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Abstract: Plant functional traits vary consistently along climate gradi@miare therefore
potential predictors of plant community response to climate change. We tepattafor-time
assumption by combining a spatial gradient study with whofemunity turf transplantation

along temperature and precipitation gradients in a network of twelve grasséanith Sbuthern

Norway. Using data on eight traits for 169 species and annual vegetation censuses of 235 turfs

over five years; we quantityait-based responses to climate change by comparing observed

community“dynamics in transplanted turfs to field-parameterized null modebsioms. Three

traits relatedto"species aigtture (maximum height, number of dormant meristems, and ramet-

ramet connection persistence) varied consistently along spatial temperature gradients and also

correlated.tahanges in species abundances in turfs transplanted to warmer climatésits
associated'with resource acquisition strat@&JyA, leaf area) increaseddongspatial temperature
gradients but did not correlate changes in species abundances following warriograits
correlatecconsistentlywith precipitation. Our study suppottse hypothesis that spatial
associations between plant traits and breeale climate variables can be predictive of
communitysresponse to climate change, but illustréi@snot all traits with clear patterns along

climate gradients influence community response to an equal degree.

Keywor dsi#Plant functional traits, clonal traits, environmental gradient analysis, turf

transplantation, grasslands, alpine plant communities, community response.

INTRODUEGTION

Plantfunctional trais, defined as measuraldpecies characteristics with explicit
connections to individual performance, eefi plant ecological stratggndassociate with
environmental factors at many spatial and ecological s¢aik®rtown 2004, Wright et al. 2005,
McGill et al.,.2006, Violle et al. 2007). Theles thatenvironmental variablgslay in structuring
community. compositioare ofteninferred frompatterns of communityreighted mean trait
values alongspatial gradier{Be Bello et al. 2005, Shipley et al. 2006, Kraft et al. 2008,
Cornwell and.Ackerly 2009)he consistencgnd prevalencef many traitelimatecorrelations
over space suggesdtey ould be good predictors of community responsediteatechange
(Lavorel and Garnier 2002, Enquist et al. 2015).
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However there aralsoreasons why spatial trait gradient patterns bapoor predictors
of community responsée climate changdrirst, it is not clear if species will migraggiickly
enough to maintain their current associations to clirflRrdst and Pedersen 2008, Visser 2008).
Instead species assemblagemy be in continual flux as species respond and adiéfptentially
to changing.elimateonditions (Neilson et al. 2005). Second, rapid climate change could disrupt
biotic interaction networks, leading iiosyncratic species responses that are inconsistent with
expectations'based on broschletrait-environment relationships (Kudo et al. 2004, Post and
Pedersen2008). Third, species may respofideoscalechangesn environmental variables
thatcannot be predicted usimtjmate averageimball et al. 2010, Graae et al. 2012).

Onesway. to directly evaluate the potential $patialtrait patterns to predict community
responsesto climate changdo experimentally manipulate climaie situ and observe
community response (e.g. Hobbie and Chapin 111 1998, Hudson et al. P@%ithapproaches
allow for precise manipulatiorf the desired climate variablésit suffer from several
drawbacks. Most notably, tlerival and establishment of immigrants adapted to the new climate
conditionsisssharply reduceceffectively removing an important driver of community response
to climate ehangéGottfried et al. 2012)n situ experimentsnay evensupprescommunity
responses.propagule pressure from locally abundant spsisihigh enough to exert mass
effects onsthe community compositions of experimental plotsituclimate manipulationalso
often haveundesirable side effects relatedheir experimental methods (Aronson and McNulty
2009).

Here"we, investigate the effects of climate changelant communitieasing an
alternative'approach: transplantation ofie, intact communities toewclimates.Whole-
community transplantation avoids the expenta¢artifacts of climatehange manipulations,
while expaosing the community to immigration from species adapted to the new enviromment. |
fact, transplantatioties at theotherextreme oin situ climate manipulations: provides a
scenario in whichmmigration ofclimateadapted species is higher than would be expected in
communities'subjecbtgradual environmental chand®e monitoed changes in the functional
compositionwof.235control and transplantddrf communitieover five yearsvithin a network
of twelve grassland sites in southern Norway. Our measures of functional coompasition
speciedevel averages dbur commonly measured plant traitsafearea, maximum vegetative

height, seed mass, and specific leaf area (SarAgfour less commonly used traits relating to
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clonal growth strategy: number of offspring per parent, persistence of plapthHodf connection,
rate of lateral spread, abdd rumber (i.e.the number of dormant meristems pEnet).Clonal
traits are often overlooked as indicators of plant performance, despite ttespnaad
prevalence and potential significance for community dynamics and ecosysteiorfunct
especially insherbaceous pldnbmeslike grasslands, wetlands, and tundra (Zobel et al. 2010,
Cornelissen etal. 2014).

Ourcentral goalvasto test if trais with broadspatialassociation$o climate alsalrive
community responsdse rapid climate changdo do this, we characterizéaseline trait pattas
acrosgemperature and precipitation gradieimt®ur system, and then determinkthese traits
correlated.withwspecies performance in turf communitessplanted to warmer and/or wetter
conditions Thefact thatturf communities were open to immigration from the surrounding
vegetatiomecessitated carefulevaluation of our null expectations. Even under tnaittral
dynamics, natural turnover combined with the immigration and proliferation ofylesdalindant
species leadsansplantedcommunities to converggompositionally with local sites over time.
Thus, anytestfor traitmediated dynamics must measgommunity responses againstl
expectations that accouiatr stochastic replacement and immigration. We use shifts in species
abundanees in control turfs to estimate stochastic replacement and immigratich aite, and
thenuse_theSestimates in model simulations to generate null expectations of turf response to
transplantationObserved deviations from these null expectations are interpre¢sttiasce for
trait-mediated interactions.

Theuwnusual topographgf southern Norwayllowed us taddressan additional
shortcomingafsmostspatialgradient studieby methodologicall\separatingemperature and
precipitation as potential climate driveExologicalstudies alonglimate gradientsftenuse
altitudinal transectghat vary in bothemperature and precipitati¢8allaway et al. 2002, Djukic
et al. 2010),.although not always in a consistent manner (Kérner 2003 covariation makes it
difficult to isolate thandividualand interactive effectsf temperature and prgpitationand thus
project howsvegetation willespond to novatlimates In southern Norwaya westto-east
rainfall gradient interacts with a mosaic of fjords and mountain ridges to gehigfatdimatic
heterogeneity over a small geographic area. We expliitedaturalheterogeneity testablisha
“climate grid” in which tenperature and precipitation vary orthogonally amongwledve field
sites,therebyallowing usto separateéhar effectsand toidentify potential interactions
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We use results from our gradient analysis, transplant experiment, and madatisims
to addresshreequestions: 1Whatis the relative influence of spatial variationtémperature
and precipitation on community trait compositionD® thetraits thatrespond tespatialclimate
gradients also drive community temporal response to climate changétasis the influence of
clonal traitsrelative to more commonly used Jsgedand canopy height traits in community
response to climate gradients and climate chaWég@xpect short species with conservative
resource use strategies (low SLA, low leaf aséaw lateral spregdandor high capacity for
resource integratiorpérsistent ramatamet connectionsnoreoffspring per rametnorebuds
per ramet) to predominate in unproductive climates (the coldest and driesteditidg® to more
productive climates (thearmest and wettest sites). Our study is a rigorous experimental
evaluation'of the assumptidimattrait patterns alonglimate gradients reflect, and can therefore

predict, how communities will respond to anthropogenic climate change.

METHODS

Thesstudy area is an approximately 500 km x 500 km region in solNlbenay with
marked climatic heterogeneifffrigure 1).Twelve grassland sites were selecatgtth one of three
mean summer temperatures.(6.0, 9.0, and 10.5 °C) and one of four mean annual
precipitations ¢a.600, 1200, 1900, and 280@m), while other environmdal variables were
relatively consistenfcalcareous sqikouthwesaspectslope of about 20 degreesd
comparable grazing and lainge history)seeTable S2 for precise climate data, afdnderud
et al. 2015oradditional site detaiJsThe grasslands’ short stature (usually <r@.at peak
biomass) andsshallow but thickly interwoven root and rhizome mats erthbledsy removal,
transport,/and replanting of ‘turfs’ and their attached flora to differelsides. Each 25 x 25w
turf contained tens to hundreds of individual stems, representing 10 - 40 vascular plast speci
with a mean.canopy height of 9 + 6 cm (1 SIb)accordance with predictions thaimate
change will caussoutherrNorwayto becomevarmer and wettgiHansserBauer et al. 2009),
40turfs weretransplanted to warmer sites, #sfs were transplanted to wetter sites, 30 turfs
were transplagd to warmer and wetter sites, @ihtrolturfs were replanted at the same site,
and 60 controturfs weredelineatedut left undisturbedAll non-local transplants were moved
one ‘step’ warmer and /or wetter in the climate gfidrfs were transplanted between sites
multiplesof five; sample sizes differed by treatment because ndesatinatiorsites had cooler
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and/or drier sites to serve as turf origfRgyure 1) For control turfs origin and destination sites
arethe same site. We refer t@nglant destinationas 'target sites'; thusargetcontrols refers

to control turfs at transplant destination sidascular planturf communitycensuses were
conducted in 2009 (before transplantation), 2011, 2012, and 2013, for a totaltoff928
communitytime points Twelveturf community time points were discarded due to damaged
turfs. Rercent cover of each species was estimated visually with the akl>obam grid. Total
percent'coverwas allowed fall below orexceedl00% to account fdsare patches and/or
overlapping'species covermean cover in control plots across sites and years rdrajad87 +
25% to 127 + 30%).

Trait data:*Werbuilt a custom database containing values for up to teajtst for thel69
species present in oturf communitiedfrom across the climate grid. Woody seedlings and
unidentifiable individuals represented 1.1% total cover and were discaYeeaasedour
commontraits; leaf area (mr), specificleafarea (SLA) (nf kg™), maximum potential canopy
height (m);andseed mass (mgand four traits relating to clonal growth: number of offspring per
parentper yearl or> 2), persistence of plant-offspring connection (< 2 years ®12 years), rate

of lateral'spread<(1 cm yea™ or > 1 cm pa™), and bud number, i.eheprevalencef
aboveground and belowground dormant meristémaf area and SLA were estimated using a
combination of field data and data from the LEDA online trait database (Klegkr2€08). Our
field data derive from ~1200 leaves collected in the summer of 2012 for whiclai8Lkeaf area
were calculatedsing established protosdCornelissen edl. 2003).We used Pearson
correlationsiterassess the extent to which LEDA species trait values miagtthedthered trait
values (SLAp = 0.69; leaf aregy = 0.73).Maximum potential height data were mined frbid
and Lid (2007)We drew seed mass data from the Seed Information Datddagd Botanic
Gardens Kew.2014All continuoudrait values were logransformedClonal trait data were
extracted from.the CLPLA databas¢KlimeSova and Bello 2009) andxceptfor bud number,
transformed«from categorical to binary metrics to simplify statistical analk@isoud number,
speciesvereassigned a scord 0 (no buds) to 8 (dozens of budssed on estimates from
KlimeSova and Bello (2009Pataon individual traits represented 14064 species (84%99%
of total cover) Eight specie$3.%% total covey were identifiable only to genus but treated as
species in downstream analysEsr these species, trait values were either measured in the field
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(SLA, leafarea) estimated by taking theediantrait values of loally-present congeners (seed
mass, maximum height, clonal traits), or left blaBgecies names and their trait values are
provided as a supplementary taldpdcies data.c3vOnly two of 28pairwise comprisons of
species trait values were significantly correlgt®dA andbud number, SLA and connection
persistence;s€kable S); apart fromthese two exceptions, we consider trait responses to be
statistically,independent

Community‘analyses. We quantified differences in species composition uBiray-Curtis
dissimilarity. Community weighted means (CWMsiere used to quantify differences in
functional eompositionWe used specidsvel trait values in these calculations; thus, changes in
CWM refleet changes in species compositioot trait plasticity A CWM is calculated by
averaging the values of a trait for all species in a community, vegidly their abundance (here,
percent cover)For lateral spread, connection persistence, and offspring per ramet, CWMs
reflectedthe proportion of the communityith the higher valueategory £ 2 offspring per
parent> 2 years'connection persistence, ericmyea™ lateral spreadPretransplant (2009)
turf CWMs'were regressed onto temperature and precipitation site tbesssess community
trait patterns. in environmental spagdC values were useth determine when temperature
precipitation, and/otheir interactiorweresignificant predictors (p < 0.05) in abundance-
weightedmultiple linearregressios. For a deeper investigationsgfeciedevel variation in
community.composition sd€anderud et al. (2015).

Wequantified community changeashifts indissimilarity over time between tarf and
its targetsiteeontrols.Each site had five undisturbed controls and @iestrols replanted nearby
which enabled us test for theeffectsof transplantatiomper se Dissimilarity inspecies
composition among undisturbed controls was only statistically different (p < 0.05) from the
mean dissimilarity between undisturbed and replamedrals in 5 of 48 ofurf community time
points,suggestig that transplantatioper sedid notnoticeably #ect species compositioffhus,
in some analyseseplanted controls and undisturbed contesescombined to increase the

control graip sample size to ten per site.

Null model rationale and process. We usedsimulatiors to generatenull expectations of turf

community responsés transplantationand then determined when observed community
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215 responses deviated from these null expectationsmodel is similatin principleto stochastic

216 models of specieabundances using Hubbell’s (20@Eutral local community moddbutis

217 applied toa smallerspatial scaleFor each step in the model, an individual is randomly removed
218 from the turf communityand either replacedith a randonty selectedffspringfrom the same

219  turf community. (with probabilityl — ), or replaced with a randomly select&tspringfrom the
220 sitelevel community(with probabilitym). Each step is ‘replacement eventThe sitelevel

221 community's'camceptually equivalent to Hubbell’s ‘metacommunity’, and is defaxethe net

222 composition‘ofthe ten control turfs present at each®itemodel has two parameters:

223 replacement rated), the number of repl@ment events that occhetweerconsecutiveeas,

224 and immigration raten), the probability that replacemesd@redrawn from thesite-level

225 communityspool as opposedftom within the turflevel communitypool (see next section for

226 parameter estimatignEven though turfs are only 25 x 25 cm in size,expecteavithin-turf

227 recruitmento be highbecause most species in our system exhibit some degree of clonal growth
228 (KlimeSova.and Bello 2009), amabarly allnew semsare vegetative outgrowths from extant

229 genets ratherthan seed germination events (Berge, Klanderud, Vampuaklished data)

230 Our'model differs from Hubbell’s community model in three important ways, Fatsier
231 than usingsbirths and deaths of individuals to quantify demographic changes, which would be
232 impracticalto measure in our predominantly clonal system, we use increases and decreases in
233 percent cover units. Secomie relax the assumption of zesam replacement and instead force
234 simulated‘percent covén match observed percent cover in each year of the experinhénaf. T
235 weallow sitelevel communitiesi.e., the source paofor migrants enteringxperimental turfs,

236 tovary by reealculating them after each cen3ie lattertwo modifications account for

237 temporal variability in theroductivity or composition afite-level communities due to drift or

238 shortterm climatic variability.

239 We_ simulated community dynamics from 2009 to 2013 on an individual turf basis,

240 calculating.species and trait dissimilarities to tasiet controls each yeaCompositional

241 changes ineach turf wesemulatedl00 times and the resultimglueswere averaged.

242 Simulation‘data for 201@ere not presentdakcause fieldbservationslo rot exist for that year.
243 Paired ttests were used to determine when observed and simulated null expectatioed diffe
244  significantly.

245
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246 Estimating model parameters. We used community census détam our control turfs to

247 estimateeplacement ratél) and immgrationrate(m) at each sitéWe setd equal tohalf the

248 sum ofdifferences in species covers in control turfs between years at eadNesitivided by

249 two because each replacement ewemnistitutegwo shifts in species covers, one increase and
250 onedecreasesValues dfranged from 19.7 to 37.4. Our method of estimadingnoresself-

251 replacement and thus likely underestimates actual replacement@tever, a visual

252 inspection‘of'model fit under a broad range of parameter values illustratesithesultsare

253 robust to moderatecreasedn replacement rat@-igure S3). Furthermore, it should be noted
254 that any potential underestimates in replacement rates do not affect estimates of immigration
255 rates.

256 We estimatedn using aBayesian approadbtased on shifts in species abundances in the
257 five replanted contrdiurfs at each sitever three corecutive yearg2011-2013)assuming

258 neutral dymmics The net composition of tHeve undisturbedcontrol turfsat each site wassed
259 as the sitdevel community. Theexpectedtoveri of species in a turf community at timeis

260 formally definedas

261 Lit = Jea[(1—m) X Cir1 + MX Pjq]

262 wherelirisithe total cover of the turf community in the previous y€ar;, is the relative

263 abundance of species the turf community the previous ye&,.; is the relative abundance of
264 the species in the sitevel communityat timet, andmis the immigration parameterhe

265 percentovery, rounded to the nearest whole numbespsEcies in turf communityat timet

266 wasmodelled"assuming

267 Yit ~ Poisson(Ai¢).

268 We gavema uniform prior with a range from O to\We alsoexplored using an informed prior
269 (m < 0.5) based on the expected predominance of clonal growth and tuithieeruitment but
270 this led to dentical results and was dropped. We fit the model using MCMC impksiia

271 JAGS 3.4.0(Plummer 2003). We ran JAGS through the R package R2jags (Su and Yajima
272 2012) For.each model fit, we ran three chamsed a burn-in of 1000 iteratiorasd chose

273 initial valuesiin different regions of parameter sp&te.confirmed modetonvergence using
274 GelmanRubin diagnosticéBrooks and Gelman 1998)e assessed overall model fit by

275 regressing mean posterior estimates for percent cover on observed’dathf®).See Table S2
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for parameter estimatelSor adeeperexploration of howa Bayesian approach can be usefit
atrait-neutral model of community change to time series si¢aMutshindat al.(2008).

RESULTS

Community weighted mearf€WMs) of leaf area, SLA, maximum height and lateral
spread increased with temperature along spatial gradeent<; WM values of bud number and
connection‘persistence decreased with temperature glatiglgradients (Table 1, Figure B).
threeof the eightraits, the besffit weightedmultiple linearregression model included
precipitation ag predictor variable, but theoefficient of theprecipitation variable itselvas
never significardy different from 0 The interaction of temperature and precipitation had a
significant'effect on SLA. Exponential curwegth increasing temperature bud number and
connection persistence pattebeiter than linear ones, reflecting stronger respongés icolder
part of the climate griFigure 2) Based on these associations, we limited our analysis of trait
convergence in transplanted tuofger timeto the six traits with spatial associations to
temperatureyand to turfs transplanted to warmer climates.

Speeies‘and trait compositisrof transplanted turfs converged towaatgetsite controls
over timepwith the magnitude of convergence increasittyinitial dissimilarity (Figure3).
Rates of .eonvergence in species composiiadg exceeded null model predictions that
accounted for random replacement by local immigrants in 2011 (Figurecntrast, ates of
convergence in maximum height, bud number, and connection persisterstgentlyexceeded
null modelspredictions (Figure 4yhese @viations from null expectations were driven by
responses-across many specatler than responses in just a few of the most abundant taxa
(Figure S4)Sitelevel climate dat@onfirm that transplanted turfs experienced consistently

warmer temperatures as intended (Figure S1, Figure S2).

DISCUSSION

Our.studyusesobservational and experimental dataest the assumption that traits with
broadscale"asociations to climate in space are predictive of plant community response to
climate change in time. This spafog-time assumption is supported when using thraiést
related to species architecture, bat supported when usirtigree traits related to species
resource usetmtegy.Our results underscore the importantesingecologically relevant traits
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307 when making predictions of community response, and suggest that in our grassland system,
308 architectural traits magxert more influence on initial species response to rapid warming than
309 the more commonly used growmtélated traits.

310

311 Trait patternsalong climate gradients: Despitethe large range in bothean summer

312 temperature andnnualprecipitationacross siteSCWMs trended onlywith temperatureThe

313 lack of fanietional turnover over a nearly 25®@n year” increase in precipitatiois surprising

314 given the eonsistent directional turnover in species composition along both temgparal

315 precipitation gradients our systenf{Klanderud etl. 2015), underscorindpe factthat species
316 turnover deesmatlwaysbeget functional turnover (Hooper et al. 2002)is finding contrasts

317 with vegetation‘trait patterrfeund elsewherevernarrower rangesf precipitation(Fonseca et
318 al. 2000, Wright et al. 2005\ lack of precipitdon effects could occur if soil moisture is similar
319 at all sitesand/or not limiting at angites,however this seems unlikely given the large range in
320 mean annual precipitation and the otherwise similaasitetic conditionsRegardless of the

321 mechanimythesimplication is thatunctional shifts in these grasslarats likely tooccur in

322 response to changesteamperature, not precipitation.

323 The.@nsistenshifts inCWMs with increasing temperatuie our system signifghifts in
324 plant ecolegicastratey. Increases in leaf area, SLA, and the rate of lateral sprigad

325 temperature suggest a shift from slgrowing stresdelerant species to fagrowing species

326  with acquisitive resource use stratedigterck et al. 2006, Rusch et al. 2011). Also increasing
327 with temperature amnaximum heightduration ofconnection persistence, and bud number,
328 three traitS'related to plant architecturae increase iICWMs of maximumheightmay reflecta
329 tradeoff in the ability to compete for light at warm sites amenable to growth and the ability to
330 tolerate wind stress and freezing temperatures at the coldegVégstoby 1998, Falster and

331 Westoby 2003). igher CWMs of bud number and connection persistence at the coldest sites
332 mayreflectan.increased importance of resource integratiafior recovery fromdisturbances

333 (KlimeSovasand Klimes 2007), althougle see nmbviousreasos why resources would be

334 patchier and/er disturbances more common at the coldest sites. More work is needed to confirm
335 the functional roles of these understudied clonal traits andrtiteim organizing grassland

336 species along gradients.

337
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338 Community responsesto warming: Thecentral goal othis study was to test theypothesis

339 thattrait-climaterelationshipover spacarepredictive of temporal community response to
340 climate chang@ time, a common assumption climate change researddf the six traits with
341 significant trends with temperatuire space maximum height, bud number, and connection
342 persistencethree traits related to species architectlassociated consistentlyithy turf

343 communityrespons&o warming in time The large deviation in maximum heighdm neutral

344 expectationgnaybe have resulted frocompetition for light being more intense in more

345 productive, warmer conditionandtaller speciepreempting access tight, shading out

346 competitors, and earning disproportionate returns dagéasymmetric competition

347 (Schwinning and Weiner 1998 pecies with fewer buds and reduced connection persistence
348 succeededdisproportionately following warming, suggesting that the development and

349 maintenance ofithese clonal traits, which are believedpport new ramets under stressful

350 conditions (KlimeSova and Klimes 20Q0€pmes at a costhenconditionsare more amenable to
351 growth.ThatCWMs of architectural traits deviated from neutral expectatbde®mmunity

352 responsevhiles"CWMs of growthrelated traits (SLA, leaf area, lateral spread) did not, despite
353 showing strongrends along spatial temperature gradigstsnexpected and interesting

354 Perhaps,the capacity for rapid growth is not useful to new ramets vying for resources in
355 grasslangemmunities already packed with established individ(als seeWildova et al.

356 2007). Alternatively, SLA and leaf area may be poor predictors of growth in herbaceous species
357 with photosynthetic stems. The strong responses of clonal trahanges in temperature

358 highlight theneed for more emphasis on clonal traits in studies of community respons

359 climate change anderbaceous community assembly in general.

360 Defining nullexpectationsvas challenging given tHack of standargractices ohow to
361 model demographic stochasticity in predominantly clonal systems (Eriksson 1994).

362 Traditionally,.demographianalyses rely opopulation numbers and &ltrates, but the concepts
363 of individuals, populations, births, and deaths break down in clonal, modular organisms. For
364 instanceramet numbeis impracticalto measure anchay not be demographically meaningful
365 for graminoids.that form hummocks with clumps of stems {ggtucaoving), nor is it possible
366 to distinguish individuals in forbs with sprawling aboveground stems with adventitious roots
367 (e.g.Veronicabiflora), or species that divide via root splitting which results in fragmentation just
368 below the litter layer (e.gcerastiumalpinumn). Our decision to simulate demographic changes
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usingpercentcoverunitsthereforehasboth practical and conceptual appedie Trawback
however s thatpercent covers sensitiveo factors thaarenot demographically significant,
suchasvariation in phenological stage among individuafsciesand sampling times, and thus
may inaccurately reflecshifts in abundandeetween yeardNeverthelessour approach accounts
for demographic stochasticjtgnnual variation in community-level composition, andréadities
of dispersal limitation in a predominantly clonal systengenerge explicit null expectations of

community‘response to perturbation.

Conclusions and future directions: Using patternén CWMs along environmental gradients to
forecastcommunity response to climate change is an intuitively appealing approach. Our study
provides qualified support for such an approdicteeof thesix traits withspatial associations to
temperature in our systeassociategdignificantlywith spedes success following transplantation
to warmer climatesvidently, patial associations between plant traits and beuade climate
variablescan bepredictive of community response to climate changeatenot always so
Ourresultsshedsomelight on how our system could respond to climate change in the
coming decade®espitehigh rates of annual turnover, without gaps created by disturbances,
virtually allreplacement stems are clonal outgrowahextant genets rather than new seedlings
(Bullock et-al. 1995Berge Klanderud, Vandvik, unpublished data). Thus, the potential for
community change is largely limited by the prevalence of gaps and the propopecas in
the seed rain thatreimmigrants rather than local species. Oncebdisteed warmeradapted
immigranswillslikely proliferatevegetatively, outcompeting species adapted to cooler
temperaturegOlsen et al. 2016). Our approach and conclusimaerscoréhe importance of
accounting for stochasticity and immigration when making predictions of community response
(Tilman 2004, Shipley et al. 2011). Future studies shooitgider the effects of dispersal
limitation on.shorterm transient responses, and taisturbance and dispersal limitation will
affectlong-term equilibrium responsedtedictions ofextinction debts’ and ‘immigration
credits’ in_the*field of habitat distribution modeling areimportant stejn the right direction
(Dirnbéck and, Dullinger 2004), but could be developed further by considering how and when

traitsmodulatespecies interactions.
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TABLE 1: Summary statistics for beBt weighted linear modsifor each trait

Trait Variable Estimate SE t-statistic p-value
Bud Number___exp{Femp) 118.15 52.83 2.24 0.049
Lat. Spread  Temp 0.04 0.01 2.50 0.031
Leaf Area Temp 0.05 0.01 3.83 0.004

Precip <0.01 <0.01 -1.50 0.167
Max. Height,_ Temp 0.05 0.01 4.26 0.002

Offspring (none)
Persistence  exp(-Temp) 109.14  19.28 5.66 <0.001

Seed Mass  (hone)

SLA Temp 0.02 0.00 5.35 <0.001
Precip <0.01 <0.01 -1.24 0.251
Temp x Precip <0.01 <0.01 2.48 0.038

Summary:statistics for befit weighted multiple linearegressionmodels for each trait using
mean summer temperature, annual precipitation, and their interaction as potential predictor
variables, weighted by the sample size at each site (N ranged@rtn25) Model fit was
determined using AIC values. For bud number and connection persistence, exponentially
transforming the temperature axis resulted in better modéufit:level community weighted

trait means and significant regressions are showigure 2.

This article is protected by copyright. All rights reserved



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569

Figure 1: Panel A: a schematiiustration ofthe orthogonahature of climate variables across
experimental sites, with black arrows representing the directions of turf transplants in replicates
of five. Panels B and C show the geographicaltlona of experimental sites imgthern

Norway. Symbol shapes and shagh reflect mean summer temperature kagld mean annual
precipitation leved, respectively, in accordance with panel A.

Figure 2. Community weighted trait meafif€ WMs) of turfs before transplantatiotoag natural
gradients'of mean summer temperatlgé)(and mean annual precipitation (rigf@WMs are
aggregated byssite (Minges froni0to 25). Vertical lines show + 1 S.D. Symbol shapes and
shadings reflect temperature and precipitation levels, respectively agrdance with Figure 1A.
Bestfit li nes are showas solid linesvhen traitgradient relationships are significant; for
simplicity, trend lines represent univariate regressions, even if multivariate regressions led to
higher AIC.valuesThe interactive effects of temperature and precipitadio SLA is shown

using threestrend lings-3°C. dotted ~6°C: dashed, ~9°C: datashejl CWMs inseed mass and
offspring perrametid not exhibit significant trends aloigmperature or precipitatiagradients

and are thereforemitted. See Table 1 fonodel summary statistics

Figure 3: Changesn dissimilarity of turfs transplanted to warmer climagesitargetsite

controls fram 2009 to 2013. The x-axis shdvay-Curtis dissimilaritypetween tug and the

centroids oftheir control turfs in 2009the y-axis shows how that dissimilarity changed by 2013.
Each symbekrepresents a turf community. Grey crosses represent control turfsirblask
represent'transplanted turfs. Dissimilarity was calculated using@®uays distance for species
composition (top left panebr Euclidian distance of community weighted means (all remaining
panels). Symbols below zero on thaxisreflect turf communities thatonverged

compositionally towardtargetcontrols, whereas communities above zero on thesdiverged
compositionally Dashed vertical lines are placed at 50% of mean dissimilarity among controls as
an approximation of natural community stochasticity. Grey ellipses represento@fithence

intervals of the centroglof control turf dissimilarities
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570 Figure4: Mean trait dissimilarities of transplanted turf communitiadtargetcontrols from

571 2009 to 2013. Solid lireerepresent observed field dabmshed lines represent simulated null
572 expectations based d¢ime means 0100 null model simulation runs.dited lines represent mean
573 dissimilarity among control turfs within sites. Null modehsiations use estimates of

574 replacement.and immigration rates derived from our field @& Methods)Error bars show
575 95% confidence intervals. Statistical difénces between observed and simulated community
576 weighted means are shown when p < 0.05 (*).
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FIGURE 2
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FIGURE 3
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