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Abstract: Plant functional traits vary consistently along climate gradients and are therefore 30 

potential predictors of plant community response to climate change. We test this space-for-time 31 

assumption by combining a spatial gradient study with whole-community turf transplantation 32 

along temperature and precipitation gradients in a network of twelve grassland sites in Southern 33 

Norway. Using data on eight traits for 169 species and annual vegetation censuses of 235 turfs 34 

over five years, we quantify trait-based responses to climate change by comparing observed 35 

community dynamics in transplanted turfs to field-parameterized null model simulations. Three 36 

traits related to species architecture (maximum height, number of dormant meristems, and ramet-37 

ramet connection persistence) varied consistently along spatial temperature gradients and also 38 

correlated to changes in species abundances in turfs transplanted to warmer climates. Two traits 39 

associated with resource acquisition strategy (SLA, leaf area) increased along spatial temperature 40 

gradients but did not correlate to changes in species abundances following warming. No traits 41 

correlated consistently with precipitation. Our study supports the hypothesis that spatial 42 

associations between plant traits and broad-scale climate variables can be predictive of 43 

community response to climate change, but illustrates that not all traits with clear patterns along 44 

climate gradients influence community response to an equal degree. 45 

 46 

Keywords: Plant functional traits, clonal traits, environmental gradient analysis, turf 47 

transplantation, grasslands, alpine plant communities, community response. 48 

 49 

INTRODUCTION 50 

Plant functional traits, defined as measurable species characteristics with explicit 51 

connections to individual performance, reflect plant ecological strategy and associate with 52 

environmental factors at many spatial and ecological scales (Silvertown 2004, Wright et al. 2005, 53 

McGill et al. 2006, Violle et al. 2007). The roles that environmental variables play in structuring 54 

community composition are often inferred from patterns of community-weighted mean trait 55 

values along spatial gradients (De Bello et al. 2005, Shipley et al. 2006, Kraft et al. 2008, 56 

Cornwell and Ackerly 2009). The consistency and prevalence of many trait-climate correlations 57 

over space suggests they could be good predictors of community responses to climate change 58 

(Lavorel and Garnier 2002, Enquist et al. 2015). 59 
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 However, there are also reasons why spatial trait gradient patterns may be poor predictors 60 

of community responses to climate change. First, it is not clear if species will migrate quickly 61 

enough to maintain their current associations to climate (Post and Pedersen 2008, Visser 2008). 62 

Instead, species assemblages may be in continual flux as species respond and adapt differentially 63 

to changing climate conditions (Neilson et al. 2005). Second, rapid climate change could disrupt 64 

biotic interaction networks, leading to idiosyncratic species responses that are inconsistent with 65 

expectations based on broad-scale trait-environment relationships (Kudo et al. 2004, Post and 66 

Pedersen 2008). Third, species may respond to finer-scale changes in environmental variables 67 

that cannot be predicted using climate averages (Kimball et al. 2010, Graae et al. 2012). 68 

One way to directly evaluate the potential for spatial trait patterns to predict community 69 

responses to climate change is to experimentally manipulate climate in situ and observe 70 

community response (e.g. Hobbie and Chapin III 1998, Hudson et al. 2011). In situ approaches 71 

allow for precise manipulation of the desired climate variables but suffer from several 72 

drawbacks. Most notably, the arrival and establishment of immigrants adapted to the new climate 73 

conditions is sharply reduced, effectively removing an important driver of community response 74 

to climate change (Gottfried et al. 2012). In situ experiments may even suppress community 75 

responses if propagule pressure from locally abundant species is high enough to exert mass 76 

effects on the community compositions of experimental plots. In situ climate manipulations also 77 

often have undesirable side effects related to their experimental methods (Aronson and McNulty 78 

2009). 79 

Here, we investigate the effects of climate change on plant communities using an 80 

alternative approach: transplantation of entire, intact communities to new climates. Whole-81 

community transplantation avoids the experimental artifacts of climate change manipulations, 82 

while exposing the community to immigration from species adapted to the new environment. In 83 

fact, transplantation lies at the other extreme of in situ climate manipulations: it provides a 84 

scenario in which immigration of climate-adapted species is higher than would be expected in 85 

communities subject to gradual environmental change. We monitored changes in the functional 86 

composition of 235 control and transplanted turf communities over five years within a network 87 

of twelve grassland sites in southern Norway. Our measures of functional composition rely on 88 

species-level averages of four commonly measured plant traits: leaf area, maximum vegetative 89 

height, seed mass, and specific leaf area (SLA), and four less commonly used traits relating to 90 
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clonal growth strategy: number of offspring per parent, persistence of plant-offspring connection, 91 

rate of lateral spread, and bud number (i.e., the number of dormant meristems per ramet). Clonal 92 

traits are often overlooked as indicators of plant performance, despite their widespread 93 

prevalence and potential significance for community dynamics and ecosystem function, 94 

especially in herbaceous plant biomes like grasslands, wetlands, and tundra (Zobel et al. 2010, 95 

Cornelissen et al. 2014). 96 

Our central goal was to test if traits with broad spatial associations to climate also drive 97 

community responses to rapid climate change. To do this, we characterized baseline trait patterns 98 

across temperature and precipitation gradients in our system, and then determined if these traits 99 

correlated with species performance in turf communities transplanted to warmer and/or wetter 100 

conditions. The fact that turf communities were open to immigration from the surrounding 101 

vegetation necessitated a careful evaluation of our null expectations. Even under trait-neutral 102 

dynamics, natural turnover combined with the immigration and proliferation of locally-abundant 103 

species leads transplanted communities to converge compositionally with local sites over time. 104 

Thus, any test for trait-mediated dynamics must measure community responses against null 105 

expectations that account for stochastic replacement and immigration. We use shifts in species 106 

abundances in control turfs to estimate stochastic replacement and immigration at each site, and 107 

then use these estimates in model simulations to generate null expectations of turf response to 108 

transplantation. Observed deviations from these null expectations are interpreted as evidence for 109 

trait-mediated interactions. 110 

The unusual topography of southern Norway allowed us to address an additional 111 

shortcoming of most spatial gradient studies by methodologically separating temperature and 112 

precipitation as potential climate drivers. Ecological studies along climate gradients often use 113 

altitudinal transects that vary in both temperature and precipitation (Callaway et al. 2002, Djukic 114 

et al. 2010), although not always in a consistent manner (Körner 2007). This covariation makes it 115 

difficult to isolate the individual and interactive effects of temperature and precipitation and thus 116 

project how vegetation will respond to novel climates. In southern Norway, a west-to-east 117 

rainfall gradient interacts with a mosaic of fjords and mountain ridges to generate high climatic 118 

heterogeneity over a small geographic area. We exploited this natural heterogeneity to establish a 119 

“climate grid” in which temperature and precipitation vary orthogonally among the twelve field 120 

sites, thereby allowing us to separate their effects and to identify potential interactions. 121 
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We use results from our gradient analysis, transplant experiment, and model simulations 122 

to address three questions: 1) What is the relative influence of spatial variation in temperature 123 

and precipitation on community trait composition? 2) Do the traits that respond to spatial climate 124 

gradients also drive community temporal response to climate change? 3) What is the influence of 125 

clonal traits relative to more commonly used leaf, seed, and canopy height traits in community 126 

response to climate gradients and climate change? We expect short species with conservative 127 

resource use strategies (low SLA, low leaf area, slow lateral spread) and/or high capacity for 128 

resource integration (persistent ramet-ramet connections, more offspring per ramet, more buds 129 

per ramet) to predominate in unproductive climates (the coldest and driest sites) relative to more 130 

productive climates (the warmest and wettest sites). Our study is a rigorous experimental 131 

evaluation of the assumption that trait patterns along climate gradients reflect, and can therefore 132 

predict, how communities will respond to anthropogenic climate change. 133 

 134 

METHODS 135 

The study area is an approximately 500 km x 500 km region in southern Norway with 136 

marked climatic heterogeneity (Figure 1). Twelve grassland sites were selected with one of three 137 

mean summer temperatures (ca. 6.0, 9.0, and 10.5 °C) and one of four mean annual 138 

precipitations (ca. 600, 1200, 1900, and 2800 mm), while other environmental variables were 139 

relatively consistent (calcareous soil, southwest aspect, slope of about 20 degrees, and 140 

comparable grazing and land-use history) (see Table S2 for precise climate data, and Klanderud 141 

et al. 2015 for additional site details). The grasslands’ short stature (usually < 0.3 m at peak 142 

biomass) and shallow but thickly interwoven root and rhizome mats enabled the easy removal, 143 

transport, and replanting of ‘turfs’ and their attached flora to different hillsides. Each 25 x 25 cm 144 

turf contained tens to hundreds of individual stems, representing 10 - 40 vascular plant species, 145 

with a mean canopy height of 9 ± 6 cm (1 SD). In accordance with predictions that climate 146 

change will cause southern Norway to become warmer and wetter (Hanssen-Bauer et al. 2009), 147 

40 turfs were transplanted to warmer sites, 45 turfs were transplanted to wetter sites, 30 turfs 148 

were transplanted to warmer and wetter sites, 60 control turfs were replanted at the same site, 149 

and 60 control turfs were delineated but left undisturbed. All non-local transplants were moved 150 

one ‘step’ warmer and /or wetter in the climate grid. Turfs were transplanted between sites in 151 

multiples of five; sample sizes differed by treatment because not all destination sites had cooler 152 
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and/or drier sites to serve as turf origins (Figure 1). For control turfs, origin and destination sites 153 

are the same site. We refer to transplant destinations as 'target sites'; thus ‘target controls’ refers 154 

to control turfs at transplant destination sites. Vascular plant turf community censuses were 155 

conducted in 2009 (before transplantation), 2011, 2012, and 2013, for a total of 928 turf 156 

community time points. Twelve turf community time points were discarded due to damaged 157 

turfs. Percent cover of each species was estimated visually with the aid of a 5 x 5 cm grid. Total 158 

percent cover was allowed to fall below or exceed 100% to account for bare patches and/or 159 

overlapping species covers (mean cover in control plots across sites and years ranged from 87 ± 160 

25% to 127 ± 30%). 161 

 162 

Trait data: We built a custom database containing values for up to eight traits for the 169 163 

species present in our turf communities from across the climate grid. Woody seedlings and 164 

unidentifiable individuals represented 1.1% total cover and were discarded. We used four 165 

common traits: leaf area (mm2), specific leaf area (SLA) (m2 kg-1), maximum potential canopy 166 

height (m), and seed mass (mg), and four traits relating to clonal growth: number of offspring per 167 

parent per year (1 or ≥ 2), persistence of plant-offspring connection (< 2 years or ≥ 2 years), rate 168 

of lateral spread (≤ 1 cm year-1 or > 1 cm year-1), and bud number, i.e., the prevalence of 169 

aboveground and belowground dormant meristems. Leaf area and SLA were estimated using a 170 

combination of field data and data from the LEDA online trait database (Kleyer et al. 2008). Our 171 

field data derive from ~1200 leaves collected in the summer of 2012 for which SLA and leaf area 172 

were calculated using established protocols (Cornelissen et al. 2003). We used Pearson 173 

correlations to assess the extent to which LEDA species trait values matched field gathered trait 174 

values (SLA: ρ = 0.69; leaf area: ρ = 0.73). Maximum potential height data were mined from Lid 175 

and Lid (2007). We drew seed mass data from the Seed Information Database (Royal Botanic 176 

Gardens Kew 2014). All continuous trait values were log-transformed. Clonal trait data were 177 

extracted from the CLO-PLA database (Klimešová and Bello 2009) and, except for bud number, 178 

transformed from categorical to binary metrics to simplify statistical analysis. For bud number, 179 

species were assigned a score of 0 (no buds) to 8 (dozens of buds) based on estimates from 180 

Klimešová and Bello (2009). Data on individual traits represented 140 - 164 species (84% - 99% 181 

of total cover). Eight species (3.9% total cover) were identifiable only to genus but treated as 182 

species in downstream analyses. For these species, trait values were either measured in the field 183 
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(SLA, leaf area), estimated by taking the median trait values of locally-present congeners (seed 184 

mass, maximum height, clonal traits), or left blank. Species names and their trait values are 185 

provided as a supplementary table (species_data.csv). Only two of 28 pairwise comparisons of 186 

species trait values were significantly correlated (SLA and bud number, SLA and connection 187 

persistence; see Table S1); apart from these two exceptions, we consider trait responses to be 188 

statistically independent. 189 

 190 

Community analyses: We quantified differences in species composition using Bray-Curtis 191 

dissimilarity. Community weighted means (CWMs) were used to quantify differences in 192 

functional composition. We used species-level trait values in these calculations; thus, changes in 193 

CWM reflect changes in species composition, not trait plasticity. A CWM is calculated by 194 

averaging the values of a trait for all species in a community, weighted by their abundance (here, 195 

percent cover). For lateral spread, connection persistence, and offspring per ramet, CWMs 196 

reflected the proportion of the community with the higher value category (≥ 2 offspring per 197 

parent, ≥ 2 years connection persistence, or > 1cm year-1

 We quantified community change as shifts in dissimilarity over time between a turf and 204 

its target site controls. Each site had five undisturbed controls and five controls replanted nearby 205 

which enabled us to test for the effects of transplantation per se. Dissimilarity in species 206 

composition among undisturbed controls was only statistically different (p < 0.05) from the 207 

mean dissimilarity between undisturbed and replanted controls in 5 of 48 of turf community time 208 

points, suggesting that transplantation per se did not noticeably affect species composition. Thus, 209 

in some analyses, replanted controls and undisturbed controls are combined to increase the 210 

control group sample size to ten per site. 211 

 lateral spread). Pre-transplant (2009) 198 

turf CWMs were regressed onto temperature and precipitation site means to assess community 199 

trait patterns in environmental space. AIC values were used to determine when temperature, 200 

precipitation, and/or their interaction were significant predictors (p < 0.05) in abundance-201 

weighted multiple linear regressions. For a deeper investigation of species-level variation in 202 

community composition see Klanderud et al. (2015). 203 

 212 

Null model rationale and process: We used simulations to generate null expectations of turf 213 

community responses to transplantation, and then determined when observed community 214 
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responses deviated from these null expectations. Our model is similar in principle to stochastic 215 

models of species abundances using Hubbell’s (2001) neutral local community model, but is 216 

applied to a smaller spatial scale. For each step in the model, an individual is randomly removed 217 

from the turf community and either replaced with a randomly selected offspring from the same 218 

turf community (with probability 1 – m), or replaced with a randomly selected offspring from the 219 

site-level community (with probability m). Each step is a ‘replacement event.’ The site-level 220 

community is conceptually equivalent to Hubbell’s ‘metacommunity’, and is defined as the net 221 

composition of the ten control turfs present at each site. The model has two parameters: 222 

replacement rate (d), the number of replacement events that occur between consecutive years, 223 

and immigration rate (m), the probability that replacements are drawn from the site-level 224 

community pool as opposed to from within the turf-level community pool (see next section for 225 

parameter estimation). Even though turfs are only 25 x 25 cm in size, we expected within-turf 226 

recruitment to be high because most species in our system exhibit some degree of clonal growth 227 

(Klimešová and Bello 2009), and nearly all new stems are vegetative outgrowths from extant 228 

genets rather than seed germination events (Berge, Klanderud, Vandvik, unpublished data). 229 

Our model differs from Hubbell’s community model in three important ways. First, rather 230 

than using births and deaths of individuals to quantify demographic changes, which would be 231 

impractical to measure in our predominantly clonal system, we use increases and decreases in 232 

percent cover units. Second, we relax the assumption of zero-sum replacement and instead force 233 

simulated percent cover to match observed percent cover in each year of the experiment. Third, 234 

we allow site-level communities, i.e., the source pools for migrants entering experimental turfs, 235 

to vary by recalculating them after each census. The latter two modifications account for 236 

temporal variability in the productivity or composition of site-level communities due to drift or 237 

short-term climatic variability. 238 

We simulated community dynamics from 2009 to 2013 on an individual turf basis, 239 

calculating species and trait dissimilarities to target site controls each year. Compositional 240 

changes in each turf were simulated 100 times and the resulting values were averaged. 241 

Simulation data for 2010 were not presented because field observations do not exist for that year. 242 

Paired t-tests were used to determine when observed and simulated null expectations differed 243 

significantly. 244 

 245 
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Estimating model parameters: We used community census data from our control turfs to 246 

estimate replacement rate (d) and immigration rate (m) at each site. We set d equal to half the 247 

sum of differences in species covers in control turfs between years at each site. We divided by 248 

two because each replacement event constitutes two shifts in species covers, one increase and 249 

one decrease. Values of d ranged from 19.7 to 37.4. Our method of estimating d ignores self-250 

replacement and thus likely underestimates actual replacement rates; however, a visual 251 

inspection of model fit under a broad range of parameter values illustrates that our results are 252 

robust to moderate increases in replacement rate (Figure S3). Furthermore, it should be noted 253 

that any potential underestimates in replacement rates do not affect estimates of immigration 254 

rates. 255 

 We estimated m using a Bayesian approach based on shifts in species abundances in the 256 

five replanted control turfs at each site over three consecutive years (2011-2013), assuming 257 

neutral dynamics. The net composition of the five undisturbed control turfs at each site was used 258 

as the site-level community. The expected cover λ of species i in a turf community at time t is 259 

formally defined as 260 

λ i,t = Jt-1[(1 – m) × Ci,t-1 + m × Pi,t-1

where J

] 261 

t-1 is the total cover of the turf community in the previous year, Ci,t-1 is the relative 262 

abundance of species i in the turf community the previous year, Pi,t-1

y

 is the relative abundance of 263 

the species in the site-level community at time t, and m is the immigration parameter. The 264 

percent cover y, rounded to the nearest whole number, of species i in turf community at time t 265 

was modelled assuming  266 

i,t ~ Poisson(λ i,t

We gave m a uniform prior with a range from 0 to 1. We also explored using an informed prior 268 

(m < 0.5) based on the expected predominance of clonal growth and within-turf recruitment, but 269 

this led to identical results and was dropped. We fit the model using MCMC implemented in 270 

JAGS 3.4.0 (Plummer 2003). We ran JAGS through the R package R2jags (Su and Yajima 271 

2012). For each model fit, we ran three chains, used a burn-in of 1000 iterations, and chose 272 

initial values in different regions of parameter space. We confirmed model convergence using 273 

Gelman-Rubin diagnostics (Brooks and Gelman 1998). We assessed overall model fit by 274 

regressing mean posterior estimates for percent cover on observed data (R

). 267 

2 = 0.63). See Table S2 275 
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for parameter estimates. For a deeper exploration of how a Bayesian approach can be used to fit 276 

a trait-neutral model of community change to time series data see Mutshinda et al. (2008).  277 

  278 

RESULTS 279 

Community weighted means (CWMs) of leaf area, SLA, maximum height and lateral 280 

spread increased with temperature along spatial gradients, and CWM values of bud number and 281 

connection persistence decreased with temperature along spatial gradients (Table 1, Figure 2). In 282 

three of the eight traits, the best-fit weighted multiple linear regression model included 283 

precipitation as a predictor variable, but the coefficient of the precipitation variable itself was 284 

never significantly different from 0. The interaction of temperature and precipitation had a 285 

significant effect on SLA. Exponential curves with increasing temperature fit bud number and 286 

connection persistence patterns better than linear ones, reflecting stronger responses in the colder 287 

part of the climate grid (Figure 2). Based on these associations, we limited our analysis of trait 288 

convergence in transplanted turfs over time to the six traits with spatial associations to 289 

temperature, and to turfs transplanted to warmer climates.  290 

Species and trait compositions of transplanted turfs converged towards target site controls 291 

over time, with the magnitude of convergence increasing with initial dissimilarity (Figure 3). 292 

Rates of convergence in species composition only exceeded null model predictions that 293 

accounted for random replacement by local immigrants in 2011 (Figure 4). In contrast, rates of 294 

convergence in maximum height, bud number, and connection persistence consistently exceeded 295 

null model predictions (Figure 4). These deviations from null expectations were driven by 296 

responses across many species rather than responses in just a few of the most abundant taxa 297 

(Figure S4). Site-level climate data confirm that transplanted turfs experienced consistently 298 

warmer temperatures as intended (Figure S1, Figure S2).  299 

 300 

DISCUSSION 301 

 Our study uses observational and experimental data to test the assumption that traits with 302 

broad-scale associations to climate in space are predictive of plant community response to 303 

climate change in time. This space-for-time assumption is supported when using three traits 304 

related to species architecture, but not supported when using three traits related to species 305 

resource use strategy. Our results underscore the importance of using ecologically relevant traits 306 
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when making predictions of community response, and suggest that in our grassland system, 307 

architectural traits may exert more influence on initial species response to rapid warming than 308 

the more commonly used growth-related traits. 309 

 310 

Trait patterns along climate gradients: Despite the large range in both mean summer 311 

temperature and annual precipitation across sites, CWMs trended only with temperature. The 312 

lack of functional turnover over a nearly 2500 mm year-1

 The consistent shifts in CWMs with increasing temperature in our system signify shifts in 323 

plant ecological strategy. Increases in leaf area, SLA, and the rate of lateral spread with 324 

temperature suggest a shift from slow-growing stress-tolerant species to fast-growing species 325 

with acquisitive resource use strategies (Sterck et al. 2006, Rusch et al. 2011). Also increasing 326 

with temperature are maximum height, duration of connection persistence, and bud number, 327 

three traits related to plant architecture. The increase in CWMs of maximum height may reflect a 328 

tradeoff in the ability to compete for light at warm sites amenable to growth and the ability to 329 

tolerate wind stress and freezing temperatures at the coldest sites (Westoby 1998, Falster and 330 

Westoby 2003). Higher CWMs of bud number and connection persistence at the coldest sites 331 

may reflect an increased importance of resource integration and/or recovery from disturbances 332 

(Klimešová and Klimes 2007), although we see no obvious reasons why resources would be 333 

patchier and/or disturbances more common at the coldest sites. More work is needed to confirm 334 

the functional roles of these understudied clonal traits and their role in organizing grassland 335 

species along gradients. 336 

 increase in precipitation is surprising 313 

given the consistent directional turnover in species composition along both temperature and 314 

precipitation gradients in our system (Klanderud et al. 2015), underscoring the fact that species 315 

turnover does not always beget functional turnover (Hooper et al. 2002). This finding contrasts 316 

with vegetation trait patterns found elsewhere over narrower ranges of precipitation (Fonseca et 317 

al. 2000, Wright et al. 2005). A lack of precipitation effects could occur if soil moisture is similar 318 

at all sites and/or not limiting at any sites, however this seems unlikely given the large range in 319 

mean annual precipitation and the otherwise similar site abiotic conditions. Regardless of the 320 

mechanism, the implication is that functional shifts in these grasslands are likely to occur in 321 

response to changes in temperature, not precipitation. 322 

 337 
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Community responses to warming: The central goal of this study was to test the hypothesis 338 

that trait-climate relationships over space are predictive of temporal community response to 339 

climate change in time, a common assumption in climate change research. Of the six traits with 340 

significant trends with temperature in space, maximum height, bud number, and connection 341 

persistence - three traits related to species architecture - associated consistently with turf 342 

community response to warming in time. The large deviation in maximum height from neutral 343 

expectations may be have resulted from competition for light being more intense in more 344 

productive, warmer conditions, and taller species preempting access to light, shading out 345 

competitors, and earning disproportionate returns due to size-asymmetric competition 346 

(Schwinning and Weiner 1998). Species with fewer buds and reduced connection persistence 347 

succeeded disproportionately following warming, suggesting that the development and 348 

maintenance of these clonal traits, which are believed to support new ramets under stressful 349 

conditions (Klimešová and Klimes 2007), comes at a cost when conditions are more amenable to 350 

growth. That CWMs of architectural traits deviated from neutral expectations of community 351 

response while CWMs of growth-related traits (SLA, leaf area, lateral spread) did not, despite 352 

showing strong trends along spatial temperature gradients, is unexpected and interesting. 353 

Perhaps, the capacity for rapid growth is not useful to new ramets vying for resources in 354 

grassland communities already packed with established individuals (but see: Wildová et al. 355 

2007). Alternatively, SLA and leaf area may be poor predictors of growth in herbaceous species 356 

with photosynthetic stems. The strong responses of clonal traits to changes in temperature 357 

highlight the need for more emphasis on clonal traits in studies of community response to 358 

climate change and herbaceous community assembly in general. 359 

Defining null expectations was challenging given the lack of standard practices of how to 360 

model demographic stochasticity in predominantly clonal systems (Eriksson 1994). 361 

Traditionally, demographic analyses rely on population numbers and vital rates, but the concepts 362 

of individuals, populations, births, and deaths break down in clonal, modular organisms. For 363 

instance, ramet number is impractical to measure and may not be demographically meaningful 364 

for graminoids that form hummocks with clumps of stems (e.g. Festuca ovina), nor is it possible 365 

to distinguish individuals in forbs with sprawling aboveground stems with adventitious roots 366 

(e.g. Veronica biflora), or species that divide via root splitting which results in fragmentation just 367 

below the litter layer (e.g. Cerastium alpinum). Our decision to simulate demographic changes 368 
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using percent cover units therefore has both practical and conceptual appeal. The drawback, 369 

however, is that percent cover is sensitive to factors that are not demographically significant, 370 

such as variation in phenological stage among individuals, species, and sampling times, and thus 371 

may inaccurately reflect shifts in abundance between years. Nevertheless, our approach accounts 372 

for demographic stochasticity, annual variation in community-level composition, and the realities 373 

of dispersal limitation in a predominantly clonal system to generate explicit null expectations of 374 

community response to perturbation. 375 

 376 

Conclusions and future directions: Using patterns in CWMs along environmental gradients to 377 

forecast community response to climate change is an intuitively appealing approach. Our study 378 

provides qualified support for such an approach: three of the six traits with spatial associations to 379 

temperature in our system associated significantly with species success following transplantation 380 

to warmer climates. Evidently, spatial associations between plant traits and broad-scale climate 381 

variables can be predictive of community response to climate change, but are not always so.  382 

 Our results shed some light on how our system could respond to climate change in the 383 

coming decades. Despite high rates of annual turnover, without gaps created by disturbances, 384 

virtually all replacement stems are clonal outgrowths of extant genets rather than new seedlings 385 

(Bullock et al. 1995; Berge, Klanderud, Vandvik, unpublished data). Thus, the potential for 386 

community change is largely limited by the prevalence of gaps and the proportion of species in 387 

the seed rain that are immigrants rather than local species. Once established, warmer-adapted 388 

immigrants will  likely proliferate vegetatively, outcompeting species adapted to cooler 389 

temperatures (Olsen et al. 2016). Our approach and conclusions underscore the importance of 390 

accounting for stochasticity and immigration when making predictions of community response 391 

(Tilman 2004, Shipley et al. 2011). Future studies should consider the effects of dispersal 392 

limitation on short-term transient responses, and how disturbances and dispersal limitation will 393 

affect long-term equilibrium responses. Predictions of ‘extinction debts’ and ‘immigration 394 

credits’ in the field of habitat distribution modeling are an important step in the right direction 395 

(Dirnböck and Dullinger 2004), but could be developed further by considering how and when 396 

traits modulate species interactions. 397 
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 531 

TABLE 1: Summary statistics for best-fit weighted linear models for each trait 532 

Trait Variable Estimate SE t-statistic p-value 

Bud Number exp(-Temp) 118.15 52.83 2.24 0.049 

Lat. Spread Temp 0.04 0.01 2.50 0.031 

Leaf Area Temp 0.05 0.01 3.83 0.004 

 Precip < 0.01 < 0.01 -1.50 0.167 

Max. Height Temp 0.05 0.01 4.26 0.002 

Offspring (none)     

Persistence exp(-Temp) 109.14 19.28 5.66 < 0.001 

Seed Mass (none)     

SLA Temp 0.02 0.00 5.35 < 0.001 

 Precip < 0.01 < 0.01 -1.24 0.251 

 Temp x Precip < 0.01 < 0.01 2.48 0.038 

 533 

Summary statistics for best-fit weighted multiple linear regression models for each trait using 534 

mean summer temperature, annual precipitation, and their interaction as potential predictor 535 

variables, weighted by the sample size at each site (N ranges from 10 to 25). Model fit was 536 

determined using AIC values. For bud number and connection persistence, exponentially 537 

transforming the temperature axis resulted in better model fit. Turf-level community weighted 538 

trait means and significant regressions are shown in Figure 2. 539 
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 540 

Figure 1: Panel A: a schematic illustration of the orthogonal nature of climate variables across 541 

experimental sites, with black arrows representing the directions of turf transplants in replicates 542 

of five. Panels B and C show the geographical locations of experimental sites in southern 543 

Norway. Symbol shapes and shadings reflect mean summer temperature levels and mean annual 544 

precipitation levels, respectively, in accordance with panel A. 545 

 546 

Figure 2: Community weighted trait means (CWMs) of turfs before transplantation along natural 547 

gradients of mean summer temperature (left) and mean annual precipitation (right). CWMs are 548 

aggregated by site (N ranges from 10 to 25). Vertical lines show ± 1 S.D. Symbol shapes and 549 

shadings reflect temperature and precipitation levels, respectively, in accordance with Figure 1A. 550 

Best-fit li nes are shown as solid lines when trait-gradient relationships are significant; for 551 

simplicity, trend lines represent univariate regressions, even if multivariate regressions led to 552 

higher AIC values. The interactive effects of temperature and precipitation on SLA is shown 553 

using three trend lines (~3°C: dotted, ~6°C: dashed, ~9°C: dot-dashed). CWMs in seed mass and 554 

offspring per ramet did not exhibit significant trends along temperature or precipitation gradients 555 

and are therefore omitted. See Table 1 for model summary statistics. 556 

 557 

Figure 3: Changes in dissimilarity of turfs transplanted to warmer climates and target site 558 

controls from 2009 to 2013. The x-axis shows Bray-Curtis dissimilarity between turfs and the 559 

centroids of their control turfs in 2009; the y-axis shows how that dissimilarity changed by 2013. 560 

Each symbol represents a turf community. Grey crosses represent control turfs; black circles 561 

represent transplanted turfs. Dissimilarity was calculated using Bray-Curtis distance for species 562 

composition (top left panel) or Euclidian distance of community weighted means (all remaining 563 

panels). Symbols below zero on the y-axis reflect turf communities that converged 564 

compositionally towards target controls, whereas communities above zero on the y-axis diverged 565 

compositionally. Dashed vertical lines are placed at 50% of mean dissimilarity among controls as 566 

an approximation of natural community stochasticity. Grey ellipses represent 95% confidence 567 

intervals of the centroids of control turf dissimilarities.  568 
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Figure 4: Mean trait dissimilarities of transplanted turf communities and target controls from 570 

2009 to 2013. Solid lines represent observed field data. Dashed lines represent simulated null 571 

expectations based on the means of 100 null model simulation runs. Dotted lines represent mean 572 

dissimilarity among control turfs within sites. Null model simulations use estimates of 573 

replacement and immigration rates derived from our field data (see Methods). Error bars show 574 

95% confidence intervals. Statistical differences between observed and simulated community 575 

weighted means are shown when p < 0.05 (*).  576 

FIGURE 1577 
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FIGURE 2 579 
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FIGURE 3581 

 582 

A
u
th

o
r 

M
a
n
u
s
c
ri
p
t



This article is protected by copyright. All rights reserved 

FIGURE 4 583 
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