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What is already known about this subject? 

• Human body weight is believed to be regulated by feedback control of both 

energy intake and energy expenditure. 

• Adaptations of energy expenditure to weight loss have been well-established, but 

the feedback control of energy intake has yet to be quantified. 

• SGLT2 inhibition provides a unique means of covertly inducing negative energy 

balance without directly influencing expenditure or central pathways regulating 

food intake. 

 

What this study adds: 

• We provide the first quantification of the feedback control of energy intake in 

free-living humans.  

• The increase in energy intake per kg of weight lost is several-fold larger than the 

known energy expenditure adaptations.   

• Feedback control of energy intake is likely the primary reason why it is difficult 

to achieve and sustain large weight losses. 
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Abstract 

Objective: To quantify the feedback control of energy intake in response to long-term 

covert manipulation of energy balance in free-living humans.  

Methods: We used a validated mathematical method to calculate energy intake changes 

during a 52 week placebo-controlled trial in 153 patients treated with canagliflozin, a 

sodium glucose co-transporter inhibitor that increases urinary glucose excretion thereby 

resulting in weight loss without patients being directly aware of the energy deficit. We 

analyzed the relationship between the body weight time course and the calculated energy 

intake changes using principles from engineering control theory. 

Results: We discovered that weight loss leads to a proportional increase in appetite 

resulting in eating above baseline by ~100 kcal/day per kg of lost weight – an amount 

more than 3-fold larger than the corresponding energy expenditure adaptations.  

Conclusions: While energy expenditure adaptations are often thought to be the main 

reason for slowing of weight loss and subsequent regain, feedback control of energy 

intake plays an even larger role and helps explain why long-term maintenance of a 

reduced body weight is so difficult.  
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Introduction 

Body weight is believed to be regulated by feedback control of both energy intake and 

energy expenditure. Several experiments in humans have quantified how energy 

expenditure adapts in response to alterations of energy intake and body weight. For 

example, Leibel and colleagues found energy expenditure adaptations of several 

hundreds of kcal/day acting to resist weight loss (1). In contrast, energy intake 

adaptations have yet to be accurately quantified in humans despite the widespread belief 

that feedback control of energy intake is critical for body weight regulation and acts as 

part of a complex neurobiological system to determine overall human food intake 

behavior (2). 

 

Why has the assessment of human energy intake feedback control lagged the 

quantification of energy expenditure changes with weight loss? First, we lacked the 

ability to accurately measure changes in free-living energy intake in large numbers of 

people over extended time periods. While accurate energy intake measurements can be 

performed while subjects are housed in laboratory setting, such studies are typically of 

short duration and the artificial nature of the environment makes it difficult to translate 

the results to the real world (3). Indeed, free-living energy intake is known to fluctuate 

widely from day to day and exhibits little short-term correlation with energy expenditure 

or body weight (4). Therefore, observations over long time scales are required thereby 

making laboratory based studies impractical.  

 

Unfortunately, free-living subjects are notorious for being unable to provide accurate 
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estimates of energy intake using self-report methods (5) and the expense and difficulty of 

employing objective biomarker methods severely limits their applicability. To address 

this important problem, we recently validated an inexpensive mathematical method for 

calculating energy intake changes using repeated body weight data in 140 free-living 

subjects over a two year calorie restriction study and found that the mean calculated 

energy intake changes were within 40 kcal/day of those determined using an expensive 

biomarker method (6).  

 

The second impediment to quantifying energy intake control in humans is that we lacked 

an intervention that increases energy output by a known amount without participants 

consciously knowing that this is occurring. Rather, most interventions that alter body 

weight or energy expenditure also evoke cognitive responses that may mask the effect of 

weight changes per se on the feedback control of energy intake. For example, engaging in 

an exercise program might increase energy expenditure and lead to weight loss, but 

exercise is a conscious behavior that doesn’t have an effective placebo control. 

Furthermore, exercise has a complex role in modulating appetite (7) and may induce 

compensatory changes in other components of total energy expenditure that are difficult 

to quantify. Therefore, changes in energy intake during an exercise program may not 

solely be due to feedback mechanisms controlling body weight, but are likely to also 

involve conscious changes in behavior. 

 

Here, we used data from a placebo-controlled trial in patients with type 2 diabetes who 

were treated for one year with canagliflozin, an inhibitor of sodium glucose transporter 2 
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(SGLT2), thereby increasing energy output in the form of urinary glucose excretion 

(UGE) (8).  In patients with type 2 diabetes, treatment with canagliflozin at a dose of 300 

mg/day increases mean daily UGE by approximately 90 g/day which is sustained at the 

same level throughout the duration of treatment (9) without directly altering energy 

expenditure (10, 11) or central pathways controlling energy intake and without the 

patients being directly aware of the energy deficit. In other words, SGLT2 inhibition 

provides a novel way to covertly perturb human energy balance that largely bypasses the 

volition and conscious awareness of the subjects. Any observed increased energy intake 

countering the weight loss induced by SGLT2 inhibition therefore likely reflects the 

activity of the feedback control system.  

 

We calculated the free-living energy intake changes in 153 patients treated with 300 

mg/day canagliflozin over a 52 week trial using the measured body weight data and an 

assumed mean UGE of 90 g/day as inputs to a mathematical model that has recently been 

validated against an expensive biomarker method (6). We found that the feedback control 

of energy intake in humans was proportional to the amount of weight lost and was 

substantially stronger than the control of energy expenditure.  

 

Methods 

Calculating changes in energy intake during canagliflozin treatment 

We used measured body weight, BW, and baseline patient characteristics in the 

previously published placebo-controlled trail of canagliflozin (8). We calculated the 
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changes in energy intake, ΔEI, for each subject using a validated mathematical method 

(6) using the following equation:   

 

  
( )0 0( )
1

i
i i

dBW
EI BW BW BW UGE

dt

δ
ρ ε

β
∆

∆ = + − + +
−

 (Equation 1) 

 

The inputs to the model were the change of body weight versus baseline over each 

interval, ( )0iBW BW− , and the moving average of the measured body weight time course 

was used to calculate the rate of change of body weight over each interval, dBWi/dt. The 

interval length was t = (N-1)*T, where N = 2 was the number of body weight 

measurements per interval and T = 52 was the number of days between measurements. 

Three subjects treated canagliflozin and 2 subjects treated with placebo had missing body 

weight data at one time point and linear interpolation was used to impute the missing 

data.   

  

Equation 1 is a linearization of a mathematical model of adult body weight dynamics that 

was developed and validated using data obtained primarily from controlled feeding 

studies in adult humans with longitudinal measurements of changes in body composition 

as well as both resting and total energy expenditure (12, 13, 14). The model parameter ρ 

was the effective energy density associated with the body weight change:  

 

( )( )1 1

FM FM FFM FFMη ρ αη αρ
ρ

β α
+ + +

=
− +

  (Equation 2) 
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and ε defined how energy expenditure depends on body weight: 

  

( ) ( ) 0

1

1 1

F L
γ αγ

ε δ δ
β α

 +
= + + ∆ 

− + 
  (Equation 3). 

 

The model parameters γFFM and γFM are the regression coefficients relating resting 

metabolic rate to fat-free mass (FFM) and fat mass (FM), respectively. Parameters ρFM 

and ρFFM are the energy densities associated with changes in FM and FFM, respectively. 

Most physical activities involve locomotion and have an energy cost that is proportional 

to body weight for a given intensity and duration of activity. The baseline physical 

activity parameter was δ0 and ∆δ represents changes in physical activity that can be 

informed by objective measurements, if available. Without such measurements, physical 

activity changes are often assumed to be zero (∆δ=0) with the realization that the 

calculated energy intake changes may be in error, especially at the individual level where 

substantial physical activity changes can occur throughout a study. Averaging over many 

individuals with the  assumption that ∆δ=0 can also result in a biased mean energy intake 

change of the group, but our previous validation study demonstrated that this bias is 

likely to be <40 kcal/day when studying >100 individuals (6).  

 

The parameter β accounts for the adaptation of energy expenditure during a diet 

perturbation, ∆EI, and was determined using data from eight human studies that 

measured changes in body composition as well as both total and resting energy 

expenditure before and after achieving a period of long-term stability at a lower weight. 
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Parameters FMη  and FFMη  account for the biochemical cost of tissue deposition and 

turnover assuming that the change of FFM is primarily accounted for by body protein and 

its associated water.  

 

The parameter α  represents the relationship between changes of lean and fat mass: 

dFFM dFM C FMα ≡ =  where C = 10.4 kg is the Forbes parameter. This simple 

model of body composition change provides accurate predictions that have been 

demonstrated to be consistent across different ethnic groups and sexes (15). For modest 

weight changes, α  can be considered to be approximately constant with FM fixed at its 

initial value FM0. The larger the initial fat mass, FM0, the smaller the parameter α, as 

previously described (14). The parameter UGE represents the energy losses as a result of 

increased urinary excretion of glucose with canagliflozin treatment. Model parameter 

values are given in Table 1.  

 

In addition to validating our mathematical model using body composition and energy 

expenditure data from controlled feeding studies (12, 13, 14), the model has also 

demonstrated accurate weight loss predictions regardless of medication usage or 

comorbid conditions, including type 2 diabetes, in free-living individuals with obesity 

following reduced calorie diets (16). 

 

Modeling feedback control of energy intake 

While many hormonal and neuronal factors are known to be involved in the regulation of 

food intake (2), general properties of the feedback relationship between changes in body 
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weight and changes in energy intake have not been well characterized or quantified. We 

tested the ability of two potential feedback models to describe the observed body weight 

profiles in response to sustained canagliflozin treatment. 

  

In the first model, referred to as “proportional control”, changes in the signals regulating 

food intake depend only on the current body weight and are not dependent on the 

duration or rate of weight loss.  In this model, the aggregate effect of different feedback 

signals regulating body weight are described by the equation:  

 

            
( ) ( )PEI t k BW t∆ = − ×∆

  (Equation 4)                        

 

where the parameter kP >0 quantifies the feedback strength. To simulate how 

proportional control of energy intake affects body weight kinetics during canagliflozin 

treatment, we added a UGE term to a validated mathematical model of adult human body 

weight dynamics (14) and calculated the mean ∆EI time course during placebo treatment 

to capture the typical transient weight loss effect of being in the trial (see Figure 1). 

Equation 4 was then added to the placebo energy intake to simulate the mean 

proportional control of ∆EI during canagliflozin treatment. The best fit parameter kP was 

determined by a downhill simplex algorithm  implemented using Berkeley Madonna 

software (version 8.3; http://www.berkeleymadonna.com) to minimize the sum of squares 

residuals between the simulation outputs and the measured mean body weight and the 

calculated mean ∆EI. 
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We also investigated another possible model for body weight regulation that was 

previously suggested (17) such that changes in energy intake also depend on how long 

body weight has deviated from baseline, which is expressed as an integral term quantified 

by a parameter kI >0:  

( ) ( ) ( )
0

t

P IEI t k BW t k BW dτ τ∆ = − ×∆ − ∆∫
   (Equation 5) 

The integral feedback control was simulated using Equation 5 with the best fit value of kP 

from Equation 4 and kI = 1 kcal/kg/d
2
.   

 

Results  

Table 2 represents the characteristics of the type 2 diabetic subjects who completed the 

52 week study and had body weight measurements throughout. The full study cohort was 

previously reported (8). In response to the sustained increase in UGE with canagliflozin 

treatment, mean body weight declined and reached a new equilibrium several kilograms 

lower and significantly more than the placebo group whose mean body weight loss was 

less than 1 kg (Figure 1A). To explain the measured body weight changes in the 

treatment group given the estimated increases in UGE, energy intake was calculated to 

have increased by ~350 kcal/day at steady state (Figure 1B) which is similar to recent 

estimates of the mean energy intake changes during 90 weeks of empagliflozin treatment, 

another SGLT2 inhibitor (18). In the placebo group, mean energy intake was calculated 

to transiently decrease by ~100 kcal/day over the first several weeks and return to 

baseline after 15 weeks (Figure 1B) 

 

Note that as body weight declined during SGLT2 inhibition, energy intake increased 
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above baseline until it compensated for the loss of calories via UGE, after which, a new 

equilibrium was reached.  This general pattern of response, in which a sustained 

perturbation (caloric loss via UGE) leads to a new equilibrium at a lower body weight, 

suggests that the endocrine signals responding to weight loss (such as leptin) act as part 

of a proportional feedback control system as shown in the curves depicted in Figure 2 

illustrating that proportional feedback control (as defined by Equation 4 with the 

parameter kP = 95 kcal/day per kg) mimics the observed body weight and energy intake 

patterns in humans receiving SGLT2 inhibitors.  

 

In contrast, despite the persistent increase in UGE, if the system regulating body weight 

included integral feedback control (Equation 5), body weight would ultimately have been 

restored to baseline values even in the presence of sustained increases in UGE. This 

outcome is a well-known result from control theory that integral feedback is a necessary 

and sufficient condition for a system to produce zero steady-state error (i.e., return to 

baseline body weight) in response to a sustained perturbation (i.e., persistently increased 

UGE) and that a proportional feedback system will always have a non-zero steady-state 

error (i.e., a sustained reduction in body weight) in response to a sustained perturbation.   

In contrast, for any value of kI > 0, a system including integral feedback in the regulation 

of energy intake would have only transient weight loss during sustained SGLT2 inhibitor 

treatment as shown for the integral feedback model in Figure 2. 

 

By modeling the mean changes in energy intake obtained with SGLT2 inhibitor treatment 

using the proportional feedback model, our results quantify the strength of energy intake 
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feedback control in humans. On average, energy intake increased by ~100 kcal/day per 

kg of weight lost—an effect substantially greater than the ~30 kcal/kg/day changes in 

energy expenditure observed with 10 to 20% weight loss in subjects with obesity (1).  

 

To illustrate the importance of our results for obesity treatment, consider the body weight 

trajectory depicted in Figure 3A that resulted from long-term participation in a structured 

commercial weight loss program (19) and illustrates the ubiquitous body weight time 

course characterized by initial weight loss, a plateau after 6-8 months, followed by slow 

weight regain (20). The calculated energy intake corresponding to this mean body weight 

trajectory is illustrated in Figure 3B showing an initial reduction of ~700 kcal/day from 

baseline followed by an exponential relaxation towards baseline intake over the ensuing 

months. The estimated energy expenditure corresponding to this intervention is also 

shown in Figure 3B and indicates relatively minor changes in comparison to the changes 

in energy intake.  

 

Note that at the point of maximum weight loss occurring at the ~8 month plateau, energy 

intake had already returned to within 100 kcal/day of baseline. After 1 year, the average 

energy intake was practically at baseline levels while body weight was still reduced by ~5 

kg. A similar pattern of relapsing diet adherence has been observed using objective 

biomarker methods during an intensive 2 year calorie restriction study where calorie 

intake was much lower during the early period of weight loss than after the body weight 

had plateaued (6, 21).  
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The calculated energy intake time course during the lifestyle intervention suggests that 

diet adherence lapsed very early with subjects returning to their previous caloric intake 

and a corresponding weight plateau followed by slow weight regain. While this might be 

interpreted as indicating that the participants rapidly decreased their efforts to adhere to 

the intervention, it is enlightening to consider their food intake behavior within the 

context of the proportional feedback control system. The dashed curve in Figure 3B 

illustrates the energy intake pattern corresponding to the increased appetite in response to 

the feedback signals arising from the body weight changes shown in Figure 3A. The 

difference between the increased appetite and the actual energy intake is depicted in 

Figure 3C and is a quantitative index of the ongoing effort to sustain the intervention in 

the face of the continuing biological signals to overeat. In this context, a substantial 

persistent effort is required to avoid overeating above baseline to satisfy the increased 

appetite during the intervention despite the average energy intake returning to near 

baseline levels.  

 

Discussion 

In the absence of ongoing efforts to restrain food intake following weight loss, feedback 

control of energy intake will result in eating above baseline levels with an accompanying 

acceleration of weight regain. Such behavior has been previously observed in rodent 

models when a return to ad libitum feeding following diet restriction resulted in 

hyperphagia until the lost weight was regained (22). This phenomenon has been also 

observed in lean men following experimental semi-starvation (23) or short-term 

underfeeding (24, 25, 26). Hyperphagia in these studies was believed to result from 
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homeostatic signals arising from loss of both body fat and lean tissues (27, 28), but a 

conscious desire to regain lost weight cannot be ruled out and may have contributed to 

increased food intake. 

 

Previous studies of energy intake regulation in humans have employed short-term diet 

manipulations to measure compensatory changes in energy intake (29, 30, 31, 32). While 

such studies can provide useful information about the influence of episodic appetite 

signals on short-term modulation of energy intake, the results cannot be readily 

extrapolated to the long time scales associated with regulation of human energy balance 

and do not provide information about how weight changes influence energy intake.   

 

Long-term inhibition of SGLT2 provides a unique probe for assessment of human energy 

homeostasis since the mechanism of action is clear, its effect on energy output is 

consistent, and the intervention is unlikely to directly affect central pathways involved in 

regulation of food intake. In contrast, other interventions aimed at increasing energy 

expenditure, such as exercise (7) or exogenous delivery of thyroid hormone (33), have 

pleiotropic effects and their impact on energy expenditure can be highly variable.    

 

The suggestion that the signals controlling energy intake act as a proportional feedback 

system without integral feedback is consistent with the roughly proportional changes in 

appetite-regulating hormones that occur rapidly in response to weight loss and do not 

further increase as weight loss is sustained (as would occur with integral feedback) (34). 

We do not yet know whether the simple proportional controller represented by Equation 
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4 is valid for a range of weight losses. For example, it may be possible that small weight 

changes are uncompensated by changes in energy intake such that the control system 

engages only after sufficient weight loss to cross some threshold (35). Furthermore, 

larger weight losses may result in energy intake adaptations corresponding to a nonlinear 

function of body weight change. Future research is required to address these questions 

and more fully characterize the energy intake feedback control system, characterize its 

variability between individuals, and identify its physiological mediators in humans.  

 

Proportional feedback control of energy intake may help explain why the calculated 

exponential decay of diet adherence during weight loss interventions markedly contrasts 

with self-reported measurements that indicate persistence of diet adherence and no 

significant differences in caloric consumption between the period of early weight loss 

compared with the later time when weight has plateaued (36). This has led to speculation 

that the 6-8 month weight plateau may be entirely due to slowing of metabolic rate rather 

than loss of diet adherence. Our results suggest otherwise and further illustrate that self-

reported energy intake measurements are quantitatively unreliable (5). Nevertheless, the 

relative constancy self-reported energy intake over the first 6 months corresponds well 

with the calculated persistent effort to resist the increased appetite and the drive to 

overeat at above baseline levels. Therefore, self-reported measurements of diet may more 

accurately reflect the perceived effort of the dieter to adhere to the intervention rather 

than their actual energy intake.   

 

An important limitation of our study is that we did not have direct measurements of 
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energy expenditure following SGLT2 inhibition. Rather, we calculated the expected 

energy expenditure changes using our mathematical model that was previously validated 

to accurately simulate the response to weight changes resulting from controlled changes 

in energy intake (12, 13, 14). Therefore, the calculated energy intake changes assumed 

that SGLT2 inhibition did not directly influence energy expenditure which is consistent 

with data from a 4 week study in humans showing no significant changes in pre- or post-

meal energy expenditure after 4 weeks of treatment with the SGLT2 inhibitor 

empagliflozin (10) and data showing no significant changes in oxygen consumption in 

rodents treated with canagliflozin (11).  

 

We restricted our analysis to the group mean rather than attempt to characterize 

individual responses since UGE was not directly measured in each subject but was 

assumed to be ~90 g/day based on previous measurements in people with type 2 diabetes 

treated with 300 mg/day canagliflozin (9, 37, 38). A subset of subjects in this study 

underwent a meal tolerance test where UGE was measured; their mean increase in UGE 

over the 3h meal test was 14.7 g (39); this is similar to the value observed following 

meals in other studies where mean 24h UGE was measured to be ~90 g/day and suggests 

that the mean daily UGE in this study is unlikely to be substantially different than what 

was assumed. Therefore, there is a correspondingly small uncertainty in the mean 

calculated proportional control of energy intake (~100 kcal/day per kg of body weight 

lost) at the group level. Measuring daily UGE in individuals during long-term studies 

with SGLT2 inhibitors would enable the individual subject variability in the magnitude of 

the compensatory energy intake responses to be characterized.   
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In summary, our results provide the first quantification of the energy intake feedback 

control system in free-living humans. We found that appetite increased by ~100 kcal/day 

above baseline per kilogram of lost weight – an effect several-fold larger than the 

corresponding energy expenditure adaptations. The few who successfully maintain 

weight loss over the long term do so by heroic and vigilant efforts to maintain behavior 

changes in the face of increased appetite along with persistent suppression of energy 

expenditure (40) in an omnipresent obesogenic environment. Permanently subverting or 

countering this feedback control system poses a major challenge for the development of 

effective obesity therapies.  
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Parameter Value Description 

FMγ
  

3.2 kcal/kg/d Energy expenditure rate of fat mass 

FFMγ
  

22 kcal/kg/d Energy expenditure rate of fat free mass 

δ0 10 kcal/kg/d Physical activity at baseline 

∆δ 0 kcal/kg/d Physical activity changes 

FMη
  

180 kcal/kg Energy cost of fat turnover 

FFMη
  

230 kcal/kg Energy cost of protein turnover 

FMρ
  

9300 kcal/kg Energy density of fat mass 

FFMρ   1100 kcal/kg Energy density of fat free mass 

β   0.24 Dietary and adaptive thermogenesis 

UGE 360 kcal/d Energy loss due to increased urinary 

glucose excretion with canagliflozin 

(300 mg/d)  

Table 1. Mathematical model parameters. 
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Characteristic 

Placebo 

(n = 89) 

Canagliflozin 

(n = 153) 

Sex, n (%)     

Male 47 (53) 66 (43) 

Female 42 (47) 87 (57) 

Age (years) 

BW (kg) 

BMI (kg/m2
) 

Waist circumference (cm) 

57 ± 10 

88 ± 18 

32 ± 6 

106 ± 13 

55 ± 11 

87 ± 21 

32 ± 6 

105 ± 15 

Race, n (%)     

White 62 (70) 106 (69) 

Black or African American 2 (2) 7 (5) 

Asian 15 (17) 24 (16) 

Other
†
 10 (11) 16 (10) 

HbA1c (%) 7.5 ± 0.6 7.9 ± 0.8 

Fasting plasma glucose (mmol/L) 8.2 ± 2.1 9.3 ± 2.4 

Diabetes duration (y) 3 ± 4 3 ± 4 

eGFR (mL/min/1.73m2
) 85 ± 21 88 ± 19 

 
Table 2. Baseline characteristics of the study subjects. Data are mean ± SD unless 

otherwise indicated. 
†
 Includes American Indian or Alaska Native, Native Hawaiian or 

other Pacific Islander, multiple, other or not reported 
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FIGURE LEGENDS 

Figure 1. Body weight and energy intake changes during placebo and SGLT2 inhibition. 

(A) Average body weight measurements in the placebo group (�) and SGLT2 inhibition 

group (�) along with mathematical model simulations depicted as dashed and solid 

curves, respectively. (B). Calculated energy intake changes in the placebo group (�) and 

the SGLT2 inhibitor group (�) along with the mathematical model simulations (curves).  

Mean ± 95% CI. 

Figure 2. Characterization of feedback control of energy intake in subjects with type 2 

diabetes treated with canagliflozin (8). (A) Observed changes in body weight (■) and the 

simulated changes with proportional control (solid curve) or integral control (dashed 

curve) of energy intake. (B) Calculated changes in energy intake (�) and the simulated 

changes with or proportional control (solid curve) integral control (dashed curve) of 

energy intake. Mean ± 95% CI. 

Figure 3. Energy balance dynamics during a lifestyle intervention for weight loss (19). 

(A) Average body weight (■) typically decreases and reaches a plateau after 6-8 months 

of a lifestyle intervention followed by slow weight regain. (B) Energy expenditure 

changes relatively little during the intervention (dotted curve) whereas energy intake 

(solid curve) initially drops by a large amount followed by an exponential return towards 

baseline (thin horizontal gray line). The feedback from the body weight loss signals a 

large increase in appetite (dashed curve) that is resisted by the attempt to sustain the 

intervention. (C) The average effort during the intervention was defined as the difference 
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between the increased appetite and the actual energy intake. A substantial effort persists 

during the intervention despite a return to near baseline energy intake. Mean ± 95% CI. 
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