
 

 

 

This is the author manuscript accepted for publication and has undergone full peer review but has not 

been through the copyediting, typesetting, pagination and proofreading process, which may lead to 

differences between this version and the Version of Record. Please cite this article as doi: 

10.1111/evo.12793. 

 

This article is protected by copyright. All rights reserved. 

 

Socially selected ornaments and fitness: Signals of fighting ability in paper wasps are positively 1 

associated with survival, reproductive success, and rank 2 

Elizabeth A. Tibbetts  3 

 email: tibbetts@umich.edu  4 

Taylor Forrest 5 

 email: tayjayfo@umich.edu  6 

Cassondra Vernier1 7 
 email: verniercass@gmail.com  8 

Judy Jinn2 9 

 email: judyjinn@berkeley.edu  10 

Andrew Madagame 11 

 email: Madagame@umich.edu  12 

 13 

Ecology and Evolutionary Biology 14 

University of Michigan 15 

Ann Arbor, MI 48109 16 

 17 
1Current address: Department of Biology,  Washington University St. Louis  18 
2Current address: Department of Psychology, University of California, Berkeley 19 

 20 

Keywords: Social selection, badge of status, fitness, body size, mixed ESS, honest signaling,  21 

running head: Socially selected ornaments and fitness 22 

 23 

 24 

 25 

 26 

 27 

 28 

 29 

 30 

 31 

 32 

 33 

http://dx.doi.org/10.1111/evo.12793
http://dx.doi.org/10.1111/evo.12793
http://dx.doi.org/10.1111/evo.12793
mailto:tibbetts@umich.edu
mailto:tayjayfo@umich.edu
mailto:verniercass@gmail.com
mailto:judyjinn@berkeley.edu
mailto:Madagame@umich.edu


 

 

 
This article is protected by copyright. All rights reserved. 

2 
 

 34 

Abstract 35 

Many animals have ornaments that mediate choice and competition in social and sexual 36 

contexts. Individuals with elaborate sexual ornaments typically have higher fitness than those with 37 

less elaborate ornaments, but less is known about whether socially selected ornaments are 38 

associated with fitness. Here, we test the relationship between fitness and facial patterns that are a 39 

socially-selected signal of fighting ability in Polistes dominula wasps. We found wasps that signal 40 

higher fighting ability have larger nests, are more likely to survive harsh winters, and obtain higher 41 

dominance rank than wasps that signal lower fighting ability. In comparison, body weight was not 42 

associated with fitness. Larger wasps were dominant over smaller wasps, but showed no difference 43 

nest size or survival.  Overall, the positive relationship between wasp facial patterns and fitness 44 

indicates that receivers can obtain diverse information about a signaler’s phenotypic quality by 45 

paying attention to socially selected ornaments.    Therefore, there are surprisingly strong parallels 46 

between the information conveyed by socially and sexually selected signals. Similar fitness 47 

relationships in social and sexually selected signals may be one reason it can be difficult to 48 

distinguish the role of social versus sexual selection in ornament evolution.   49 

 50 

 51 

 52 

 53 

Introduction 54 

 55 

Animals use ornaments to make decisions about potential mates and rivals. Sexually 56 

selected ornaments are used during competition over resources in a mating context, while non-57 

sexual socially selected ornaments (henceforth socially selected ornaments) are used during 58 

competition over non-mating resources (West-Eberhard 1983; Lyon and Montgomerie 2012; Tobias 59 

et al. 2012).  Sexually selected signals are well-studied and include visual, acoustic, and olfactoral 60 

traits across taxa (Andersson 1994; Johnstone 1995).  Socially selected signals have received less 61 

attention, though numerous examples have been identified, including female ornaments in many 62 

taxa (Tobias et al. 2012), black plumage patches in sparrows (Rohwer 1985; Tibbetts and Safran 63 

2009), facial patterns in several species of wasps (Tibbetts 2013), and chameleon color change 64 

(Stuart-Fox and Moussalli 2008).  65 

 66 

There is some disagreement about whether socially and sexually selected ornaments are 67 

shaped by fundamentally similar selective pressures or are distinct (Lyon and Montgomerie 2012; 68 

Tobias et al. 2012;  West-Eberhard 2014). One way to address this issue is to compare the 69 

relationship between ornaments and fitness across signal types. In particular, do individuals with 70 

elaborate ornaments have higher fitness than those with less elaborate ornaments? The alternative 71 

is that individuals with elaborate ornaments may excel in certain situations (e.g. attain high 72 
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dominance rank) but perform poorly in other situations (e.g. lower survival) such that fitness is 73 

unrelated to ornament elaboration.  74 

 75 

Extensive research has shown that individuals with elaborate sexual ornaments have higher 76 

fitness and are ‘higher quality’ in diverse ways than those with less elaborate ornaments (e.g. 77 

disease resistance, foraging efficiency, resource defense, heterozygosity, survival, and reproductive 78 

success) (Andersson 1994; Moller and Alatalo 1999; Jennions et al. 2001; Maynard Smith and Harper 79 

2003).  The specific relationship between sexual ornaments and fitness varies across species and 80 

environments (Chaine and Lyon 2008). Nevertheless, there is broadly consistent evidence that 81 

individuals with more elaborate sexual ornaments are higher quality and have higher fitness than 82 

those with less elaborate sexual ornaments.   83 

 84 

Less is known about the relationship between socially selected ornaments and fitness. By 85 

definition, socially selected ornaments must be associated with success during aggressive 86 

competition, but it is not clear whether these ornaments are linked with overall fitness (Lyon and 87 

Montgomerie 2012; Tobias et al. 2012; Tibbetts 2013; Searcy and Nowicki 2005). Individuals with 88 

elaborate ornaments may be generally higher quality than those with less elaborate ornaments. 89 

Alternatively, there may be tradeoffs; for example,  individuals with elaborate socially selected 90 

ornaments win fights but have lower survival than those with less elaborate ornaments (Stearns 91 

1989). To our knowledge, there have been no studies testing the relationship between socially 92 

selected ornaments and fitness in the wild.   93 

 94 

Here, we test  the relationship between a socially selected signal and fitness in Polistes 95 

dominula paper wasps (Fig. 1). P.  dominula females have variable black facial patterns that are 96 

socially selected agonistic signals.  Female wasps use facial patterns to minimize the costs of 97 

competition  with other nest-founding females. Wasps with more broken black facial patterns are 98 

more likely to win fights than individuals with less broken facial patterns (Tibbetts and Dale 2004; 99 

Tibbetts et al. 2011a) and are avoided by rivals (Tibbetts and Lindsay 2008; Tibbetts et al. 2010). 100 

Paper wasp facial patterns evolved via non-sexual social selection (West-Eberhard 1983) to minimize 101 

the costs of aggressive competition over resources (Tibbetts 2014). They are not used during mate 102 

selection. Polistes have mating system where males compete for access to females and females 103 

exhibit strong mate choice (Beani 1996).  Unlike females, males do not have variable facial patterns. 104 

Instead, they have abdominal spots that are a sexually selected signal used during mate choice (Izzo 105 

and Tibbetts 2012).  106 

There has been some previous work on the  relationship between P. dominula facial patterns 107 

and fitness-linked traits. Green et al (Green et al. 2013) studied a Spanish population of P. dominula 108 

and found no relationship between facial patterns and reproductive success, survival and dominance 109 

rank. However, there is very low facial pattern variation in Spain and facial patterns may not function 110 

as a signal in this population (Green and Field 2011).  Thus far, there have been no previous tests of 111 

the relationship between fitness and facial patterns in P. dominula populations where facial patterns 112 

are known to function as agonistic signals. In this study, we tested the link between fitness and facial 113 

pattern elaboration in wild populations of P. dominula in Michigan, USA, where facial patterns are 114 
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known to function as agonistic signals (Tibbetts and Lindsay 2008; Tibbetts et al. 2010; Tibbetts et al. 115 

2011a). 116 

Three fitness-linked traits were assessed in this study: the number of cells in the wasp’s nest, 117 

overwinter survival, and dominance rank. Number of nest cells provides a good proxy for 118 

reproductive success in this population, because each nest cell produces one offspring and paper 119 

wasps only build one nest during their lifetime (Jandt et al. 2014; personal observation). 120 

Overwintering survival is a key aspect of fitness because  P. dominula gynes are produced at the end 121 

of the season, so they must successfully overwinter before they reproduce. Some P. dominula found 122 

nests alone, but among individuals that cooperate, dominance rank is associated with reproductive 123 

success. The dominant foundress in multiple foundress groups has higher fitness than subordinate or 124 

solitary foundresses, though subordinates receive some reproduction (Queller et al. 2000; Reeve and 125 

Keller 2001). Although nest size, survival, and rank are important aspects of fitness, it is important to 126 

note that fitness is multi-faceted, so it is difficult for a single field study to provide complete 127 

measures of lifetime fitness  (Stearns 1989; Hunt et al. 2004).  128 

In addition to measuring the relationship between agonistic signals and fitness, we also 129 

tested whether body weight is associated with fitness. Across a range of species, larger body size is 130 

linked with higher fitness, as larger individuals are often preferred as mates, are more successful 131 

during competition, and have higher survival and fecundity than smaller individuals (Fairbairn 1997; 132 

Nylin and Gotthard 1998). Of course, the large size advantage is not universal (Blanckenhorn 2000). 133 

For example, in paper wasps, larger foundresses are often dominant over smaller foundresses (Pardi 134 

1948; Dropkin and Gamboa 1981), but the relationship between dominance rank and body size 135 

varies across studies (reviewed in Jandt et al. 2014).  Body size is often linked with both fighting 136 

ability and fitness, so it provides a useful comparison with agonistic ornamentation: Is body size 137 

more or less strongly associated with fitness than socially selected agonistic ornamentation?   138 

Methods 139 

Reproductive Success: 140 

Polistes dominula nest-founding queens were collected from sites around Ann Arbor, 141 

Michigan during the pre-worker phase of colony development, from early May to June in 2011 and 142 

2012.  All wasp nests in an area were collected, without preference for particular facial patterns. At 143 

collection, wasps were weighed on a scale accurate to 0.001g and photographed for facial pattern 144 

analysis. 611 nests were analyzed over 2 years (2011-2012).  145 

Reproductive success was assessed as the number of nest cells. In southeastern Michigan, 146 

where the nests were collected, nest construction begins synchronously (within one week) in the 147 

early spring and each nest cell produces one offspring. As a result, the number of nest cells provides 148 

a good proxy for reproductive success when date of collection is accounted for. Larger spring nests 149 

produce more workers and therefore more reproductive males and females than smaller spring 150 

nests.  The disadvantage of measuring nest size in the spring is that a few nests will fail or be 151 

usurped before offspring are produced (Nonacs and Reeve 1995). Usurpation or nest failure could 152 

obscure fitness relationships, but are unlikely to create new fitness relationships. 153 

Winter survival:  154 
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We assessed survival by comparing average characteristics of nest founding queens 155 

collected in Ann Arbor, MI across different years. Foundresses have an annual life-cycle, so different 156 

years reflect different generations. The life cycle of a nest founding queen involves developing from 157 

egg to adult in the summer, overwintering, then founding nests the following spring (Jandt et al. 158 

2014). 159 

The small size and frequent dispersal of paper wasps means that following individual wild 160 

wasps over the winter is not possible. However, we can gain insight into survival by comparing 161 

characteristics of spring foundress population across years. We measured the face and weight of 162 

spring foundresses and compared with 1) temperature during overwintering and 2) temperature 163 

during the summer development period. Wasp facial patterns don’t change during adulthood. 164 

Therefore, if there are fewer wasps with entirely yellow faces after colder winters, it suggests that  165 

individuals with entirely yellow faces are less likely to survive colder winters.  The alternative is that 166 

fewer wasps with entirely yellow faces are produced in the summer before a cold winter. However, 167 

that alternative seems unlikely, as future winter weather is not predictable.  168 

Weather data for Ann Arbor, MI were obtained  from the Weather Underground data base 169 

(http://www.wunderground.com/).  We collated temperatures during foundress larval development 170 

and overwintering.  The average temperature during foundress larval development  was quantified 171 

as the average temperature from July 1 to September 1 of the year prior to nest foundation. The 172 

average low temperature during the three coldest winter months, December 1 to March 1, was used 173 

as the average overwintering low temperature.   174 

 The survival analysis includes 4028 individuals measured across 8 years (2006, 2008-2014). 175 

Pictures of each foundress are not available, so facial pattern was measured as the proportion of 176 

wasps with entirely yellow clypeus. Entirely yellow facial patterns signal the lowest fighting ability 177 

and are scored as 0 facial pattern brokenness (Tibbetts 2013). The proportion of foundresses with 178 

entirely yellow faces is quite variable across years, from 2% to 18 %. Average weight of foundresses 179 

each year was also analyzed. 180 

Dominance rank: 181 

In 2010, the dominance ranks of foundresses on nests that contained multiple foundresses 182 

were measured by observing aggressive interactions among individually marked cofoundresses for 183 

at least 2 hours, longer if ranks were not immediately apparent. Dominance ranks were determined 184 

by mounting behavior. During a mount, the dominant positions itself above the subordinate and 185 

drums antennae on the subordinate. The subordinate lowers her antennae when receiving a mount. 186 

Wasps only mount individuals that are subordinate to them in the dominance hierarchy (West-187 

Eberhard 1969). In a few cases, it was difficult to distinguish between the rank of two lower ranked 188 

foundresses; these wasps were scored as tied. 43 nests from 2010 were included in the dominance 189 

analysis. Facial pattern brokenness and weight were measured for each foundress. 190 

Facial pattern brokenness analysis 191 

We assessed the facial pattern of wasps by analyzing a digital picture of the wasp's face with 192 

Adobe Photoshop. Facial patterns do not change during a wasp’s lifetime. A wasp's facial pattern 193 

http://www.wunderground.com/
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“brokenness” is the best predictor of dominance and takes into account the number, size, and shape 194 

of black spots on the wasp’s clypeus (Fig. 1) (Tibbetts 2010; Tibbetts et al. 2010; Tibbetts et al. 195 

2011a). To calculate brokenness, the area of the clypeus containing the population-wide badge 196 

variability was converted into a 30×60 pixel bitmap. Then, the number of pixels containing black 197 

pigment within each vertical column along the horizontal length of the clypeus was counted. We 198 

were interested in the total disruption of the black facial pattern, so we calculated the standard 199 

deviation of the black pigment deposition from pixels 5 to 55 along the horizontal gradient of the 60-200 

pixel clypeus. We excluded the first and last 5 pixels from the brokenness analysis because the edges 201 

of the clypeus are black. As a result, wasps with black in the first and last five pixels have facial 202 

patterns that appear less broken than individuals with black spots that extend to the edge of the 203 

clypeus. The standard deviation of the black pigment deposition, or “brokenness” of a wasp’s face 204 

measures the amount of disruption in the black coloration and a signal of fighting ability (Tibbetts 205 

2013). Lower values of this index are associated with lower brokenness and lower advertised quality, 206 

while higher values are associated with higher brokenness and advertised quality. Facial pattern 207 

analysis was performed by a student blind to wasp identity and experimental predictions.  208 

 209 

 210 

Statistical analyses 211 

All data were analyzed in SPSS v. 21.  212 

Reproductive success: The factors associated with reproductive success were analyzed using 213 

a general linear model. The dependent variable was nest size (number of cells). The independent 214 

variables were: foundress facial pattern brokenness, foundress weight, date nest size was measured, 215 

and whether the nest had a single foundress or multiple foundresses (categorical). Year was included 216 

as a categorical random effect in the model to account for any differences in nest size across years.  217 

611 nests were included in the analysis. The data were also analyzed separately within single and 218 

multiple foundress nests. Within single foundress nests, an additional analysis was performed 219 

without the 3 largest nests. Effect sizes measured as eta squared (η2) are included.  Facial patterns 220 

and weight are sometimes weakly correlated (Tibbetts et al. 2011c). Correlation of independent 221 

variables can reduce model fit, but the variance inflation factors were less than 1.2 in this data set 222 

and 10 is the traditional cut-off. Therefore, model fit is not reduced by collinearity  (Zar 2009). 223 

Overwinter survival: Generalized linear models were used to test how foundress 224 

characteristics were associated with temperature. Generalized linear models were used because 225 

traditional linear models are not appropriate for data like proportions which are unlikely to be 226 

normally distributed and are restricted to a small range (0 to 1). In one analysis, the proportion of 227 

foundresses with entirely yellow faces in a given year was the dependent variable. Yellow faces 228 

signal the lowest fighting ability and have 0 facial pattern brokenness. In the other analysis, the 229 

mean weight of foundresses in a given year was the dependent variable. In both analyses, the 230 

independent variables were temperature during the summer larval development period and 231 

temperature during overwintering.  Eight years of data were analyzed, with each year providing one 232 

data point. 233 
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Dominance rank: The factors associated with dominance rank were analyzed using a 234 

generalized linear model. The dependent variable was dominance rank (rank 1, 2, 3, or 4). The 235 

independent variables were facial pattern brokenness, weight, and the two way interaction between 236 

facial pattern brokenness and weight. Nest was included as a random effect in the model.  112 237 

individuals across 43 nests were included in the analysis. 238 

 239 

Results 240 

Within the entire data set, wasps with higher facial pattern brokenness had larger nests than 241 

wasps with lower facial pattern brokenness (Table 1, Fig. 2, F1,605=13.1, p<0.0001). Although this 242 

relationship is highly significant, the effect size is small (η2=0.021). Nest size was also linked with 243 

whether nests had one foundress or multiple foundresses; multiple foundress groups had larger 244 

nests than single foundresses (F1,605=73.9, p<0.0001, η2=0.11). Not surprisingly, nests measured later 245 

in the season were larger than nests measured earlier in the season (F1,605=120.7, p<0.001, η2=0.17). 246 

Year also had an effect on nest size, with nests growing larger in some years than others (F1,605=14.2, 247 

p<0.0001, η2=0.023). Finally, body weight was not associated with nest size (F1,605=0.41, p =0.52, 248 

η2=0.001).   249 

The results are similar when the data are analyzed separately within nests that contained a 250 

single foundress (SF) and nests that contained multiple foundresses (MF). Wasps with higher facial 251 

pattern brokenness tended to have larger nests than those with lower facial pattern brokenness (SF, 252 

F1,500 = 10.6, p = 0.001, η2=0.021; MF, F1,101 = 3.5, p = 0.06, η2=0.034). Nests sampled later in the 253 

season were larger than those sampled earlier (SF F1,500=135.9, p=<0.0001, η2=0.04; MF F1,101=8.7, 254 

p=0.004, η2=0.08). Body weight was not associated with nest size (SF F1,500 = 1.4, p = 0.23, η2=0.003; 255 

MF, F1,101=0.18, p=0.67, η2=0.002). Nest size varied across years in single but not multiple foundress 256 

nests (SF, F1,500 = 20.6, p < 0.001, η2=0.04; MF, F1,101=0.11, p=0.73, η2=0.001).  The results are similar if 257 

the three largest single foundress nests are excluded from the analysis, indicating that the results are 258 

not driven by a few data points (facial pattern F1,497 = 7.3, p = 0.007, η2=0.014; date F1,497 = 191, p < 259 

0.001, η2=0.28; year F1,497 = 16.9, p< 0.001, η2=0.033; weight F1,497 = 4.1, p = 0.042, η2=0.008).  260 

The proportion of foundresses with the entirely yellow facial patterns that signal low fighting 261 

ability was positively associated with overwintering temperature (Fig. 3, Wald χ2=3.7 p = 0.05). 262 

There were fewer foundresses with entirely yellow faces after colder winters than after warmer 263 

winters, suggesting that wasps with entirely yellow faces  (signal low agonistic ability) are less likely 264 

to survive cold winters than wasps with some black on their faces (signal higher agonistic ability). 265 

The average temperature during foundress larval development was not associated with foundress 266 

facial patterns (Fig.  3, Wald χ2=0.14, p = 0.90).  267 

Average foundress weight in the spring was not associated with the average minimum 268 

temperature during the preceding winter (Fig. 4, Wald χ2=2.7, p = 0.10). Average temperature 269 

during larval development was not associated with spring body weight  (Wald χ2=0.8, p = 0.37).  270 

Dominance rank was associated with foundress facial patterns (Fig. 5, Wald χ2 = 4.1, p = 271 

0.043), body weight (Wald χ2 = 4.3, p = 0.038), and the interaction between facial patterns and body 272 
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weight (Wald χ2 = 3.7, p = 0.055).  Dominant wasps had more broken facial patterns and larger body 273 

weight than subordinate wasps. The interaction occurs because high ranking wasps with low facial 274 

pattern brokenness have relatively higher weights.  275 

 276 

Discussion 277 

The facial patterns that signal fighting ability in P. dominula are linked with three key aspects 278 

of fitness: reproductive success, survival, and dominance rank.  Wasps with facial patterns 279 

advertising higher fighting ability have larger nests than wasps with facial patterns advertising lower 280 

fighting ability (Fig. 2). Facial patterns are also associated with surviving harsh conditions; wasps with 281 

facial patterns that signal low fighting  ability are more likely to die in cold winters than warm 282 

winters (Fig. 3). Finally, within wild cofoundress associations, wasps with facial patterns advertising 283 

higher fighting ability are dominant over individuals with facial patterns advertising lower fighting 284 

ability  (Fig. 5), confirming previous studies on the relationship between facial patterns and fighting 285 

ability in other experimental contexts (Tibbetts and Dale 2004; Tibbetts and Lindsay 2008; Tibbetts 286 

et al. 2010; Tibbetts 2013). 287 

Although facial patterns were consistently associated with fitness, the relationship between 288 

body weight and fitness was more complex. High body weight was positively associated with 289 

dominance rank, but not nest size or survival. A potential critique of studies with large sample sizes 290 

is that they may allow identification of significant relationships with small effect sizes. For example, 291 

the relationship between facial pattern and nest size is significant, but weak. Here, the same large 292 

sample of wasps was used to test how facial patterns and body weight are linked with fitness, but 293 

the analyses yielded very different results.  Therefore, the consistent, positive relationship between 294 

facial patterns and aspects of fitness is notable.  295 

The results of this study hint at surprising overlap between socially and sexually selected signals. 296 

Both are positively associated with fitness and their bearer’s overall phenotypic and genetic 297 

constitution such that individuals with elaborate ornaments are ‘better’ than those with less 298 

elaborate ornaments  (Andersson 1994; Moller and Alatalo 1999; Jennions et al. 2001).  Therefore, 299 

receivers gain diverse information about the overall quality of senders by paying attention to signals 300 

evolved in the context of aggressive competition over non-mating resources. Although our data 301 

indicate that receivers could obtain diverse information about overall quality by assessing socially 302 

selected signals, little empirical work has tested whether receivers pay attention to socially selected 303 

signals in non-competitive contexts. For example, wasps could assess the overall quality of potential 304 

cooperative partners via facial patterns and preferentially cooperate with higher quality social 305 

partners.  306 

The similar fitness relationships in social and sexually selected signals may be one reason it is 307 

often difficult to categorize as ornaments as being socially versus sexually selected. If signals that 308 

evolve in the context of aggressive social competition convey information about overall quality, 309 

potential mates could use these traits to make decisions about mating partners. As a result, socially 310 

selected signals may often be coopted for mate choice such that ‘purely’ socially selected signals are 311 

rare (Berglund et al. 1996).   312 
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Previous work in P. dominula provides additional evidence that facial patterns are associated 313 

with diverse aspects of quality.  Wasps with more broken facial patterns are in better physical 314 

condition (Tibbetts and Curtis 2007; Tibbetts 2010), emerge from diapause earlier (Tibbetts et al. 315 

2011b), and have higher survival under artificially increased juvenile hormone titers (a hormone that 316 

mediates aggressive competition in wasps; Tibbetts and Izzo 2009) than wasps with less broken 317 

facial patterns (Tibbetts and Banan 2010).  Of course, fitness is multi-faceted and there are often 318 

tradeoffs between components of quality (Stearns 1989; Hunt et al. 2004), so there may be fitness 319 

trade-offs associated with signaling high fighting ability that have not been identified.   320 

Facial pattern brokenness is positively linked with fitness, so what factors keep the signaling 321 

system honest? This study indicates that the signaling system is not an evolutionarily stable strategy 322 

(ESS), where individuals that signal high and low fighting ability are pursuing different, but equally fit 323 

strategies (Maynard Smith and Harper 1988).  Instead, only the ‘best’ individuals can afford to signal 324 

high fighting ability, perhaps because individuals with inaccurate signals suffer social costs that 325 

disfavor signal inaccuracy (Tibbetts and Dale 2004; Tibbetts and Izzo 2010). 326 

Multiple factors may contribute to the relationship between nest size and facial pattern 327 

elaboration.  First, wasps with more broken facial patterns emerge from diapause at cooler 328 

temperatures than wasps with less broken facial patterns (Tibbetts et al. 2011b), so they may found 329 

nests earlier in the season. Persistent differences in nest size may be due to facial pattern-linked 330 

differences in fecundity, parental care, or quality of the nesting location. All these factors have been 331 

shown to covary with sexual signal elaboration in other taxa  (review in Moller and Jennions 2001), 332 

but have not been explicitly tested in socially selected signals.  333 

 Facial patterns are also associated with overwinter survival. More foundresses have facial 334 

patterns signaling low agonistic ability after warmer winters than after colder winters (Fig. 3). Wasp 335 

facial patterns do not change during adulthood. As a result, this relationship suggests that wasps 336 

with black spots that signal high agonistic ability are better able to withstand harsh winters than 337 

wasps with yellow faces that signal low agonistic ability.  Increased survival may occur because 338 

wasps use nutritional stores to maintain slightly elevated temperatures during the winter (Weiner et 339 

al. 2011) and wasps with black spots are in better nutritional condition than individuals with yellow 340 

faces (Tibbetts and Curtis 2007; Tibbetts 2010). Ability to survive the winter is a key aspect of fitness;  341 

gynes must overwinter before reproducing.  Therefore, wasps with higher facial patterns brokenness 342 

experience survival-linked fitness benefits.   343 

The relationship between overwinter temperatures and foundress facial patterns matches 344 

previous work on geographic variation in P. dominula facial patterns. Wasps from warmer climates 345 

have lower facial pattern brokenness than wasps from cooler climates (Tibbetts et al. 2011c), as 346 

would be expected if facial pattern brokenness is linked with the ability to withstand cool 347 

temperatures. At least some of the geographic difference in facial patterns is due to developmental 348 

plasticity, wherein workers and gynes develop faces with higher brokenness in cooler locations 349 

(Green et al. 2012).  Differential survival of individuals that signal high vs. low agonistic ability also is 350 

likely to contribute to the relationship between facial patterns and climate.  Insects in cooler 351 

locations often experience thermoregulatory benefits of dark coloration (Kingsolver and Huey 1998). 352 

However, thermoregulation is unlikely to play an important role in P. dominula facial patterns, as a 353 
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very small amount of black pigment is involved in creating broken facial patterns.  Therefore, facial 354 

patterns are unlikely to be directly responsible for the increase in winter survival. Instead, facial 355 

patterns are associated with overall quality and higher quality wasps deal with cold temperatures 356 

better than lower quality wasps.   357 

The results of this study illustrate that facial pattern brokenness is linked with dominance 358 

(Fig. 5), matching previous evidence that facial patterns are signals of fighting ability in the United 359 

States.  The relationship between facial pattern and dominance is weak, but consistent across 360 

experiments. In staged contests, wasps with more broken facial patterns are more likely to win fights 361 

than those with less broken facial patterns (Tibbetts and Dale 2004; Tibbetts et al. 2011a). Wasps 362 

with broken facial patterns are also avoided by rivals (Tibbetts and Lindsay 2008; Tibbetts et al. 363 

2010). In addition, facial pattern brokenness is correlated with juvenile hormone titer, a key 364 

hormone mediating aggressive competition (Tibbetts et al. 2011a).  365 

Geographic variation in P. dominula 366 

A previous study of P. dominula in Spain, found that neither body size nor facial patterns are 367 

linked with survival, reproductive success, or dominance rank.  Relationships between dominance 368 

rank and facial patterns and/or body size are common in Polistes (Pardi 1948; Turillazzi and Pardi 369 

1977; reviewed in Jandt et al. 2014), but Green (Green et al. 2013) found that neither factor was 370 

associated with rank. This may be due, in part, to the unusual, highly cooperative behavior in Spain.  371 

In a recent survey of 13 P. dominula populations, Spain had the highest rate of cooperation (5.2 372 

foundresses per nest), while the other 12 populations averaged 1.4 foundresses per nest. Michigan 373 

is slightly lower than average, at 1.2 foundresses per nest.  (Sheehan et al. in press). In addition, 374 

single foundress colonies in Spain typically fail  (Green et al. 2013), while solitary nesting is a 375 

common, successful strategy in other US and European P. dominula populations (e.g. Nonacs and 376 

Reeve 1995; Tibbetts and Reeve 2003). Such differences in cooperation may dramatically influence 377 

the dynamics of group formation, including the factors that influence rank.   378 

The differences between Green (Green et al. 2013) and this study may also be due to 379 

geographic variation in facial patterns. In Spain, there is relatively little facial pattern variation; 380 

approximately 80% of foundresses have the entirely yellow facial patterns that signal low agonistic 381 

ability, likely due to the relatively warm climate in southern Spain (Tibbetts et al. 2011c; Green et al. 382 

2013). Outside of Spain, P. dominula have higher levels of facial pattern variation, with Michigan 383 

wasps having similar facial pattern variation as Ukrainian and Hungarian wasps (Tibbetts et al. 384 

2011c). Low levels of variation reduces statistical power so it is more difficult to detect whether 385 

facial patterns are associated with variation in fitness in Spain than other populations.  Alternatively, 386 

there may be real differences in the role of facial patterns across populations. The low variation 387 

means that facial patterns are less likely to provide useful information to receivers, so receivers may 388 

not pay attention to variation in facial patterns (Green and Field 2011). Over time, lack of receiver 389 

response is predicted to disrupt the reliability of the signaling system.  In the future, analysis across 390 

multiple populations will be important, as well as common garden experiments to establish the 391 

extent of population divergence across P. dominula populations.  392 

Overall, the socially selected signal of fighting ability in P. dominula is positively linked with 393 

fitness; wasps that signal higher fighting ability have higher reproductive success, rank, and survival 394 
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than those that signal lower fighting ability. In contrast, body weight is not consistently associated 395 

with fitness. Although larger wasps are dominant over smaller wasps, large wasps do not have larger 396 

nests or higher survival than smaller wasps. The relationship between paper wasp facial patterns and 397 

fitness indicates that  receivers can obtain information about signaler’s phenotypic quality by paying 398 

attention to signals that evolved via social selection to mediate intrasexual aggressive competition.  399 

Therefore, there are surprisingly strong parallels between ornaments that mediate competition and 400 

choice in mating and non-mating contexts 401 

 402 

  403 
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 521 

Figures: 522 

Figure 1, Portraits of P. dominula, illustrating variation in the facial patterns that signal agonistic 523 

ability.  524 

Figure 2, Relationship between facial pattern brokenness (log transformed) and number of nest cells 525 

in a) single foundress and b) multiple foundress nests. Foundresses with more broken black facial 526 

patterns had larger nests than those with less broken facial patterns. Statistical significance is 527 

http://www.sciencedirect.com/science/article/pii/S0003347214001006#gs1
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unaffected when the three largest single foundress nests are excluded from the analysis. Figure 528 

shows nests measured between May 24 and June 24.  529 

Figure 3, Relationship between proportion of foundresses in the population with the entirely yellow 530 

faces that signal low fighting ability and a) winter and b) summer temperature (in Fahrenheit).   531 

Figure 4, Relationship between average foundress weight and a) winter and b) summer temperature 532 

(Fahrenheit). Error bars are ± SE 533 

Figure 5, Mean ± SE a) facial pattern brokenness and b) weight of wasps that obtain ranks 1-4 in wild 534 

cofoundress associations. Dominant wasps had higher facial pattern brokenness and were larger 535 

than subordinate wasps 536 
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 557 

 F p η2 

Facial pattern brokenness F1,605=13.1 p<0.0001 η2=0.021 

Single or multiple 
foundress 

F1,605=73.9 p<0.0001 η2=0.11 

Time of season F1,605=120.7 p<0.001 η2=0.17 

Year F1,605=14.2 p<0.0001 η2=0.023 

Body weight F1,605=0.41 p =0.52 η2=0.001 

 558 

Table 1. Results of a general linear model analyzing the factors associated with nest size. 559 

 560 


