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Abstract
Microeystins accumulate in aquatic organisms and can be transferred to higher trophic
levels, eventuallaffectingvector animals and consumers. We examined three levels of

an aquatic food chainMicrocystis aeruginosa, Daphnia magna, and Macrobrachium
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rosenbergii) to identify the transfer efficiency and risk of microcystin on prawns.
Samples were analyzed using URMS/MS and microcystibR (MC-LR)
distributions in prawn tissues were studied. The results showed that prawns ateumul
MC-LR both directly fom M. aeruginosa and indirectly througlb. magna which was
pre-exposedstdV. aeruginosa. MC-LR was detected in the gills, digestive tracts, and
hepatopancreas. of the prawns after exposure. MELR accumulatedn prawrs to
0.49+0.04pig'g" dry weight in hepatopancreas within B4while it was not detected in
muscle samples, and rarely appeared in blood samples in such a short period. Although
MC-LR (was not detected in musclihe head including hepatopancreas of the prawns
accumulated.troublesome amounts of MGLR. These results demonstrate that
microcystis bloorain prawn farming potentially pose a riskhuman consumers, even
though "prawnsmay beexposedto the bloomfor a very short time, hence regular
monitoring'of bluegreen algae poation is recommended.

Introduction

Toxic |cyanobacterial blooms are globally problematic as they may produce
secondarysmetabolites such as microcystins (M@yqg)i et al. 2012; Beaver et al.
2014). So fap more than 80 variants have been isolated amifiéte (Dietrich and
Hoeger;2005): Among these isoforms, MicrocystiR (MC-LR) is the most common
and most toxic to mammalStudies have demonstrated that MCs can cause toxic effect
on variousraquatic organisms (Cazenave et al. 2005; &kea, 2005; Xie et al. 2005,
2007; Lance et al. 2006; Deblois et al. 2008; GRaodriguez and Wiegand 2010;
Deblois et"al. 2011; Liu et al. 2011; Zikova et al. 2013; Liu et al. 2084aculture
species are exposed to microcystins thrabhgtaquatic food weljAndersen et al. 1993;
Ibelings, et al. 2005; Smith and Haney 2006). Trophic transfer has also been
demonstrated, under laboratory conditions in which hepatotoxins were transferred from
zooplankton to fish (Engstréidst et al. 2002; Karjalainen et al. 200Smith and
Haney 2006)-

MC-LR also poses potential threats to human health (Codd et al. 2005a, b; Ibelings

and Chorus 2007). The transfer of MC to higher trophic levels through the food web
poses serious health implications (Ozawa et al. 2003). Recearntyocystins were
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identified for the first time in the serum (average 0.228 ng)noff fishermenwho were
chronically exposedo cyanotoxins in Lake Chaohu, China, indicating hepatocellular
damage (Chen et al. 2009). An important exposure route for huimdhsough the
ingestion of ,contaminated aquatic food. The World Health Organization (WHO)
publishedrarguideline of Ig kg* of MC in drinking water, and established a tolerable
daily intake guideline (TDI) of 0.0dg kg® per day (Chorus and Bartram 1999).

In recent'years, studies evaluating MC contamination in aquatic organisms from
natural (\waters with cyanobacterial blooms have increased, but shefies mainly
focused on fishes (Mohamed et al. 2003; Ibelings et al. 2005; Xie et al. 2005; Chen et al
2006; Deblois et al. 2008; Wilson et al. 2008). Similar information is relatively rare for
freshwater prawns. Freshwater prawns are commercially important because they are
used forshuman consumption worldwide. In both intensive and extensive aquaculture,
phytoplankton succession mimics natural systems, with cyanobacterial abundance

reaching its maximum in summer (Smith et al. 2008).

Zooplankton can accumuaMC and therefore may act as vectors of the toxin up
the aquatiewfood web; however, information on the transfer and bioaccumulation
efficiency,0f ,MC through prawns is lacking. It is likely that consumption of prawns
exposed to high MC levels could leadigk of public healthQuantitative evaluation of
the potential.risk posed to food safety is needéerefore, we monitorettansfer and
bioaccumulation of MELR at three levels of an aquatic food chain, namely blue green
alga Microeystis aeruginosa, daphnia Daphnia magna and freshwater prawns
Macrobrachium rosenbergii in three experimentso as to assess its potential risk

human consumption of prawns.

Materials and' methods
Chemicals andreagents

MC-LR (purity>95.0%) was purchasedfrom Alexis (Lausen, Switzerland)
Standard stock solution was prepared in methanol at @5@L™. HPLGCgrade
methanol and formic acid were supplied Mgrck KGaA (Darmstadt, GermanyAll
other reagents and chemicals used were of analytical grade. Watpunves! from a
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Milli -Q deionization unit (Millipore, Molsheim, France).

M. aeruginosa was cultured in B&1 medium in flasks at 25£C, with irradiance
at 56 HErfS* and a 12h light:12h dark photoperiodD. magna was provided by Key
Laboratery ofs Marine Ecology and Environmental Science, Institute of Oceanology,
Academysof:Science (Qingdao City, China).

Experimental‘design

Experiment A was an exposure experiment where prawnsDamegna were
exposed tavimaeruginosa water. Prawns with an averageight of 12.92+2.79 g and
body length of 8.36+0.57 cm were obtained from a local farm (Shanghai, China),
acclimated for 1 week in PVC tanks (150 L) containinegchierinated water and fed
with commercial prawn feédongwei Group Co.Ltd, Chinagt a rate b3% of body
weight per‘day. The water temperature was 2%3;1and dissolved oxygen was 5.9 +
0.6 mg t=Fresh celloof M. aeruginosa were used for this experiment, after being
concentrated by centrifugation (4 min, 7000 rpiC¥and resuspended in weatat cell
densities of 5x10cells mL%. D.magna at density of individual mL'was maintained in
5 glassitankeachwith 10 L in volumecontaining water witlM. aeruginosa at density
of 5x10 cells. mL* for 24 h. Each group of prawng @roups, n=10yasplaced in a 30
L PVC tankscontaining water withM. aeruginosa at the density 05x10 cells mL* for
24 hyDuring.exposure the prawns were With commercial feedcand aeration was
provided. Pawns were sampled from tanks and dissected at 2, 8, 1&4nd of
exposures-the gills, blood, digestive tract, muscle and hepatopancreas weneaindz
freezedried separatel\D. magna was collected anftozenfor MC-LR content analysis

and feedingexperiment B.

Experiment B was a feeding experiment where prawns were fedDwithagna
which was exposed thl. aeruginosa in experiment A. The prawns (average weight of
13.87£252"g and body length of 8.65+0.47 cm) were acclimated to laboratory
conditions for 1 week in PVC tanks with -dblorinated water. Duringcclimation
period commercial feed was supplied, whilkenthe experimenbegan prawnsvere
exclusivelyfed withfrozenD. magna exposed tdV. aeruginosa. Prawns were sampled

and dissected at 8, 16 and 24 h post feeding and the gills, blood, digestivenuscle
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and hepatopancreas were frozen and freleisel separately.

Experiment C was a food chain experiment where prawns (average weight of
13.25£2.85_g and body length of 8.43+0.86 cm) were acclimated to laboratory
conditions'fer,1 week iB PVC tanks. Prawns along with. magna (2 individuals mL™*)
were stocked in-30 L PVC tanks with. aeruginosa at cell densities of 5x1@ells mL
! Prawns from each tank were dissected at 2, 8, 16 and 24 h and the gills, blood,
digestive tract, muscle and hepatopancreas were frozen anddreszseparately.

MC analyses

Extraction of the microcystins was carried out according to the method of Zhang et
al. (2009) with some modification. The lyophilized samples (~0.1 g dry weight for each
sample) were extracted two times with 25 mL of 0.01 M EEN&-5 v/v % formic
acid by'homogenization with a higipeed blender (PT2000, Polytron, Switzerland) for
30 s at 20,000 rprmand followed by 5 min sonicationThe samples were then
centrifuged at 4500 rpm (Type 3K8, Sigma, Germany) at°€C. The supernatant was
appliedstesansOasis HLB cartridge (500 mg, 6 mL, Waters, Milford, MA, USA) which
had been preconditioned by washing with 5 mL 100% methanol and 10 mL distilled
water. Thesecolumn containing sample was washed with 5 mL water followed by 3 mL
10% methanol, and then eluted with 4 mL 100% methanol. elineiant was dried
under arhitregen stream in a 45 water bath, and the residue was dissolved in 1.5 mL
of 20% /imethanol with 0.1% formic acid. The resulting solution was filtered through a

0.45 pm nylon filter for analysis.

An Ultra Performance Liquid Chromatography (UPLC) and Mass Spectrometry
system was.used consisting of an Acquity UPL.Gystem equipped with a XEVO
triple quadrupole mass spectrometer (Waters, Milford, USA). The injection volume was
full-loop (40fiL) and the chromatographic separation was performed atGlQsing a
Cig column (Waters, 100 mmx2.1 mm internal diametewmilrticle size), with the
flow rate set at 0.35 mL mih The mass spectrometer was operated in the positive ESI
mode, with a capillary voltage of 3.5 kV. The source and desolvation tempsnatne
145 and 450C, respectively. Gas desolvation and nebulization were carried out using
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nitrogen at flow rates of 850 and 50 [}, hrespectively. The signal acquisition was
performed by multiple reactions monitoring mode (MRM). The divert valve was
programmed to send the LC flow to waste for the first 2 min after injection and aga
after the analyte of interest had eluted. The gradient parameters are presented in Table 1.
Mass spectrum tuning and optimization were achieved by infusingLRIGind
monitoring.the [M+H] ion at m/z 995.6. The product ions at m/z 107.1 from the parent
ion at'm/z"995.6 were used for MR qualitative analysis. For quantification purposes,
mass chromatograms monitored theduct ions at m/z 135.2 from the parent ion at m/z
995.6 (Table 2).

Table 1

Table 2

The"method was validated in terms of specificity, limit of detection (LOD), limit of
quantification (LOQ), precision and recovery. Linearity of the method wassassat
MC-LR (concentration ranging from 1 to 26§ mL". Five calibration curves with six
concentration_points were constructed. The linearity of the calibration curves was
evaluated 'on the basis of linear regression analysis and the square correlation
coefficients (f) using SPSS 17.0. A correlation coefficient above 0.99 was desirable for
all the calibration curves. LOD and LOQ were defined as concentrations in a sample
resulting.in.signato-noise ratios of 3 and 10, respectively. Precision of the assay was
expressed by percent relative standard deviation (%RSD).

The recoveries were obtained by analyzing-M&in prawn tissue at three spiked
concentration(0.075, 1.5, 3.75 pg g™ for MC-LR). In all cases, samples were run in
sextuplicate The limit of deteom (LOD) and limit of quantification (LOQ) were
estimated sextuplicate. The matrix effect was assessed by comparing the peak areas of
the neat analyte standards, standards spiked before and after extraction in gravn tis
samples. Mean and standard desiatof MC concentrations between treatments were

performed using SPSS 17.0 for windows.

Results
MC analyses
One possible way to remove the matrix interferences from prawn tissue is sample

cleanupusing anOasis HLB extraction cartridge (Waters, Milford, USAhere are
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many interfering compositions unclear in complex prawn tissue, which idealljdsh
be washed off before elutioive successfully used@ mL of 10% methanol in waté¢o
wash off the interferase of the matrix while leaving the targeted compounds on the
cartridge. The, washing curve shown in Fig.1. Pure methanol was chosen for elution
becausegofuits high recovery and convenient dryness by nitrogen flush. The volume
fraction of pure methanol water was 4 mL and the elution curvesi®wn in Fig.2.

Figure™®

Figure=2

According to the analysis of 10 unexposed samples (including gills, blood,
digestive_tract, muscle and hepatopancreas), this LNREM/S method provided clean
and backgroundree mass traces foine matrix studied, demonstrating that the method
had good~selectivity (Fig.3). Quantification matfortified calibration curves were
determinedto’ compensate for the matrix effect and loss in sample preparation. Good
linearity'was obtainetbr MC-LR, with r* rangng from 0.9946 to 0.9990. The LOD and
LOQ in this method were 0.007& g and 0.0157%ig g, respectively. The results are
summarized in Table 3.

Figure 3

Table'3

Satisfactory MGLR recoveries were obtained ranging betw@&dn8+7.6%and
128.4+12.3% The precision was satisfactory since RSD of the mean recovery ranged
from 4.2% t0710.9%. The results demonstrated that the accuracy and repeatatbiéity of

method were good for quantitative purposes.

Experimental results

MC-LR in the cells oM. aeruginosa was 119.6%14.01pg g™ dry weight andn D.
magna 2.72+0.09 ug g dry weight, respectively. The highest M@®R peaks in the gills
of prawns appeared at 8 6.08+0.59.g g™ dry weigh) in experiment AThe digestive
tracts of prawns showed remarkably high peaks at T6119£0.30ug g™ dry weigh),
whereas the highest MCR content in the hepatopancreas appeared at Q48+0.04
ug g dry weigh) in experiment C (Fig.4MC-LR was not detected in the muscles, and

rarely appeared in blood samples in this study (Table 4). Cyanobadfeaar(iginosa)
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were observed in the gills of prawns in both experiments A and C.
Figure 4
Table 4

In all treated prawns, the average NIR content in the hepatopancreas rapidly
increagd during the experimental period (Figs. 4, 5). The highestRQevels were
recorded in the gills andigestive tractof the prawns (Fig. 6)The average M@R
content of experiment A in the gills and digestive tracts increasedlin{tabund 8 h),
then decreased until the end of the test (Fig. 4). However, the averag® M@ntent
in the gills"and digestive tracts in experiment C increased initially then decreased
after16 hPrawns accumulated a maximumeo®8+0.59ug g™ dry weight in the gills in
experiment A.

Figure 5

Figure 6

Discussion

Aquatic organisms are generally considered more tolerant of cyanobacteria toxins
than mammals as a result of their-ewmlutionary history, which can reduce the
likelihood for catastrophic losses of the cultured species but increase the potential for
damagng human exposure to these toxins (Smith et al. 2008). Bioaccumulation of MCs
in crustaceans has been reported in several publications. Vasconcelo$2e013!
detected @ongentration 02.9 pg g™ dry weight in crayfistProcambarus clarkii under
labordory_conditions. The seasonal changes of mixed hepatotoxinsLRIGIC-LA,
MC-RR; . MC-YR, and NODLN) in the marine prawPenaeus monodon was measured
through' .the enzyme linked immunosorbent assays (ELISA) method and the total
concentration“of hepatotoxing . monodon hepatopancreas varied between 0.0064 and
0.0816 pgeg™ DW (Kankaanpat al. 2005). Zhang et al. (2009) studied seasonal
variations'of MC-LR contents in shrimMécrobrachium nipponensis) from Lake Taihu
through liquid chromatography electrospray ionization mass spectrurEQIBAS),
and found that the MCR concentrationsanged from 0.031+0.004 to 0.605+0.179 ug
g* DW with averaging 0.244 + 0.22@; g™ DW. In our study, the toxitoncentration

shownby freshwater prawns is consistent with the reported cagtbs lrepatopancreas
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(maximum 0.4%g g DW). Nevertheless, Zimba et €006) reported a case of-co
occurrence of white shrimpjtopenaeus vannamei, mortalities and microcystiroxin in
ponds, where water samples from the affected pond contained high levels of
microcystinLR (45 pg g?), and free microcystihR concentrations in dead shrimp
hepatopanereas determined by HPLC wer@®§g™ total shrimp weight. Howevewe

did not eterminethe total MC loadin prawn. The common results from the above
referéncesdemonstrated thatustacean muscle was ntite primary organ for

hepatotoexin"bioaccumulation.

In this study, MC-LR was detected in the gills, digestive tracts, and hepatopancreas of
the prawn&fter2 h of exposure. The prawns accumuladcLR both directly fromM.
aeruginosa (ExperimentA) and indirectly througiD. magna (Experiment B) which was
preexposed td/. aeruginosa. To our best knowledge, this might be the first evidence
that freshwater prawns accumulate MR in very short timeas well as the direct
transfer of MGLR from zooplankton to pravenand the subsequent accumulation of

toxin inthe hepatopancreas and digee tract.

According to our results, MC appears to be absorbed through the digestive tract of
prawrs ata“higher ratevhen the toxin is administered through a vecknr,magna,
rather than through toxic cyanobacteria directly. In experiment C, as peawiis.
magna were eéxposed th. aeruginosa togetherD. magna ingested toxic cyanobacteria
cells and prawns appeared to consume these Boxigagna, based on the decrease of
MC-LR content in prawn gills and the increase of 4R concentrations in
hepatoancreas and digestive tracts. Thus, other aquaculture species may also be
exposed to microcystins through the ingestion of cyanobacteria -fRtiiguez and
Wiegand=2010), consumption of contaminated food items (e.g., prey or detritus)
( Deblois.et.al. 201), and absorption of dissolved microcystins from the water column

(e.g., afterileakage from cells or cell lysjgasconcelos et al. 2001).

Microcystins areusually taken upfrom intestine and transfed to liver tissue
(Fischer and Dietrick 2000). bhis studywe found that prawns ingestéd. aeruginosa

cells directly.We also observethatalgal cells adhered to the gills of prawns. There was
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no evidence that the gills absorbed microcystin through algae lysis, nevertkiedess

possibility of this pathway shoulibt be disregarded.

The UPLCGMS/MS analysis method used herein shortened analysis time
significantlypwith peak time for MGLR appearingat 4.54.8 min. Comparatively it
took 18.51minutesto analyzeMC-LR content inLitopenaeus vannamei samples using
HPLC/IMS™method (Zimba et al. 20Q6while similar retention time (~21min) was
recorded fortwo tilapia speci€¥reochromis niloticus andTilapia rendalli using HPLC
method/(Deblois et al 2008).

The 24h test was not sufficient to promotecamulation of MGLR in the muscle,
which is the edible part of the prawn for human consumption. Future studies should take
this into"€éonsideration. The provisional tolerable daily intake (TDI) suggested by WHO
is 0.04ig"kg™® of body weight or 2.4 ug for an adult human weighing 6€g (Kuiper-
Goodman et al. 1999). Assuming an adult human ingests 100 g of whole prawns per day
from our experiment A and @hendaily uptake of MGLR would rangefrom 116 pg to
706 pg, much higher than TDI value proposed by WHO, which was unsafe for human
consumption. Therefore, the risk of consuming prawns from aquaculture ponds and
lakes duringstoxic cyanobacteria blooms cannot be overlooked, and regular monitoring
of MC levels, in prawns should be conducted to protect health of consumers. We
recommend that future studies evaluate the total MC tissue load and the potentially
harmful .effects of MC on human health by multiple exposure routes through aquatic
food.
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Table 1 UPLE Gradient parameters
Table 2 UPLC-MS/MS acquisition parameter fMC-LR analysis
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Table 4 MC-LR content accumulated in different prawn tissues within 24h in the three
experiments (n=10)

Figure 1. The loss rate of MCR in different volume fractiom of methanol in water.

Figure 2. Curve of elution rate of MC-LR against volume of pure methanol.
Figure 3. Chromatograms of thC-LR in thesamples (a. chemical standard MR at
100 ng/g b. the blank hepatopancreas sample spiked at 100 ng/gRviand
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450 real hepatopancreaamplesc. the blak digestive tract sampdespiked at 100

451 ng/g MGLR and real digestive traseamplequp to down) d. the blank muscle
452 sample spiked at 100 ng/g MR and real musclesamplequp to down) e. the
453 blank gills sample spiked at 100 ng/g M® and real gills saples (up to
454 down), f. the blank blood sample spiked at 100 ng/g-M& and real blood
455 sampl& (up to down)).

456  Figure 47MC-LR contents in gills, hepatopancreasdigdstive tracbf prawns from

457 experiments A and Bars represent meawsSD of four replicates.

458  Figure 5:ME-LR concentrationsn hepatopancreas and digestive tracpraiwns from
459 experimemnB. Bars represent meansSP of fourreplicates.

460

461  Figure 6. Distribution of MGLR (%) in the prawn tissuet different tims in

462 experiments\, B and C.
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Table 1 UPLC Gradient parameters

Time (min) A? B Curve
0.00 100 0 0
5:00 0 100 6
6.00 0 100 6
6.10 100 0 1
760 100 0 1

2water|containing 0.1% (v/v) formic acitimethanol containing 0.1% (v/v) formic

acid.
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Table 2 UPLC-MS/MS acquisition parameter fdIC-LR analysis

Parent ion/Production  Cone voltage(v)  Collision energy(v)  Dwell time(

995.6/107.1 42 70 0.2
995.6/135.2 42 76 0.2

%uantification transition
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Table 3. The calibration curve of MC-LR and recovery tests of HPLC-MS/MS method

(n=6)
Tissue Standard curve - MCALR Recovery (%) RSD
(ng/g) (%)
Blood Y =259.83X-253 0.9990 0.075 91.745.2 5.7
15 99.2+10.5 10.5
3.75 103.7£4.3 4.2
Muscle Y =262.45X -2.71 0.9975 0.075 91.5£10.5 10.9
15 84.8+£7.6 9.0
3.75 111.446.5 5.8
Gills Y =301.00X -2.83 0.9952 0.075 125.2+12.2 9.7
15 99.7+4.7 4.7
3.75 100.745.0 5.0
Hepatopancreas Y = 451.70X -2.84 0.9968 0.075 104.3+4.8 4.6
15 88.6+8.6 9.8
3.75 99.245.8 5.8
Digestive tract Y =652.27X-2.72 0.9946 0.075 128.4+11.3 8.8
15 96.246.1 6.3
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Table 4 MC-LR content accumulated in different prawn tissues within 24h in the three

experiments (n=10)

Experiment/Time.

(h)

A
8
16
24
B 8
16
24

8
16
24

MC-LR content(ug/g dry weight)

Blood Muscle Gills Hepatopancrea Digestive
tract
ND ND 2.16+0.18 0.02+0.08 0.35+0.02
0.15+0.004 ND 6.08+0.58 0.06+0.0% 0.77+0.07
ND ND 3.57+0.44 0.19+0.03 0.69+0.08
ND ND 0.89+0.08 0.20+0.04 0.56+0.02°
ND ND 0.05+0.005 0.04+0.02 0.05+0.0%
ND ND ND 0.05+0.0% 0.14+0.0%
0.02+0.005 ND ND 0.10+0.02 0.40+0.04
ND ND 0.37+0.04 0.17+0.02 0.62+0.16
ND ND 1.59+0.08 0.18+0.0% 1.34+0.08
ND ND 1.66+0.18 0.40+0.04 2.19+0.36
0.03+0.005 ND 1.11+0.13 0.49+0.04 1.29+0.1%

#Values represent meansSD of four replicates. Means of each experiment in the

same'column with different superscript letters are significantly different (P<0.05).
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