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Abstract
Background: While glucocorticoids are currently the most effective therapy for asthma,
associated side effects limit enthusiasm for their use. Peroxisome proliferator-activated receptor-
γ (PPAR-γ) activators include the synthetic thiazolidinediones (TZDs) which exhibit anti-
inflammatory effects that suggest usefulness in diseases such as asthma. How the ability of TZDs to
modulate the asthmatic response compares to that of glucocorticoids remains unclear, however,
because these two nuclear receptor agonists have never been studied concurrently. Additionally,
effects of PPAR-γ agonists have never been examined in a model involving an allergen commonly
associated with human asthma.

Methods: We compared the effectiveness of the PPAR-γ agonist pioglitazone (PIO) to the
established effectiveness of a glucocorticoid receptor agonist, dexamethasone (DEX), in a murine
model of asthma induced by cockroach allergen (CRA). After sensitization to CRA and airway
localization by intranasal instillation of the allergen, Balb/c mice were challenged twice at 48-h
intervals with intratracheal CRA. Either PIO (25 mg/kg/d), DEX (1 mg/kg/d), or vehicle was
administered throughout the period of airway CRA exposure.

Results: PIO and DEX demonstrated similar abilities to reduce airway hyperresponsiveness,
pulmonary recruitment of inflammatory cells, serum IgE, and lung levels of IL-4, IL-5, TNF-α, TGF-
β, RANTES, eotaxin, MIP3-α, Gob-5, and Muc5-ac. Likewise, intratracheal administration of an
adenovirus containing a constitutively active PPAR-γ expression construct blocked CRA induction
of Gob-5 and Muc5-ac.

Conclusion: Given the potent effectiveness shown by PIO, we conclude that PPAR-γ agonists
deserve investigation as potential therapies for human asthma.

Background
Asthma incidence and morbidity continues to rise world-

wide. Prominent characteristics of allergic asthma include
reduced airflow, airway hyperresponsiveness (AHR), accu-
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mulation of eosinophils, mast cells, and other inflamma-
tory cells in peribronchiolar regions, and hyperplasia of
goblet cells with excessive mucus secretion [1,2]. These
effects are accompanied, in part, by the overproduction of
a variety of cytokines and chemokines that attract inflam-
matory cells and stimulate a TH2- and IgE-dominated
immune response.

Glucocorticoids, inhaled or oral, are currently the most
effective treatments for asthma [3]. Side effects remain a
significant problem, however, especially since individuals
may begin using these medications in childhood and con-
tinue them for life. Furthermore, some patients, especially
those with severe disease, may respond poorly to steroids
or not at all [4]. Consequently, the need remains for med-
ications that are safer and equally or more effective.

Peroxisome proliferator-activated receptors (PPARs) are
members of the nuclear hormone receptor superfamily
that also includes the glucocorticoid receptor [5]. Mem-
bers of this family are ligand-activated receptors that clas-
sically act by binding to promoter regions of DNA and
increasing transcription of specific genes. However they
can also interfere with the activity of other transcription
factors, such as nuclear factor-κB, and act through path-
ways unrelated to DNA transcription. The three PPAR iso-
forms (PPAR-α, PPAR-γ, and PPAR-β/δ) are encoded by
separate genes and bind different ligands [6]. Early inves-
tigation of PPAR-γ focused on its role in regulating adi-
pocyte differentiation and lipid and glucose metabolism,
but more recent studies have demonstrated this receptor's
pivotal role in regulation of the immune response [7].
PPAR-γ is now being investigated as a potential target in a
variety of lung-related diseases [8].

The synthetic PPAR-γ agonist pioglitazone (PIO), a mem-
ber of the thiazolidinedione (TZD) drug class, is currently
approved for treatment of type 2 diabetes mellitus. PIO
and other PPAR-γ ligands have been shown to exert anti-
inflammatory effects not only on immune cells [9,10] but
also cells specific to the lung such as alveolar macrophages
[11], airway epithelial cells [12], and airway smooth mus-
cle cells [13]. Furthermore, PPAR-γ agonists reduce the
ability of IL-5 to induce eosinophil survival and chemo-
taxis [14,15]. These observations suggest that PPAR-γ ago-
nists may prove useful for treatment of inflammatory lung
diseases such as asthma [7,16,17]. In contrast to glucocor-
ticoids, PIO demonstrates few side effects.

While previous studies (reviewed in ref. [18]) have dem-
onstrated beneficial effects of PPAR-γ agonists in murine
models of asthma, the relevance to human disease of the
models employed is unclear. Recent data indicate that
exposure to cockroach allergen plays an important role in
asthma [19-21]. This finding has led to the development

of murine models of human atopic asthma based on sen-
sitization and exposure to cockroach allergen (CRA)
[22,23]. CRA challenge results in airway hyperresponsive-
ness and a robust peribronchial inflammatory response
[22]. Since CRA is associated with human asthma, this
model appears more clinically applicable as compared
with sensitization and challenge with ovalbumin [24]. To
our knowledge there have been no studies of PPAR-γ ago-
nists in a murine model of asthma based on exposure to
an allergen commonly associated with human airway dis-
ease. Furthermore, there does not appear to have been any
instance in which effects of PPAR-γ agonists and glucocor-
ticoids were examined concurrently in the same model.
The effectiveness of PPAR-γ agonists in asthma conse-
quently remains unclear, especially in comparison to the
proven effectiveness of glucocorticoids.

This study directly compares the thiazolidinedione PIO
and the glucocorticoid dexamethasone (DEX) in a murine
model of asthma induced by CRA. We find that the two
compounds have equivalent effects on key pathophysio-
logical responses, cytokine and chemokine levels, and
mucus production.

Methods
CRA sensitization and challenge
Female Balb/c mice were obtained from Jackson Labora-
tories (Bar Harbor, ME) and used at 6–8 weeks of age. The
mice were sensitized to CRA and challenged as previously
described [22]. Briefly, mice were sensitized by intraperi-
toneal and subcutaneous injection of CRA (Hollister-
Stier, Spokane, WA). The response was localized to the air-
way by intranasal instillation of CRA 14 days later. After
another 5 days (day 19 from initial sensitization), mice
were anesthetized with an intraperitoneal ketamine and
xylazine mixture. Next, the trachea was exposed and mice
were challenged by intratracheal (IT) administration of 10
μg of CRA in 50 μl of sterile PBS or were given PBS alone.
The skin incision was closed using surgical staples. Mice
were then given a second IT CRA or PBS 48 h after the first.
All measurements were performed or samples taken 24 h
following the second challenge. All experiments were
approved by the University of Michigan Committee on
Use and Care of Animals.

PIO and DEX administration
Pioglitazone HCl (kind gift of Hyderabad Biomedical
Research Institute, Hyderabad, IN) was dissolved in 0.5%
carboxymethylcellulose sodium salt (CMC) (Sigma, St.
Louis, MO). Beginning at the time of intranasal instilla-
tion of CRA and continuing daily thereafter until the final
IT challenge, 25 mg/kg/d of PIO was administered by oral
gavage or 1 mg/kg/d of dexamethasone phosphate
(Sigma) was administered intraperitoneally. These doses
are within the ranges of PIO [25-27] and DEX [28-31]
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commonly employed in investigations of murine models
of various diseases.

Measurement of airway hyperresponsiveness
AHR was measured as previously described [32] using a
plethysmograph (Buxco, Wilmington, NC) that is specifi-
cally designed for whole-body measurements on small
animals. Briefly, the mouse to be tested was anesthetized
with 3.3 mg of sodium pentobarbital (Vortech Pharma-
ceuticals, Dearborn, MI), and intubated via cannulation
of the trachea with an 18-gauge metal tube. The mouse
was subsequently ventilated with a Harvard pump venti-
lator (Harvard Apparatus, Holliston, MA) employing a
tidal volume of 0.4 ml, a frequency of 120 breaths/min,
and a positive end-respiratory pressure of 2.5–3.0 cm
H2O. Once anesthesia and ventilation were established,
the plethysmograph was sealed and readings monitored
by computer. As the box is a closed system, changes in
lung volume are reflected in changes of box pressure
(Pbox) measured by a differential transducer. After base-
line levels had stabilized and initial readings were taken,
animals were challenged with nebulized methacholine
and the response was monitored. The peak airway resist-
ance was recorded as a measure of airway hyperreactivity.

Enzyme-linked immunosorbent assays (ELISAs)
The levels of cytokine and chemokine proteins in whole
lung homogenate were measured as previously described
[22]. Briefly, lung tissue in 1 ml of PBS containing 0.05%
Triton X-100 nonionic detergent and antiproteases was
homogenized on ice for 30 s with a Tissue Tearor (Biospec
Products, Bartlesville, OK). The homogenate was centri-
fuged at 10,000 × g and the resulting supernatant isolated.
The murine ELISAs were set up using standardized, spe-
cific IL-4, IL-5, TNF-α, RANTES, and eotaxin antibodies
(R&D Systems, Minneapolis, MN) that detect protein at
concentrations greater than 10 pg/ml and do not crossre-
act with any other cytokines.

Serum IgE
Blood was collected from the right ventricle 24 h follow-
ing the final CRA challenge and centrifuged at 2500 × g for
10 min. The serum was then separated and stored at -
80°C until analysis. Total serum IgE levels were deter-
mined using an IgE ELISA kit (BD BioSciences, San Jose,
CA), according to the manufacturer's instructions. Con-
centrations were calculated using a standard curve gener-
ated with the kit's IgE standard.

Quantitative polymerase chain reaction (PCR) analysis
Total RNA from lung tissues was isolated using TRIzol rea-
gent (Invitrogen, Carlsbad, CA) and chloroform. RNA was
quantified by measuring absorption at 260 nm and was
stored at -80°C until use. Expression of messenger RNA
(mRNA) was determined by real-time reverse tran-

scriptase polymerase chain reaction (RT-PCR) using the
ABI Prism 7700 Detection System (TaqMan; Applied Bio-
systems, Foster City, CA). Primers and probes were
designed using Primer Express software (Applied Biosys-
tems) and are shown in Table 1.

Microscopic examination of lung tissue
Twenty-four h following the final CRA challenge, lungs
were perfused and fixed for 10 h with 10% (v/v) neutral
buffered formalin, then transferred to 75% ethanol. After
fixation, lung tissues were embedded in paraffin, and 5
μm sections were routinely processed and stained with
H&E for light microscopic analysis. To estimate the
number of eosinophils in the peribronchial region, these
cells were counted in 100 high-powered fields per lung as
described previously [22]. Other sections were stained
with periodic acid Schiff's (PAS) to examine the extent of
mucin production.

Construction of adenoviral vector containing 
constitutively active PPAR-γ expression plasmid
VP16-PPAR-γ2, in which the potent viral transcriptional
activator VP16 is fused to PPAR-γ2, constitutively activates
PPAR-γ-responsive genes in the absence of ligands [33].
The adenoviral vector AdCMV-VP16-PPAR-γ2 was con-
structed by isolation of VP16-PPAR-γ2 through digestion
of pCMX-VP16-PPAR-γ2 (kind gift of Dr. Mitchell Lazar,
University of Pennsylvania, Philadelphia, PA) with the
restriction enzymes SpeI and NheI. The VP16-PPAR-γ2
fragment was then inserted into the SpeI/XbaI site of the
Ad5 shuttle vector pACCMV2. A full-length E1, E3 deleted
recombinant adenovirus was generated using in situ loxP
recombination between the shuttle vector (linearized

Table 1: Primers and probes used for real-time PCR of mouse 
lung RNA

Gene Primer/Probe Sequences

Gob-5
forward 5' GAGTGGGCTCACTTCCGATG 3'
reverse 5' GCTGAACACCTCACTGCTTGG 3'
Probe 5' 

CAACAACGACGAGAAGTTCTACTTATCCAAAG
G 3'

Muc5-ac
forward 5' CCAGCACCATCTCTACAACCC 3'
reverse 5' GCAAAGCTCCTGTTTGCACTC 3'
Probe 5' CCCAAACTATCTCAACCTCAGGGTCCACC 3'

MIP3-α
forward 5' CCTTGCTTTGGCATGGGTACT 3'
reverse 5' TCGTAGTTGTTGCTGTTCTG 3'
Probe 5' CTGGCTCACCTCTGCAGCCAG 3'

TGF-β
forward 5' GACCCTGCCCCTATATTTGGA 3'
reverse 5' CGCCCGGGTTGTGTTG 3'
Probe 5' CACAGTACAGCAAGGTCCTTGCCCTCTACA 

3'
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with PmeI) and the cAd5-deltaE3.LoxP cosmid containing
the Ad5 backbone (linearized with ClaI) in the presence
of purified Cre recombinase [34]. The resulting recom-
binant adenoviral DNA was then transfected into HER
911 cells by standard calcium phosphate precipitation
methods. Recombinant clones were identified as plaques
in soft agar culture and the presence of functional VP16-
PPAR-γ2 was verified by infecting A549 cells expressing a
PPAR-dependent luciferase reporter construct (pFATP-
luc) [35]. Large scale, high titer adenoviral purification,
particle determination (particles/ml) and titer determina-
tion (plaque forming units/ml) were performed by the
University of Michigan Vector Core. Aliquots of AdCMV-
VP16-PPAR-γ2 were maintained at -80°C until immedi-
ately prior to use.

Intratracheal administration of AdCMV-VP16-PPAR-γ2
Constitutively active PPAR-γ expression construct was
delivered to mice by IT administration of 1 × 109 pfu of
AdCMV-VP16-PPAR-γ2 at the time of intranasal adminis-
tration of CRA and again 5 d later, at the time of IT CRA
challenge. Control mice received empty adenoviral vector
at the same times.

Statistical analysis
Values were expressed as means ± SEMs. Data were ana-
lyzed with one-way ANOVAs with Bonferroni paired-
group planned comparisons and Kruskal-Wallis tests with
Dunn paired-group planned comparisons using Prism 5
software (GraphPad Software, San Diego, CA). Statistical
significance was defined as P < 0.05.

Results
PIO inhibits key pathophysiological responses to CRA 
challenge as effectively as DEX
Clinically, airway hyperresponsiveness is a prominent fea-
ture of asthma. We found that the increased airway resist-
ance in response to methacholine challenge was
significantly greater in CRA-challenged mice than in con-
trol animals (P < 0.05) but was abolished with either PIO
(P < 0.05) or DEX (Fig. 1; P < 0.05). Histologically,
asthma is characterized by infiltration of peribronchial tis-
sues with inflammatory cells, in particular eosinophils.
Eosinophils are both major sources of proinflammatory
mediators and effector cells in airway remodeling. Abun-
dant peribronchial infiltration of leukocytes was seen in
H&E-stained sections from lungs of vehicle-treated mice
with infiltration of these cells greatly reduced in mice
treated with PIO or DEX (Fig. 2A). Likewise, morphomet-
ric analysis demonstrated a significant decrease in the
number of eosinophils present following PIO (P < 0.05)
or DEX (P < 0.05) treatment (Fig. 2B). Excessive levels of
serum IgE directed against the sensitizing antigen, with
consequently an inappropriately exuberant cell-mediated
response to subsequent antigen exposure, are also typical

of allergic asthma. Serum IgE was found to be low (~40
ng/ml) in control mice but was present at levels exceeding
1500 ng/ml in those challenged with CRA (Fig. 2C; P <
0.05). Levels were significantly lower in mice treated with
either nuclear hormone receptor agonist (P < 0.05).

PIO reduces pulmonary cytokine and chemokine levels as 
effectively as DEX
Overproduction of a variety of cytokines and chemokines
is characteristic of asthma pathophysiology. CRA chal-
lenge similarly resulted in induction of lung cytokines and
chemokines. These included the TH2 cytokines IL-4 (P <
0.05) and IL-5 (P < 0.05), whose actions include, respec-
tively, class switching to IgE production and eosinophil
activation (Fig. 3A). Levels of the proinflammatory
cytokine tumor necrosis factor-α (TNF-α; P < 0.05), which
promotes inflammation, mucus secretion, and airway
hyperresponsiveness, were likewise increased (Fig. 3B).
The chemokines eotaxin (P < 0.05) and RANTES (P <
0.05), which are primarily responsible for recruitment of
eosinophils, and MIP3-α (P < 0.05), a chemokine that
attracts memory T-cells and immature dendritic cells, were
also significantly elevated compared to control animals
(Fig. 3C). In each case, increases in cytokines and chem-
okines were blunted to a similar degree with PIO (P <
0.05) or DEX (P < 0.05) treatment. While CRA induced
only a modest increase in expression of mRNA for the
profibrotic cytokine transforming growth factor-β (TGF-
β), expression in animals treated with PIO (P < 0.05) or
DEX (P < 0.05) was still significantly reduced (Fig. 3B).

PIO decreases airway resistance in CRA challenged mice as effectively as DEXFigure 1
PIO decreases airway resistance in CRA challenged 
mice as effectively as DEX. PIO, DEX, or vehicle (Veh) 
was administered daily (days 14–21). Airway response to 
challenge with nebulized methacholine was measured in 
anesthetized mice (8 mice/group) using a plethysmograph 
specifically designed for whole-body measurements on small 
animals. Measurements were performed 24 h following final 
CRA challenge. *P < 0.05 compared to vehicle treatment.
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PIO, DEX, or AdCMV-VP16-PPARγ2 effectively reduces 
mucin production and Gob-5 and Muc5-ac mRNA 
expression
Asthma is associated with mucus overproduction, result-
ing in airway narrowing and obstructive lung disease.
While goblet cell hyperplasia and mucin production were
readily seen in PAS-stained lung sections from CRA-chal-
lenged animals treated with vehicle, they were much less
apparent in those from PIO- or DEX-treated animals (Fig.
4A). No positive staining for PAS was observed in control
lung sections (data not shown). Goblet cell hyperplasia
and mucin production are associated with increased tran-
scription of the Gob-5 and Muc5-ac genes [24,36]. Little
expression of either Gob-5 or Muc5-ac mRNA was
observed in control mice, but levels more than 500 (Gob-
5; P < 0.05) or 20 (Muc5-ac; P < 0.05) times greater were
seen in CRA-challenged mice (Fig. 4B). These elevations

in mRNA levels were dramatically reduced by treatment
with either PIO (P < 0.05) or DEX (P < 0.05). Similarly,
when mice were intratracheally administered an adenovi-
ral vector containing an expression plasmid generating a
constitutively active form of PPAR-γ, AdCMV-VP16-PPAR-
γ2, the ability of CRA to induce expression of Gob-5 and
Muc5-ac was significantly suppressed (P < 0.05) com-
pared to mice given control adenovirus (Fig. 4C). AdCMV-
VP16-PPAR-γ2 treated mice also demonstrated inhibition
of goblet cell hyperplasia and mucin production (data not
shown).

Discussion
In this study we found that both PIO and DEX signifi-
cantly reduce or eliminate many of the allergen-induced
responses in a murine model of acute asthma induced by
CRA sensitization and challenge. Specifically, we observed

PIO inhibits inflammatory responses to CRA challenge as effectively as DEXFigure 2
PIO inhibits inflammatory responses to CRA challenge as effectively as DEX. PIO, DEX, or vehicle (Veh) was 
administered daily (days 14–21). All measurements (8 mice/group) were performed 24 h following final CRA challenge. A. Per-
ibronchial inflammatory cell infiltration was visualized by H&E staining. B. Eosinophil infiltration was quantified by counting 100 
high-powered fields per lung. C. Total serum IgE levels were measured by ELISA. *P < 0.05 compared to vehicle treatment.
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major decreases in airway hyperresponsiveness, peribron-
chial infiltration of inflammatory cells, and lung cytokine
and chemokine levels with PIO or DEX treatment. Similar
reductions were seen in goblet cell hyperplasia and mucin
production along with expression of the Gob-5 and Muc5-
ac genes. The consistent similarity between effects of PIO
and those of DEX is striking. In every aspect examined,
these two nuclear hormone receptor agonists produced
similar, if not identical, reductions in the response to CRA
challenge. In many cases, values were reduced to those
seen in control animals.

We also show, for the fist time, that induction of Gob-5
and Muc5-ac expression was blocked in the presence of a

constitutively active PPAR-γ (VP16-PPAR-γ2) delivered
intratracheally to mice via an adenoviral vector. This
observation suggests that the modulation of mucus-asso-
ciated genes occurs in a PPAR-γ-specific manner. Previous
studies in other model systems have employed adenoviral
delivery of a PPAR-γ cDNA expression plasmid [37-39].
These studies did not examine effects on Gob-5 and
Muc5-ac expression but found that overexpression of
PPAR-γ affected other markers of inflammation and
remodeling similarly to PPAR-γ agonists. Since these
effects were seen in the absence of exogenous agonists,
they presumably reflect activation of PPAR-γ by endog-
enous ligands that would be up-regulated during the asth-
matic response.

PIO reduces pulmonary cytokine and chemokine levels as effectively as DEXFigure 3
PIO reduces pulmonary cytokine and chemokine levels as effectively as DEX. PIO, DEX, or vehicle (Veh) was 
administered daily (days 14–21). Twenty-four h following the final CRA challenge, cytokine levels were measured (by ELISA 
unless otherwise noted) in homogenized lung tissue from 8 mice/group. A. TH2 cytokines IL-4 and IL-5. B Cytokines TNF-α 
and TGF-β. TGF-β expression was measured using quantitative PCR analysis of total RNA from lung tissue. The ratio of TGF-
β expression to β-actin expression in control animals was assigned a value of 1. C. Chemokines eotaxin, RANTES, and MIP3-α. 
MIP3-α expression was measured using quantitative PCR analysis of total RNA from lung tissue. The ratio of MIP3-α expres-
sion to β-actin expression in control animals was assigned a value of 1. *P < 0.05 compared to vehicle treatment.
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Previous studies of PPAR-γ agonists in murine models of
asthma have been based either on sensitization and chal-
lenge with ovalbumin [36-38,40-43] or on treatment with
toluene diisocyanate [39]. Our results, however, were
obtained in a model utilizing an allergen relevant to
human asthma [19-21]. Furthermore, none of the previ-
ous studies have concurrently examined the effects of glu-
cocorticoids. Thus, this present study not only extends
knowledge of PPAR-γ agonists' beneficial effects to an
asthma model employing an allergen known to be associ-
ated with human disease, but for the first time allows a
direct comparison between the effectiveness of PPAR-γ
agonists and that of glucocorticoids.

Our results are consistent with those obtained in other
asthma models. Studies using PPAR-γ agonists have found
reductions in inflammation [15,37-39,41-43] and in air-
way hyperresponsiveness [15,37-41]. Choices of other
aspects of asthma for study have varied widely. Several
studies reported a reduction in mucus production
[39,40,42] with TZD treatment. Decreased levels of
asthma-associated cytokines, and especially of the TH2
cytokine IL-4, have also been frequently reported
[15,38,39,41,42]. Decreased expression of chemokines
has likewise been seen in other models [38,39], although
one study reported that ciglitazone had no effect on
eotaxin levels [15]. Our study is the first to demonstrate

PIO, DEX, or constitutively active PPAR-γ effectively reduces mucin production and Gob-5 and Muc5-ac expressionFigure 4
PIO, DEX, or constitutively active PPAR-γ effectively reduces mucin production and Gob-5 and Muc5-ac 
expression. PIO, DEX, or vehicle (Veh) was administered daily (days 14–21). All measurements were carried out 24 h follow-
ing the final CRA challenge. A. Lung tissue (8 mice/group) was fixed and stained with periodic acid Schiff's (PAS) to examine the 
extent of mucin production. B. Quantitative PCR was used to measure expression of Gob-5 and Muc5-ac mRNA (8 mice/
group) from lung tissue. For each gene, the control-group ratio of its expression to that of β-actin was assigned a value of 1. *P 
< 0.05 compared to vehicle treatment. C. AdCMV-VP16-PPAR-γ2 (VP16) or an empty control vector (AdCtrl) was adminis-
tered as described in Materials and Methods. Quantitative PCR was used to measure expression of Gob-5 and Muc5-ac mRNA 
(5 mice/group) from lung tissue as mentioned. Effect on mucin production was also observed (data not shown). *P < 0.05 com-
pared to AdCtrl administration.
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PPAR-γ-induced downregulation of the Gob-5 and Muc5-
ac genes.

This also is the first study to demonstrate the beneficial
effects of dexamethasone in the CRA-induced murine
model of asthma. Previous studies had examined the
effects of dexamethasone in the ovalbumin model [28,44-
55] as well as in an asthma model induced by house dust
[30] and in mice with constitutive bronchial hyperrespon-
siveness [56]. Most of these, however, either focused on
fibrosis and airway remodeling or examined mechanistic
aspects of the response.

PPAR-γ ligands have been shown to exert effects on a vari-
ety of cells of the immune system including macrophages
[9,57], neutrophils [58], dendritic cells [59], B [60] and T
[61-63] lymphocytes, eosinophils [15], natural killer cells
[64], and mast cells [10]. A number of mechanisms have
been proposed by which PPAR-γ agonists inhibit detri-
mental asthmatic responses, including interference with
actions of nuclear factor-κB [37], upregulation of phos-
phatase and tensin homolog deleted on chromosome 10
(PTEN) [38], and upregulation of IL-10 [41]. However,
aside from the demonstration that antibody to the IL-10
receptor partially blocked effects of rosiglitazone, these
suggestions are based solely on observed correlation.

As shown by our failure to see a statistically significant
increase in the profibrotic cytokine TGF-β, the model of
acute asthma employed in our study does not address
such long-term effects of asthma as fibrosis and airway
remodeling. However, a CRA-induced model of chronic
asthma, based on multiple allergen challenges, has been
developed [65]. PPAR-γ agonists have not to date been
investigated in this model. Nevertheless, such agents have
been shown to inhibit airway smooth muscle cell prolifer-
ation and induce apoptosis of these cells in vitro [13] and
to inhibit various aspects of airway remodeling in the tol-
uene diisocyanate [39] and ovalbumin models [40].
Notably, the PPAR-γ agonist in this latter study was
administered by inhalation, demonstrating that this is an
effective route of administration that allows these com-
pounds to be used in the same manner as inhaled gluco-
corticoids.

Another possibility deserving of further investigation is
that activation of PPAR-γ and the glucocorticoid receptor
may result in synergistic effects. The possibility of syner-
gism is strengthened by the observation that dexametha-
sone upregulates PPAR-γ expression in eosinophils [66].
Furthermore, it has been reported that PPAR-γ agonists
and glucocorticoids additively inhibit TNF-α-induced
production of eotaxin and monocyte chemotactic protein-
1 by airway smooth muscle cells [67]. Should synergy be
demonstrated, then optimal effects could be obtained by

combining low and therefore relatively safer doses of a
glucocorticoid with an appropriate PPAR-γ agonist.

Conclusion
In conclusion, we find that on a wide variety of measures
PIO, like DEX, greatly reduces or eliminates response to
CRA challenge in a murine model of asthma. Any differ-
ences in effectiveness between the two compounds were
minor. To our knowledge this is not only the first study to
investigate PIO in a model using an allergen associated
with human disease but also the first time any model has
been used to examine a PPAR-γ agonist and a glucocorti-
coid concurrently. Since the clinical safety of PIO has been
demonstrated, and since our results indicate that its effec-
tiveness in a murine model of asthma is similar to that of
glucocorticoids, we suggest that it should be investigated
as a potential therapy for human asthma.
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