible link between gene variants and a decline in 306 

skeletal muscle function in older age groups (Ruffell et al. 2009). 307 

Last, the suggestive region of chromosome 10 is 20 kb away from the BMS1L gene, a ribosome assembly 323 

protein which has no known function in skeletal muscle.  This group of three SNPs also had relevant data 324 
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from ENCODE indicating that DNase hypersensitive sites were found in skeletal muscle myotubes, in 325 

particular those differentiated from HSMM cell lines and osteoblasts.   326 

There are several strengths to this study.  First, we have identified 14 cohorts including 27,581 older 327 

adults that have appropriate hand grip strength measurements and genotypes necessary to perform a 328 

study of this kind.   Next, the ability to explore potential findings with the ENCODE data provides an 329 

important biological window into the potential relevance of the genetic findings.   There are potential 330 

limitations to this study as well.  First, a cross-sectional, one time hand grip or lower body strength 331 

measure may not be the best phenotypic measurement to capture age-related strength decline as a 332 

phenotype.   Although the lower body strength analysis was consistent with grip strength, due to sample 333 

size restrictions, the age cutoff for lower body strength was set at 50 years of age.  The correlation 334 

between grip and lower body strength has been reported to be in the range of 0.4-0.6, suggesting that 335 

both measure the same construct of muscle strength (Bohannon et al. 2012). 336 

This cross-sectional study was designed to determine genetic variants associated with grip strength in 337 

persons over the age of 65 years.  Strength in old age is thought to be a reflection of both the peak 338 

strength as well as rate of decline.   Similarly, cross-sectional analysis with phenotypes such as bone 339 

density or cognitive performance still have been useful for understanding rate of decline with age.  Here 340 

we studied individuals over 65 years of age, thus the majority are predicted to have already entered the 341 

decline phase.   Future genetic studies should consider examining changes in muscle strength to focus 342 

on the potential determinants of age related decreases that are commonly observed with aging, as 343 

trajectories of strength decline were not widely available among these cohorts    344 

Despite limitations, these results suggest biologically plausibility.  Chromosome 7 locus was significantly 345 

enriched for enhancer/promoter elements in muscle cells compared to other muscle types. C/EBP 346 

transcription factors have been linked to a number of metabolic and inflammatory processes that would 347 

be expected to influence skeletal muscle, and have been previously implicated in other cohorts.  These 348 

findings provide additional rationale for the further study of C/EBP related pathways and their overall 349 

influence in the development of dynapenia in older adults.   Future studies should follow up these 350 

findings to determine if there are potential epigenetic changes, or even whether there are significant 351 

CEBPB expression differences in skeletal muscle samples between young and old humans. 352 

Experimental Procedures 353 

Subjects 354 
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The discovery phase of this GWAS was conducted on 27,581 subjects from the following 14 participating 355 

studies of the Cohorts for Heart and Aging Research in Genomic Epidemiology Consortium (CHARGE). 356 

the Age, Gene/Environment Susceptibility Study (AGES); the Cardiovascular Health Study (CHS):  the 357 

Framingham Heart Study (FHS); the Health, Aging, and Body Composition (Health ABC) Study; the Health 358 

and Retirement Study (HRS); the InCHIANTI Study; the Lothian Birth Cohort Studies (1921 and 1936); the 359 

Osteoporotic Fractures in Men Study (MrOS); Religious Order Study, Memory and Aging Project 360 

(MAP/ROS); the Study of Health in Pomerania (SHIP); the Study of Osteoporotic Fractures (SOF); the 361 

Tasmanian Study of Cognition and Gait (TasCog); the Twins UK Study.  Replication cohorts contributed 362 

6,393 subjects from three cohorts, the Atherosclerosis Risk in Communities Study (ARIC) and the 363 

Rotterdam Studies I and II.  Detailed description of each cohort and references are included in the 364 

Supplemental Materials.  Each cohort's study protocol was reviewed and approved by their respective 365 

institutional review board.    366 

In parallel to grip strength analysis, a GWAS analysis of lower body strength was conducted as an 367 

additional measure of muscle strength in 9,822 individuals over the age of 50 years from 7 studies: 368 

AGES, Baltimore Longitudinal Study on Aging (BLSA), InCHIANTI, CHS, FHS, Health ABC, and MAP/ROS. 369 

Phenotyping 370 

All participants with at least one recorded grip strength measurement (kg) (Supplemental Table S1) 371 

were included in the analysis.  The primary outcome was defined as the maximal value across available 372 

trials.  Exclusion criteria for grip strength analysis included age less than 65 years, non-Caucasian origin 373 

via self-report or identical-by-state (IBS) clustering of the GWAS data, and missing grip strength data.  374 

Additional exclusion based on self-reported pain, surgery or osteoarthritis in the dominant hand was 375 

considered.  However, since adequate data across all cohorts were not available, these exclusions were 376 

not implemented in this analysis.  Hand grip was employed as a non-transformed, continuous trait.   377 

For lower body strength, all studies used performance based assessment methods reporting measures 378 

in kg or in Newton-meter (Supplemental Table S2). If multiple examinations were performed, the 379 

maximum measurement was used. Exclusion for lower body strength analysis was consistent with grip 380 

strength; however, due to sample size restrictions, the age cutoff was set at 50 years of age.  Lower leg 381 

strength was analyzed as a non-transformed, continuous trait. 382 

 383 
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Additional variables used in this study included gender, age, standing height and weight for both grip 384 

and lower body strength.  Each of these characteristics was collected with hand grip and/or lower body 385 

strength according to study-specific protocols. 386 

 387 

Genotyping 388 

Each cohort performed its own genome-wide genotyping and genotype imputation based on NCBI Build 389 

36 (http://www.ncbi.nlm.nih.gov/SNP/).  Supplemental Table S3 summarizes genotyping platform, 390 

imputation methods, quality control methods and final SNP count per cohort.  Results are reported for 391 

each SNP for as many cohorts as were available via genotyping and imputation. 392 

Statistical Analysis 393 

Multiple linear regression models were built for genotyped and imputed SNPs on maximal grip strength 394 

(kg), adjusted for age, gender, height, weight, study site (when necessary), and principal components to 395 

control for population stratification (Price et al. 2006).  An additive model with the count of the number 396 

of variant alleles was used for all analyses.  Hand grip strength was used as a continuous trait and the 397 

regression results reflect an increase or decrease in strength (kg) per additive allele.  Test statistics for 398 

genome-wide association analysis were combined using METAL (Willer, Li, and Abecasis 2010). Inverse 399 

variance weighted meta-analysis was performed using a fixed effects model of β estimates and standard 400 

errors from each cohort.  In the meta-analysis of discovery GWAS, between-study heterogeneity was 401 

tested using Cochran’s Q test as implemented in METAL.   A threshold of p-value less than 5x10-8 was 402 

utilized to determine genome-wide statistical significance, while p-values less than 1x10-5

For the leg strength analysis, since the unit of measure differed by cohort (kg or Nm), a sample-size 406 

weighted meta-analysis was conducted where an arbitrary reference allele is selected and a z-statistic 407 

summarizing the magnitude and the direction of effect relative to the reference allele was calculated 408 

and weighted by the square root of the sample size of each study.   Thresholds for statistical significance 409 

set for the hand grip analysis were utilized for the leg strength results as well. 410 

 were 403 

considered suggestive.  SNPs that met these significance thresholds were then evaluated in a set of 3 404 

replications cohorts, as well as analyzed jointly in discovery and replication cohorts (n=33,974).   405 

Using the HaploReg tool (http://compbio.mit.edu/HaploReg.), we annotated potential regulatory 411 

functions of our GWAS SNPs and loci based on experimental epigenetic data, including open chromatin 412 

and histone modifications, and transcription factor binding sites in human cell lines and tissues (Ward 413 
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and Kellis 2012). First, we constructed haplotype blocks for GWAS most significant, or lead, SNPs and 414 

SNPs in high linkage disequilibrium (LD, r2

Expression quantitative trait loci (eQTL) analysis 426 

 > 0.8) with GWAS lead SNPs. Then, we identified regulatory 415 

elements including enhancers and promoters estimated by chromatin states in the haplotype blocks 416 

across 98 healthy human tissues/normal cell lines available in the ENCODE Project and the Epigenomics 417 

Roadmap Project (Encode and Consortium 2011; Chadwick 2012). The regulatory elements were 418 

annotated by an algorithm named ChromHMM and data were downloaded from HaploReg3 (Ernst and 419 

Kellis 2012; Ward and Kellis 2012).  To evaluate whether GWAS loci were enriched with regulatory 420 

elements and corresponded to the DNase I hypersensitive sites (DHSs) in muscle tissues, we performed 421 

a promoter/enhancer enrichment analysis using a hypergeometric test to compare the abundance of 422 

regulatory elements in muscle tissues (9 relevant muscle tissues/cell lines) to non-muscle tissues (89 423 

tissues/cell lines) in the haplotype blocks of a GWAS locus. A permutation was performed to correct for 424 

multiple testing. Permutation p-values less than 0.05 were considered statistically significant. 425 

Proxy SNPs in linkage disequilibrium (r2

Acknowledgements 435 

>0.8) in European ancestry populations were identified for hand 427 

grip for the top five most significant SNPs as the lead SNPs using SNAP (Johnson et al. 2008). Index SNPs 428 

and proxies were identified in a collected database of expression SNP (eSNP) results. The collected eSNP 429 

results met criteria for statistical thresholds for association with gene transcript levels as described in 430 

the original papers. A general overview of a subset of >50 eQTL studies has been published (Zhang et al. 431 

2014), with specific citations for >100 studies. For the current query, we focused our search to skeletal 432 

muscle and brain tissue (Zhang et al. 2014; Keildson et al. 2014).  Details on tissue samples can be found 433 

in the Supplemental Text. 434 
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Table 1: Top SNP in each region with suggestive association with hand grip in discovery and replication sets 

 

Table 2. . Functional Annotations of the GWAS SNPs by histone marks, ChIP-seq and DNase-seq from ENCODE Project and Epigenetic Roadmap Project 

        
Discovery Set 

(n=28,547) 

Replication Set 

(n=6,363) 

Discovery + Replication 

Set (n=34,910) 

SNP Chr Position 

Effect 

/Noneffect 

Allele 

Frequency 

of Effect 

Allele 

Gene 

Structure 

Most Proximal 

Gene(s) 

Distance 

to gene 

(kb) 

Beta (SE) P-value Beta (SE) disc P-value
Beta 

(SE) 
rep 

P-Value 

rs1819054 

disc+rep 

7 120926996 G/A 0.40 Intergenic 
FAM3C 

PTPRZ1 

103 

37 

0.27 

(0.06) 
8.23x10

0.15 

(0.13) 

-7 0.24 
0.25 

(0.05) 
6.13 x10-7 

rs752045 8 5937538 G/A 0.18 Intergenic 

 

CSMD1 

LOC100287015 

 

1,098 

311 

0.47 

(0.09) 
3.09x10

0.45 

(0.16) 

-8 4.80E-03 
0.47 

(0.08) 
5.20 x10

rs1508086 

-10 

8 57980052 T/C 0.44 Intergenic 
LINC00968 

IMPAD1 

345 

53 

0.25 

(0.05) 
2.71 x10

0.09 

(0.12) 

-6 0.45 
0.22 

(0.05) 
4.21 x10

rs3121278 

-6 

10 42695652 T/G 0.18 Intergenic 
BMS1L 

LINC01264 

45 

98 

-0.39 

(0.07) 
2.68 x10

0.38 

(0.15) 

-8 1.00E-02 
-0.26 

(0.06) 
6.18 x10

rs11235843 

-5 

11 73051644 A/G 0.10 Downstream PLEKHB1 
 

-0.38 

(0.08) 
9.23 x10

-0.40 

(0.20) 

-6 4.70E-02 
-0.38 

(0.08) 
1.19 x10-6 

   
  Functional annotation results 

Enhancer/promoter 

enrichment in 

muscle cells*  

SNP Chr 
Position 

(hg18) 

Gene 

Structure 

Closest Gene  

(kb away) 

Regulatory 
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Muscle-related 

DNase-seq 
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Muscle-related regulatory 
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# SNPs 

in LD
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P-values
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rs3857836 7 120931488 Intergeninc 
FAM3C (108) 

PTPRZ1 (369) 
  

weak enhancer in skeletal muscle 

myoblasts
33 

1 
9.9 x 10

-5 

rs11761290 7 120932659 Intergenic 
FAM3C (109) 

PTPRZ1 (368) 
  

strong enhancer in skeletal muscle 

myoblasts1 and skeletal muscle
33 

2 
9.9 x 10

rs10228676 

-5
 

7 120932913 Intergenic 
FAM3C (109) 

PTPRZ1 (368) 

CEBPG; 

Hoxa5 
 

weak enhancer in skeletal muscle 

myoblasts
33 

1 
9.9 x 10

rs1013711 

-5
 

7 120943334 Intergenic 
FAM3C (120) 

PTPRZ1 (357) 

CEBPB; 

CEBPD 
 

weak enhancer in colon smooth 

muscle
8 

2 
9.9 x 10

rs1528351 

-5
 

7 120955111 Intergenic 
FAM3C (131) 

PTPRZ1 (345) 
Nkx2     

rs752045 8 5937538 Intergenic 

CSMD1 (1,098) 

LOC100287015 

(311) 

CEBPB; GR 

skeletal muscle 

myotubes 

differentiated from 

HSMM cell line 

 12 1 

rs2142991 10 42661111 Intergenic 
BMS1 (11) 

LINC01264 (133) 

CEBPB; 

CTCF; 

Smad4 

  40 1 

rs2796549 10 42686043 Intergenic 
BMS1 (36) 

LINC01264 (108) 
 

skeletal muscle 

myoblasts; aortic 

smooth muscle 

 1 1 

rs3121278 10 42695652 Intergenic 
BMS1 (45) 

LINC01264 (99) 
GR 

skeletal muscle 

myotubes 

differentiated from 

HSMM cell line; 

osteoblasts 

 35 1 

rs7128512 11 73049947 Intronic PLEKHB1 Roaz  
weak promoter in skeletal muscle 

myoblasts
3 

1 
0.266 

rs6590 11 73051200 UTR3 PLEKHB1 NRSF  enhancer in skeletal muscle2 15 ; weak 0.057 
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Table 2 (continued) 

* Enhancer/promoter enrichment in muscle cells including SNPs in linkage disequilibrium with GWAS lead SNPs
 

a the change in log-odds (LOD) scores of Regulatory motifs larger than 10 were reported ; 1Annotation from ENCODE Database; 2 Annotation from Epigenetic Roadmap 

‡SNPs in LD: Number of SNPs in LD (r2 ≥ 0.8 and MAF ≥ 1%, based on 1000 Genome Project) with the lead GWAS SNP in each locus   
§

enhancer in stomach smooth muscle

Permutation p-values corrected for multiple testing: This analysis included all SNPs in LD with the GWS lead SNPs. Multiple testing corrected permutation p-values < 0.05 are 

considered statistically significant. 

rs11235843 

2 

11 73051644 Downstream PLEKHB1 Nrf-2  
enhancer in skeletal muscle2; weak 

enhancer in stomach smooth muscle
15 

2 
0.057 
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Figure 1 Legend. Regional association plots for the most significant associations from the meta-analysis of 

hand grip strength in the discovery set.  The figures display –log10 p-values for SNPs that passed quality 

control for the analysis of hand grip strength for locus on (A) chromosome 7, (B) chromosome 8p23, (C) 

chromosome 8q12, (D) chromosome 10, and (E) chromosome 11. The degree of linkage disequilibrium (r2

 

) is 

displayed as shades of gray in the following categories: r2 > 0.8, > 0.6, >0.4, >0.2, and >0. 

Figure 1A) Chromosome 7  

 

Figure 1B) Chromosome 8p23  

 

Figure 1C) Chromsome 8q12  
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Figure 1D) Chromosome 10  

 

Figure 1E)  Chromosome 11  
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