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Abstract 
Data	gaps	in	life	cycle	inventory	(LCI)	are	stumbling	blocks	for	

investigating	the	life	cycle	performance	and	impact	of	emerging	technologies.	It	
can	be	tedious,	expensive	and	time	consuming	for	LCI	practitioners	to	collect	LCI	
data	or	to	wait	for	experimental	data	become	available.	I	propose	a	
computational	approach	to	estimate	missing	LCI	data	using	link	prediction	
techniques	in	network	science.	LCI	data	in	Ecoinvent	3.1	is	used	to	test	the	
method.		

The	proposed	approach	is	based	on	the	similarities	between	different	
processes	or	environmental	interventions	in	the	LCI	database.	By	comparing	two	
processes’	material	inputs	and	emission	outputs,	I	measure	the	similarity	of	
these	processes.	I	hypothesize	that	similar	processes	tend	to	have	similar	
material	inputs	and	emission	outputs	which	are	life	cycle	inventory	data	I	want	
to	estimate.	In	particular,	I	measure	similarity	using	four	metrics,	including	
average	difference,	Pearson	correlation	coefficient,	Euclidean	distance,	and	
SimRank	with	or	without	data	normalization.	I	test	these	four	metrics	and	
normalization	method	for	their	performance	of	estimating	missing	LCI	data.	

The	results	show	that	processes	in	the	same	industrial	classification	have	
higher	similarities,	which	validate	the	approach	of	measuring	the	similarity	
between	unit	processes.	I	remove	a	small	set	of	data	(from	one	data	point	to	50)	
for	each	process	and	then	use	the	rest	of	LCI	data	as	to	train	the	model	for	
estimating	the	removed	data.	It	is	found	that	approximately	80%	of	removed	
data	can	be	successfully	estimated	with	less	than	10%	errors.	This	study	is	the	
first	attempt	in	the	searching	for	an	effective	computational	method	for	
estimating	missing	LCI	data.	It	is	anticipated	that	this	approach	will	significantly	
transform	LCI	compilation	and	LCA	studies	in	future.	
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Chapter 1. Introduction  
1.1	Life	cycle	assessment		

Life	Cycle	Assessment	(LCA)	is	an	environmental	management	tool	

started	from	1960s.	It	aims	to	establish	an	environmental	profile	of	a	product	

system	by	compiling	and	evaluating	the	inputs,	outputs	and	the	accompanying	

environmental	impact	of	the	system	throughout	its	life	cycle.	The	inputs	include	

material,	and	energy.	And	the	outputs	often	refer	to	byproduct	and	waste.	Under	

a	raising	environmental	concern	in	society,	LCA	is	widely	used	by	decision	

makers	to	assess	the	sustainability	of	a	product,	and	become	an	important	role	in	

environmental	management.			

A	life	cycle	for	a	product	usually	means	the	whole	life	period	of	the	

product	start	from	raw	material	acquisition	through	materials	processing,	

manufacture,	distribution,	use,	repair	and	maintenance	and	disposal	or	recycling.	

LCA	practitioner	studies	the	life	cycle	of	a	product	and	produces	a	report	of	the	

environmental	impact	in	different	stages	of	this	product.	Traditionally,	LCA	

people	often	talk	about	is	conventional	LCA.	But	there	is	also	Economic	Input-

output	LCA	(EIO-LCA).	EIO-LCA	is	more	a	method	from	a	macro	perspective.	It	

concentrates	on	the	environmental	impact	from	economic	transactions	through	

the	supply	chain	of	an	economic	sector	based	on	its	financial	input-output	model.	

Conventional	LCA	and	EIO-LCA	are	useful	in	different	areas.	This	thesis	only	

focuses	on	conventional	LCA.	

Generally,	there	are	four	phases	in	completing	a	conventional	Life	Cycle	

Assessment.	Goal	and	Scope	Definition:	the	scope	of	the	assessment	should	be	

fixed	after	clarifying	the	purpose	of	the	assessment,	in	order	to	keep	the	final	

result	corresponding	to	expectation.	Inventory	Analysis:	build	the	input-output	

list	respect	to	the	target	system	of	the	product	or	service	that	will	be	compiled.	

The	input-output	list	concludes	resources	and	energy	input,	and	air,	water,	solid	

contaminant	emissions.	Inventory	analysis	including	information	collection	and	

calculation,	is	designed	for	quantifying	inputs	and	outputs	of	the	product.	Impact	

Assessment:	based	on	the	results	from	inventory	analysis,	analysts	assess	the	

potential	environmental	impact	of	the	product.	Interpretation:	guiding	by	the	
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goal	and	scope	of	the	assessment	project,	analysis	results	and	suggestions	are	

given	based	on	inventory	analysis	and	impact	assessment.			

LCA	is	widely	implemented	in	policy	making,	academic	researches	and	

consultative	analysis.		

Curran	has	written	a	review	of	the	effect	of	LCA	in	U.S.	governmental	

policy	making	[1].	One	example	is	that	in	2007,	California	EPA	had	minimized	the	

hazardous	waste	by	implementing	green	chemical	product	based	on	a	

systematical	life	cycle	assessment	of	multiple	chemical	products	[2].	In	academia,	

Center	for	Sustainable	System	(CSS)	has	been	working	on	LCA	researches	for	

decades.	In	recent	years,	Gregory	A.	Keoleian	et	al	applied	LCA	to	compare	

sunlight-based	and	sugar-based	algae	for	biodiesel	[3],	and	use	LCA	model	to	

analyze	the	difference	of	energy	use	and	greenhouse	gas	emission	between	Plug-

in	and	wireless	charging	for	electric	bus	systems	[4].	However,	the	first	LCA	

study	was	conducted	by	a	commercial	company.	In	1969,	Coca-Cola	conducted	

an	assessment	through	out	the	whole	life	cycle	of	their	products	to	compared	the	

environmental	performance	of	different	beverage	can	materials,	and	finally	

choose	the	material	with	least	environmental	impact	[5].	More	recently,	a	LCA	

from	Nestlé	compared	plastic	pot	and	glass	jar	for	baby	food	carrying	and	a	small	

but	significant	environmental	benefit	of	the	plastic	pot	was	observed	since	the	

plastic	pot	is	much	lighter	than	glass	jar	and	have	a	better	performance	in	

reducing	environmental	burden	at	the	phase	of	transportation	[6].	

As	time	goes	by,	LCA	is	not	only	used	in	environmental	management,	but	

also	in	sustainable	system	design,	green	building	schemes	and	other	areas[7]	[8].		

Steven	Skerlos	from	University	of	Michigan	used	LCA	to	guide	the	manufacturing	

design.	He	provided	four	principles	to	evaluate	the	sustainability	of	a	technology	

in	product	design	before	it	is	made.	LCA	was	used	to	benchmark	and	address	the	

challenges	in	sustainability	design.		

There	are	mature	LCA	software	designed	for	increasing	LCA	practitioners.	

SimaPro	and	GaBi	are	two	most	widely	used	softwares	among	others.	These	two	

tools	supported	by	strong	database	covering	majority	of	industrial	processes	in	

many	countries.	There	are	many	other	softwares	designed	for	specific	industries	

or	certain	districts.	Such	as	eFootprint	is	developed	in	China	and	mainly	
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designed	for	Chinese	industries	since	it	is	based	on	the	core	database	of	Chinese	

Life	Cycle	Database	(CLCD).	

	

1.2	Life	cycle	inventory	(LCI)	
For	a	certain	LCA	project,	data	collection	and	validation	are	always	the	

most	important	phase	in	its	whole	process.		The	ensemble	of	all	environmental-

related	values	of	a	product’s	life	cycle	is	called	Life	Cycle	Inventory	(LCI).	

Inventory	analysis	characterizes	the	life	cycle	of	a	product	as	many	

interconnected	unit	processes,	and	then	quantifies	environmental	interventions	

(i.e.,	materials/energy	used	and	emission/waste	generated)	associated	with	each	

unit	process.	LCI	is	the	“pillar	stone”	for	further	impact	assessment	and	

interpretation	in	LCA.			

Generally,	there	are	many	significant	sources	of	raw	data	to	generate	LCI	

database.	For	many	instances,	people	can	collect	data	from	meter	readings	from	

equipment,	industry	data	reports,	laboratory	test	results,	government	

documents,	publicly	available	databases,	journal	papers,	books,	associations	etc..		

Once	raw	data	are	collected,	people	need	to	transform	them	to	unit	process	input	

output	information.	LCA	analysts	usually	build	a	mathematical	model	(Sometime	

this	model	are	made	in	software)	to	realize	this	transformation	and	establish	the	

product	life	cycle	inventory	according	to	defined	functional	unit,	reference	flow	

and	emission	factors.		

Nowadays,	well-developed	LCI	database	such	as	Ecoinvent	

(www.ecoinvent.org)	is	the	prevalent	source	for	LCI	construction	for	LCA	

projects.	Among	serial	types	of	database,	Ecoinvent	is	the	most	comprehensive	

and	international	product.	It	not	only	collects	data	from	a	wide-range	of	

geographies	and	industries,	but	also	encourages	users	provide	operation	data	to	

update	the	database.	There	are	also	other	LCI	databases	like	US	LCI,	ELCD,	

LCAfood.	Either	of	them	is	limited	in	a	specific	district	or	for	a	specific	industry.		

Data	collection	and	validation	in	constructing	a	LCI	database	is	always	

time-consuming	and	labor	intensive.	It	requires	large	investment	in	time,	human	

resources	and	capital	while	site	monitoring	or	experimental	simulation	may	be	

needed	for	data	collection.	Even	though	the	dedicated	LCI	database	can	be	

helpful	for	most	of	industrial	products,	many	advanced	technology	and	emerging	
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industrial	processes,	such	as	renewable	energy,	still	ask	for	field	exploration	and	

site	testing.	Transforming	the	traditional	time-consuming,	expensive	practice	of	

LCI	database	development	into	a	faster	and	cheaper	process	becomes	more	and	

more	necessary.		

	

1.3	Network	science	
Network	Science	is	an	interdisciplinary	academic	field	which	studies	on	

the	properties	of	different	types	of	networks	including	technology	network,	

social	network,	information	network,	biology	network	etc..	For	instance,	

telephone	network,	friendships	between	high	school	teenagers,	the	World	Wide	

Web	and	food	chain	are	all	typical	networks	in	real	world.	Network	science	was	

developed	in	disciplines	as	diverse	as	mathematics,	statistics,	physics,	social	

science,	information	science	and	computer	science	[9].	Technically,	there	are	

nodes	connected	by	edges	in	a	given	network.	If	there’s	probability	or	intensity	

assigned	to	edges	between	nodes,	it’s	called	weighted	network.	Most	networks	

we	know	are	multipartite	graph	which	means	there	are	many	participants	or	

nodes	in	the	network	and	they	connect	to	other	random	node(s)	in	the	network.	

There	are	also	bipartite	networks	such	as	users-products	network,	in	which	

there	are	only	two	types	of	nodes	(users,	products)	in	this	network,	and	each	

node	in	one	category	will	only	connect	with	node(s)	in	the	other	category.	LCI	

data	is	a	bipartite	weighted	network,	which	will	be	carefully	illustrated	in	the	

following	chapters.		

Link	Prediction	is	one	of	the	sub-fields	of	Network	Science.	The	studies	of	

Link	prediction	have	a	remarkable	increasing	in	recent	years.	Link	prediction	is	a	

method	to	estimate	the	likelihood	of	the	existence	of	a	link	between	two	nodes	

based	on	observed	links	and	the	attributes	of	nodes	[10].	

Link	prediction	is	mainly	applied	in	three	areas.	First,	it	could	find	the	

missing	links	in	a	network.	Secondly,	by	the	same	principle,	it	could	detect	the	

perturbance	in	a	database,	that	is	the	false	data	collected	by	mistakes.	Finally,	

link	prediction	could	be	used	in	predict	future	development	of	a	dynamic	

database	by	predicting	new	data	in	it.		

All	three	applications	are	relevant	to	LCI	database	development	(Table	1).	

Firstly,	uncompleted	LCI	database	is	often	a	defect	in	LCA	process.	Link	
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prediction	can	be	used	as	a	way	to	estimate	the	missing	data	in	LCI	database.	

Secondly,	the	uncertainty	in	data	information	in	LCA	is	widely	discussed	among	

LCA	practitioners,	thus	link	prediction	can	move	in	to	detect	the	accuracy	of	

current	data	by	divide	the	database	into	training	section	and	validation	section	

and	use	data	in	training	section	to	estimate	data	in	validation	section.	The	error	

between	original	data	and	estimated	data	can	reveal	the	distrustful	data	points.	

Lastly,	there	always	are	emerging	technologies	that	cannot	find	available	data	in	

current	LCI	database.	Link	prediction	provided	a	pathway	to	predict	

environmental	interventions	of	these	newly	generated	industrial	process.	
Table	1	Link	prediction	applications,	examples,	and	relevance	to	LCI	database	

development	
Application Examples Potential application to LCI 

database development 
Predicting missing links Scientific collaboration networks [11]; Protein 

interaction networks [12] 
Estimating missing data to complete 
the LCI database 

Identifying false links Peer advice networks in companies [13]; Protein 
interaction networks [14] 

Evaluating the quality of data points; 
Guiding directions for future 
development 

Predicting future links Internet [15], [16]; Online user-object networks 
[17] 

Estimating LCI data for emerging 
technologies 

	

1.4	Structure	of	the	thesis	
Inspiring	by	the	willing	to	estimate	LCI	development	and	the	mature	

discipline	of	network	science,	I	conduct	this	research	to	explore	the	possibility	of	

computational	approach	to	estimate	LCI	missing	data	based	on	link	prediction.	

The	following	parts	are	organized	in	6	sections:	1)	Literature	Review	in	Chapter	

2	gives	a	broad	overview	of	the	applications	of	link	prediction	in	different	areas.	

Most	papers	provide	creative	standpoints	of	link	prediction	application	in	certain	

studies,	which	give	us	the	significance	in	guiding	the	research.	2)	Chapter	3	talks	

about	material,	basic	model	and	research	structure.	It	describes	the	database	

used	in	this	research	in	the	aspects	of	developing	history,	components	and	data	

structure	of	the	target	LCI	inventory	database.	It	lists	the	fundamental	prediction	

model	to	estimate	missing	LCI	data.	In	addition,	this	chapter	also	draws	the	

research	framework.	3)	Starting	from	Chapter	4	to	Chapter	6,	three	research	

experiments	are	elaborated.	In	chapter	4,	it	investigates	the	accuracy	of	the	

method	by	finding	out	the	minimum	estimation	error	that	can	be	approached.	

The	corresponding	size	of	training	data	to	find	out	the	minimum	error	is	also	

provided	to	describe	the	efficiency	of	the	method.	4)	Chapter	5	discusses	other	4	
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algorithms	to	replace	the	algorithm	used	in	basic	method	provided	in	Chapter	4.	

A	normalization	method	is	also	provided.	The	same	accuracy	and	efficiency	

testing	are	conducted	to	test	the	performance	of	these	4	algorithms	and	

normalization	method.	5)	Chapter	6	moves	to	finalize	the	prediction	model	by	

defining	the	size	of	training	data	that	can	have	the	model	to	meet	its	best	

performance.	6)	In	Chapter	7,	I	extend	this	research	to	a	discussion	on	the	future	

development	and	application of	this	method.	Furthermore,	opinions	on	future	
research	of	computational	approach	of	LCI	data	are	provided.	
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Chapter 2. Literature Review 
The	data	deficiency	and	unreliability	were	widely	discussed	in	LCI	

research	papers.	In	some	LCA	projects,	data	gap	and	data	uncertainty	even	were	

main	barrier	to	successful	decision	making.	A	lot	of	solutions	were	provided	to	

fill	this	gas	in	academia	and	application	areas,	and	each	one	of	them	had	their	

own	application	limitations.		

This	chapter	overviews	academic	literatures	in	LCA	data	gap	and	

applications	of	link	prediction.	By	learning	from	published	research	works,	it’s	

easier	for	readers	to	understand	methods	in	this	research	and	it	inspires	future	

thoughts	on	this	topic.		

	

2.1	Data	gaps	in	life	cycle	assessment	
LCA	practitioners	largely	rely	on	dedicated	LCI	database	when	completing	

a	LCA	project	[18].	Therefore,	data	availability	is	essentially	crucial	for	project	

success.	However,	in	practice,	dedicated	database	may	not	be	sufficient	enough	

for	some	LCA	projects.	For	instance,	dedicated	database	usually	uses	LCI	data	in	

one	district	to	estimate	LCI	data	in	another	district	which	introduces	uncertainty	

to	data	quality.	In	addition,	there	always	are	emerging	technologies	that	never	

have	been	tested	for	environmental	information.	Therefore	dedicated	LCI	

database	often	doesn’t	have	the	perfect	data	for	unusual	certain	processes.			

Anna	Bjorklund	elaborated	sources	of	uncertainty	in	life	cycle	assessment.	

Data	inaccuracy,	data	gaps	are	two	major	sources	of	uncertainty	that	affect	LCA	

quality	[19].	Beverly	Sauer	discussed	data	missing	problem	in	detail	in	the	book	

Life	Cycle	Assessment	Handbook:		A	Guide	for	Environmentally	Sustainable	

Products.	He	mentioned	that	water	use	is	barely	collected	over	the	years.	

However,	water	use	is	essential	and	important	to	understand	many	processes	

but	was	missed	in	first	years	to	develop	LCI	database.	The	same	situation	

happens	to	carbon	dioxide	emission	which	is	only	recognized	as	important	

information	when	global	warming	potential	become	recognized	as	an	important	

environmental	issue	[20].	In	future	LCA	work,	there	probably	will	be	other	
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parameters	that	were	not	included	in	current	database.	This	type	of	data	missing	

is	critical	to	the	success	of	many	researches.		

Many	scholars	proposed	their	thoughts	on	dealing	with	data	issues	in	LCA	

projects.	Shelie	Miller	and	Gregory	Keoleian	have	pointed	out	data	challenge	in	

analyzing	transformative	technology	(emerging	technology	that	has	the	potential	

to	change	existing	situation	in	many	aspects).	They	gave	the	idea	that	

transformative	technology	lacks	of	data	and	has	inherent	uncertainties	regarding	

to	their	development.	They	proposed	a	framework	to	manage	data	quality	in	

transformative	technologies	LCA	by	analyzing	10	factors	that	affect	uncertainty	

in	these	LCA	projects	[21].		

Anna	Bjorklund’s	survey	paper	gave	readers	an	outlook	about	how	people	

deal	with	LCA	uncertainty.	For	example	requiring	LCA	practitioner	to	assign	Data	

quality	goals	(DQG)	and	Data	quality	indicators	(DOI)	along	with	LCA	project.	It	

also	pointed	out	some	reasonable	methods	to	estimate	missing	parameters	such	

as	deriving	missing	data	on	mass	balance	in	material	flows,	using	data	from	

similar	technologies	or	average	industry	data	[19].	

Sangwon	Suh	and	Gjalt	Huppes	proposed	a	missing	data	estimation	

method	called	Missing	Inventory	Estimation	Tool	(MIET)	in	2002.	They	

introduced	Input-Output	Analysis	to	LCA	by	transforming	IOA	information	into	

LCI	data	with	specific	metrics.	Although	this	method	has	been	further	developed	

after	publish	of	this	paper,	authors	have	pointed	out	that	the	shortcomings	of	

IOA	would	affect	this	method.	For	example,	data	in	IOA	has	a	high	level	of	

aggregation	and	data	uncertainty,	and	it	would	be	transferred	to	the	estimation	

of	LCI	data	[22].	This	method	combining	IO	table	to	fill	in	the	gaps	of	LCI	is	first	

mentioned	by	Treloar,	G.J	at	1997	[23],	and	Robert	H.	Crawford	did	a	research	in	

2008	to	analyze	the	development	of	it	and	called	it	as	hybrid	LCI	analysis	method	

[24].	

Scholars	never	stop	finding	new	methods	to	deal	with	data	gaps	and	

uncertainty	issues.	Some	methods	such	as	mass	balance	study	require	a	lot	of	

information	that	makes	the	process	even	more	complicated	and	not	so	cheap.	

Other	methods	like	hybrid	LCI	analysis	method	do	not	always	provide	accurate	

estimation,	and	sometimes	increase	data	uncertainty.	Transforming the traditional 
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time-consuming, expensive practice of LCI database development into a faster, more 

accurate and less expensive process has been called for. 

 

2.2	Link	prediction	

2.2.1	Network	science	
Network	Science	is	an	interdisciplinary	field	learning	about	structure,	

development	and	weaknesses	of	information	webs.	A	network	is	consisted	of	

nodes	and	internal	links	between	nodes.	There	are	different	networks	such	as	

friendship	network,	world-wide-web	and	food	chain.	Network	science	was	

developed	in	disciplines	as	diverse	as	mathematics,	statistics,	physics,	social	

network	analysis,	information	science	and	computer	science	[9].		

Two	books	are	recommended	as	fundamental	interpretation	of	network	

science.	Networks:	An	introduction	composed	by	Newman	is	a	thorough	work	on	

introducing	network	theory.	It	categorized	four	main	types	of	network	–	

technological	network,	social	network,	network	of	information	and	biological	

network.	In	addition,	it	expounded	the	mathematics	fundamentals,	computer	

algorithms,	models	of	networks	and	analyze	processes	of	networks[25].	The	

other	book	names	Network	Science	cooperatively	created	by	Albert-Lasszlo	

Barabasi	et	al.	is	published	in	August	2016.	It	introduces	network	science	from	

graph	theory	and	emphasize	on	properties	of	networks.		

Network	theory	was	greatly	developed	in	many	disciplines	since	there	are	

many	kinds	of	network	in	real	world	and	they	exist	in	many	different	fields.	A	lot	

of	network	theory	application	can	be	found	in	academia.	James	McNerney	et	al.	

revealed	the	relationship	between	inter-industry	flows	by	learning	about	money	

flows	between	industries	in	45	national	economies	[26].	Sai	Liang	et	al.	used	

network	theory	to	identify	important	sectors	and	communities	that	are	

responsible	for	carbon	dioxide	emission	[27].	Friendship	network	analysis	is	a	

good	and	fun	example	of	taking	advantage	of	networks	science	in	social	

researches.	K.	Lewis	et	al.	revealed	factors	that	affect	online	relationships	by	

using	Facebook	network	database	[28].	In	addition,	network	theory	is	also	

widely	used	in	computer	science,	biology	and	chemistry.		
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2.2.2	Link	prediction	
Link	Prediction	is	a	branch	of	Network	Science.	It	is	a	technique	to	

estimate	the	likelihood	of	the	existence	of	a	link	between	two	nodes,	based	on	

observed	links	and	the	attributes	of	nodes	[10].		

Linyuan	Lv	et	al.	wrote	an	review	paper	elaborated	link	prediction	and	three	

types	of	LP	techniques	in	detail	[29].	This	paper	classified	link	prediction	techniques	

into	three	groups.	They	are	Similarity-based	Algorithm,	Maximum	Likelihood	Methods	

and	Probabilistic	Model.	Similarity-based	Algorithm	is	the	simplest	framework	of	

link	prediction	methods.	It	aims	to	score	links	between	two	nodes	by	evaluating	

their	similarities	according	to	the	attributes	of	the	nodes.	Maximum	Likelihood	

Method	is	used	on	the	organization	principles	of	the	structure	of	the	network.	

Probabilistic	Models,	instead	of	directly	analyze	network	structure	like	the	

Maximum	Likelihood,	it	tries	to	use	existent	information	to	abstract	the	

underlying	structure,	and	then	predict	the	missing	links	by	extended	new	model.	

Link	prediction	are	also	used	in	many	research	fields	such	as	anomalous	

email	detection	[30],	terrorists	identification	[31]	and	protein	function	

prediction	[12].	

2.2.3	Link	prediction	in	LCI	database	development		
There	are	weighted	network	and	unweighted	network	in	terms	of	link	types.	

There	are	also	multipartite	and	bipartite	network	in	terms	of	relationship	

structure.	LCI	database	is	often	regarded	as	a	bipartite	weighted	network	while	

the	two	elements	are	industrial	unit	processes	and	environmental	interventions.	

In	addition,	the	weighted	link	between	unit	process	and	environmental	

intervention	is	the	corresponding	value	of	environmental	intervention	from	this	

unit	processes.	The	LCI	networks	allow	studying	structural	features	of	complex	

systems	in	distinct	natures.	Link	prediction	in	network	science	offers	potentially	

transformative	capabilities	for	developing	LCI	databases	with	only	limited	

observed	data	without	relying	on	time-consuming,	expensive	empirical	data	

collection.	

Link	prediction	was	texted	well	performed	in	multipartite	unweighted	

networks	such	as	Facebook	friends	recommendation	system.	However,	network	

techniques	like	Link	Prediction	were	still	in	a	fast	but	still	developing	state	in	

more	complicated	networks	especially	bipartite	weighted	networks	such	as	LCI.	



	
	

15	

Increasing	demand	of	techniques	to	do	bipartite	network	prediction	attracts	

researchers’	attentions.		

Jérôme	Kunegis	et	al.	studied	deeply	on	bipartite	network	in	their	2010	

published	paper.	They	defined	bipartite	networks	and	specialized	general	

algorithms	for	this	types	of	network	[32].	Oussama	Allali,	et	al.	proposed	a	

method	to	transform	bipartite	network	into	conventional	multipartite	graphs.	

They	defined	a	concept	as	internal	links	and	project	these	internal	links	into	a	

multipartite	networks	by	weighted	method	[33].		

In	terms	of	weighted	network,	Cai	Gao	et	al.	studied	the	methodology	to	

identify	the	influential	nodes	in	weighted	network,	they	proposed	parameters	of	

Evidential	Semi-local	Centrality	(ESC)	and	Existing	Evidential	Centrality	(EVC).	

These	two	parameters	were	used	to	generate	new	degree	of	nodes	and	further	

model	the	uncertainty	of	new	links.	This	method	is	applied	in	weighted	networks	

[34].		

Collaborative	Filtering	is	a	similarity-based	link	prediction	algorithm	

designed	for	system	recommendations.	It	was	well	known	in	recommending	

movies	for	users	in	Netflix	[35]	[36].	Netflix’s	user	–	movie	database	is	exactly	a	

bipartite	weighted	network	since	every	user	gives	rating	scores	to	movies.		John	

Breese	et	al.	had	a	profound	research	on	collaborative	filtering.	They	regarded	

weight	ij	as	the	probability	that	user	i	would	purchase	products	j,	and	then	gave	

three	types	of	algorithms	to	estimate	unknown	weights	between	nodes	by	

collaborative	filtering.	The	first	one	is	Memory-based	Algorithms,	it	used	user’s	

consumption	database	to	calculate	relevant	parameter	for	this	user,	and	then	

took	advantage	of	the	parameter	to	predict	the	user’s	future	purchase.	The	

second	one	is	extension	to	Memory-based	Algorithm.	It	modified	standard	

algorithm	to	improve	the	performance	according	to	intuitive	database	perceive.	

The	third	one	is	Model-based	Methods	which	created	a	probability	model	that	

assumes	active	user	will	have	a	particular	vote	value	for	a	certain	item	given	the	

previously	observed	votes	[37].	

Jing	Zhao	et	al.		gave	us	a	way	to	calculate	the	weighted	similarity	index	by	

adding	a	parameter	called	Sz	in	similarity-based	algorithm.	Sz	is	the	strength	of	

node	z	(the	sum	of	weights	of	its	associated	link).	Jing	Zhao	et	al.	claimed	that	

this	method	has	a	good	performance	on	weighted	networks	[38].	
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Inspiring	by	link	prediction	theory,	more	complicated	methods	were	

proposed	for	network	prediction.	Linyuan	Lv	et	al.	have	proposed	a	matrix-

algebra-based	examination	method	to	define	the	predictability	of	a	complex	

network.	Along	with	the	examination	method,	they	also	gave	out	an	algorithm	to	

estimate	missing	value	in	a	predictable	network	by	calculating	a	new	parameter	

related	to	the	eigenvalue	and	eigenvector	of	its	adjacent	matrix	[39].	

SimRank	is	another	newly	developed	method	used	in	complex	networks.	

It	measures	similarity	of	the	structural	context	in	object-to-object	relationships	

based	on	their	relationship	to	other	objects.	The	basic	assumption	under	

SimRank	is	that	two	objects	are	similar	to	each	other	if	they	have	similar	

neighbors.	In	addition,	SimRank	can	be	used	combining	with	relational	

structural-context	similarity	for	an	overall	similarity	measure.	Glen	Jeh	and	

Jennifer	Widom	from	Stanford	University	have	firstly	introduced	the	basic	

concepts	and	basic	algorithms	of	SimRank	in	their	paper	[40].		

Efforts	have	already	been	made	to	estimate	LCI	data	instead	of	collecting	

empirical	data.	In	Wenert’s	research,	based	on	neural	networks,	his	team	

proposed	a	Molecular-Structure-based	Models	(MSMs)	which	use	molecular	

features	as	input	to	estimate	LCI	data	for	certain	chemical	products[41][42].	

However,	the	procedure	still	relies	on	a	large	amount	of	information	such	as	

reaction	equations	and	process	characteristics,	which	also	requires	a	lot	of	

prework	such	as	chemical	studies.	In	addition,	this	method	is	limited	to	chemical	

processes	and	relying	on	extensive	chemical	domain	knowledge.	
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Chapter 3. Method and Materials 
Beginning	from	this	chapter,	I	elaborate	the	research	map	in	a	logical	

manner.	The	basic	prediction	method	is	introduced	following	the	description	of	

research	database.	After	that,	the	paper	structure	is	laid	out.	Readers	can	follow	

the	structure	provided	in	this	chapter	to	find	and	dig	into	the	information	they	

need.		

	

3.1	Database	-	Ecoinvent	3.1	
I	use	Ecoinvent	3.1	as	the	target	LCI	database	in	this	research.	Ecoinvent	

is	one	of	the	biggest	LCI	databases	in	world	LCA	practice.	It	is	also	utilized	in	

leading	LCA	softwares	such	as	SimaPro,	Gabi	and	Umberto.	Ecoinvent	was	

started	off	as	a	joint	initiative	of	the	ETH	Domain	and	Swiss	Federal	Offices.	It	has	

been	developed	for	20	years	dedicating	in	LCA	methodology	and	LCI	data	

compilation	for	different	industrial	sectors.	While	there	are	other	LCI	databases	

such	as	U.S.	Life	Cycle	Inventory	Database,	European	Life	Cycle	Data	and	LCA	

Food,	Ecoinvent	is	relatively	the	most	consistent	and	integrated	database.	People	

are	supposed	to	purchase	license	to	use	Ecoinvent,	and	all	industrial	

organizations	are	encouraged	to	contribute	their	own	data	to	Ecoinvent.		

There	are	default	model,	cut-off	model	and	consequential	model	in	

Ecoinvent	database.	These	three	system	models	use	the	same	data	of	real-world	

processes,	but	they	use	different	methods	to	deal	with	the	co-products	and	

materials	need	to	be	treated.	I	simply	choose	the	default	model	for	analysis.	

Ecoinvent	provides	unit	process	dataset	(UPR),	cumulative	inventories	(LCI	in	

Ecoinvent,	it’s	called	CI	in	the	following	parts)	and	life	cycle	impact	assessment	

results	(LCIA).	UPR	records	the	data	of	energy/material	input,	resource	inputs	

and	emission	outputs	of	every	process.	CI	is	the	aggregated	data	with	all	the	

upstream	energy/material	inputs	of	UPR	converted	into	the	resource	inputs	and	

emission	outputs.	LCIA	is	the	impact	category	resulting	from	converting	

resources	and	emissions	into	environmental	impact	parameters.		

CI	database	is	the	only	material	used	in	this	research	paper.	UPR	data	is	

also	analyzed	by	research	group	members,	which	will	be	discussed	in	future	

deliverables.	Ecoinvent	3.1	CI	database	is	basically	a	1869	by	11332	matrix.	Each	
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11332	column	represents	one	industrial	process	and	each	1869	row	denotes	

value	of	environmental	interventions	such	as	material,	energy	inputs	and	

emissions.	Since	CI	database	aggregates	all	the	upstream	material	and	energy	

consumption,	the	CI	matrix	is	a	dense	matrix	with	most	entries	filled	by	numbers.	

One	thing	we	should	notice	is	that	there	are	some	negative	values	in	CI	database,	

they	represent	that	the	treatment	activity	is	supplying	the	service	of	removing	a	

certain	mass	of	the	reference	product	for	treatment	(either	final	disposal	or	

recycling).	The	reference	product	is	physically	an	input	to	the	treatment	activity,	

but	since	the	reference	product	is	placed	on	the	output	side,	it	needs	the	negative	

sign	to	maintain	the	mass	balance	of	the	activity	[43].	

Figure	1	clearly	descripts	the	format	of	LCI	database.	Each	element	of	the	

matrix	indicates	the	amount	of	a	particular	type	of	resource	or	waste	flow	(row)	

associated	with	the	unitary	output	of	a	particular	unit	process	(column),	e.g.,	2	g	

CO2	emissions	per	1	kg	cement.	An	LCI	database	can	also	be	represented	as	a	

network,	using	the	LCI	matrix	as	the	adjacency	matrix	(Figure	1).	In	particular,	

there	are	two	types	of	nodes	(or	vertices)	in	an	LCI	network	respectively	

representing	unit	processes	and	environmental	interventions.	Unit	process	

nodes	are	connected	with	environmental	intervention	nodes	by	links	(or	edges)	

indicating	how	much	and	what	type	of	environmental	interventions	each	unit	

process	is	associated	with.	This	network	is	a	weighted,	bipartite	network	[44],	as	

its	links	have	strengths	(the	amount	of	environmental	interventions)	and	nodes	

are	divided	into	two	disjoint	sets.		
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Figure 1. Data structure of LCI database 
 
 
 

3.2	Data	processing	
In	order	to	avoid	interferences	in	the	database,	I	remove	empty	columns	

and	rows	in	CI	database.	These	empty	columns	indicate	that	these	processes	

does	not	have	any	information	in	CI	database,	they	are	listed	there	on	purpose	

for	future	development.	The	same	idea	goes	to	empty	rows.	In	addition,	only	one	

process	is	kept	while	the	rest	are	removed	among	a	set	of	processes	that	have	

identical	or	similar	values	in	each	environmental	flows.	Here	similar	is	defined	as	

the	element-wise	difference	between	the	two	processes	are	less	than	10%	of	the	

maximum	value	of	these	two.		

After	data	process,	the	new	matrix	of	CI	database	has	a	dimension	of	1799	

by	8100.	Finally,	reformatted	and	processed	Excel	spreadsheets	are	imported	

into	MATLAB	as	adjacency	matrices	to	represent	Ecoinvent	3.1	Cumulative	

Inventory	network.	

	

3.3	Similarity-based	link	prediction	
Similarity-based	link	prediction	is	one	of	the	most	common	methods	used	

in	network	analysis	[29]	and	has	been	taken	as	the	basic	prediction	method	in	

this	research.	Similarity-based	link	prediction	methods	first	measure	the	

similarity	(or	proximity)	between	each	pair	of	nodes	in	the	network.	For	

bipartite	networks,	similarity	is	measured	for	the	same	type	of	nodes.	Two	nodes	
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that	are	similar	tend	to	have	similar	patterns	of	linkages	with	other	nodes	in	the	

network.	Based	on	appropriate	measures	of	similarity,	one	can	then	evaluate	the	

likelihood	of	unknown	links	that	exist	for	a	node	by	comparing	it	with	other	

similar	nodes.	

Note	that	in	LCI	networks,	predicting	the	existence	of	links	between	

processes	is	not	enough.	One	also	needs	to	predict	the	strength	of	particular	links.	

This	is	different	from	simply	applying	existing	link	prediction	methods	in	

network	science	which	are	mostly	developed	for	unweighted	networks;	however,	

the	same	principles	still	apply.	Introducing	link	and/or	node	weights	can	

generally	modify	models	developed	for	unweighted	networks	for	applying	to	

weighted	networks	[45][46].	That’s	the	philosophy	of	the	prediction	method	for	

this	bipartite	weighted	network.		

In	this	research,	the	prediction	process	is	divided	into	three	steps:	

Calculate	the	similarity	between	processes,	use	the	similarity	to	estimate	missing	

data	and	test	the	estimation	by	examining	its	accuracy.		Figure	2	shows	the	logic	

of	prediction	process.		

	

	
Figure 2.Graph of prediction process. 

	

3.3.1	Similarity	between	the	processes		
The	similarity	of	two	unit	processes	𝑠!" 	is	simply	defined	as	the	mean	of	

normalized	differences	of	all	environmental	interventions	of	the	two	processes	

at	the	first	step	(Equation	1):	

	

Prediction	Algorithm	

Test	the	
estimation	

Similarity	
Algorithm

m	

Estimation	
Algorithm	
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𝑠!" = 1−
1
𝑛

|𝑎!" − 𝑎!"|
max (|𝑎!"|, |𝑎!"|)

                                        
!

!!!
1 	

where	k	is	the	index	of	environmental	interventions,	n	is	the	number	of	

environmental	interventions,	and	𝑎!" 	is	the	environmental	intervention	k	for	unit	

process	i.	I	named	this	similarity	calculation	method	as	Average	Difference.	I	

have	also	tried	other	methods	typically	used	to	measure	similarity,	such	as	

Euclidean	Distance,	Pearson	Correlation	Coefficient,	and	SimRank	[40],	they	will	

be	discussed	in	Chapter	5.		

3.3.2	Estimation	for	one	missing	data	entry		
For	each	missing	data	point	in	a	certain	process,	the	remaining	data	in	

this	process	are	considered	as	known	observations.	They	are	used	as	the	training	

set	to	compute	similarities	between	this	process	and	all	other	processes	using	

Equation	1.	The	missing	data	point	is	then	estimated	by	

         𝑒!" =
𝑎!!!𝑠!!!

!
!!!

𝑠!!!
!
!!!

                                                             2 	

where	t	(1	≤	t	≤	m-1)	represents	the	number	of	most	similar	processes	used	to	

estimate	the	missing	data	point,	and	m	indicates	the	total	number	of	unit	

processes,	I	define	t	as	the	size	of	the	training	data.	qj	is	the	column	number	of	

the	jth	similar	process	with	process	i.	For	each	missing	data	point,	there	are	m-1	

different	estimations	with	t	ranging	between	1	and	m-1.	Too	less	training	data	is	

not	adequate	enough	to	take	advantage	of	similar	processes,	but	too	much	

training	data	may	bring	noise	into	the	prediction.	Both	issues	lead	to	inaccurate	

prediction	that	people	want	to	avoid.		

3.3.3	Performance of the estimation 
I	define	the	accuracy	to	be	the	distance	(error)	between	the	estimation	

and	the	“true”	value	from	the	original	LCI	database,	which	are	calculated	by	

Equation	3.	

𝑟!" =
𝑒!" − 𝑎!"
𝑎!"

                                        (3)	

with	m-1	different	estimations	of	𝑒!" ,	I	get	m-1	different	values	of	𝑟!" .	I	define	the	

according	t	with	the	minimum	𝑟!" 	as	the	size	of	training	data	corresponding	to	

the	minimum	error.		
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The	distribution	of	the	errors	indicates	the	accuracy	of	the	estimation.	

The	size	of	training	data	of	the	minimum	error	is	the	same	meaning	of	the	

number	of	most	similar	processes	that	should	be	used	to	have	the	most	accurate	

estimation	for	a	single	missing	data.	The	size	of	training	data	of	the	minimum	

error	indicates	the	computational	efficiency,	the	smaller	size	of	training	data	

used	to	estimate,	the	more	efficiency	the	calculation	would	be.		

	

3.4	Research	structure		
All	of	the	researches	are	built	on	an	intact	CI	matrix	from	Ecoinvent	3.1	CI	

database.	According	to	the	situation,	I	divide	this	database	into	validation	dataset	

and	training	dataset.	I	regard	validation	data	as	missing	data,	use	training	data	to	

estimate	missing	data,	and	use	validation	data	to	test	the	accuracy	of	the	

estimation	(Figure	3).	

	
Figure 3 Graph of prediction steps 
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At	the	first	phase,	I	set	the	size	of	validation	dataset	as	1	entry	and	50	

entries	respectively	to	test	the	accuracy	and	efficiency	of	the	proposed	

prediction	method.		In	phase	2,	instead	of	the	similarity	algorithm	of	Average	

Difference,	I	propose	other	three	algorithms	and	a	normalization	method	to	

obtain	similarity	matrix.	Setting	the	validation	dataset	as	1	entry,	I	test	the	

accuracy	and	efficiency	from	these	new	similarity	approaches.	Before	finalizing	

the	prediction	method,	I	find	that	in	estimation	step,	I	don’t	need	all	training	

dataset	to	acquire	a	most	accurate	prediction,	so	in	phase	3,	I	test	the	prediction	

accuracy	by	using	different	size	of	training	data.	The	prediction	method	is	

finalized	by	using	the	amount	of	training	data	which	can	result	in	most	accurate	

prediction.	The	research	structure	is	listed	in	Figure	4Error!	Reference	source	

not	found.	Phase	1,	2	and	3	are	elaborated	in	chapter	4,	5	and	6.		

		

Figure 4 Research Structure 
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Chapter 4 Accuracy and Efficiency of 
Estimating 1 and a Block of 50 Missing 
Data Entries 
I	proposed	the	basic	prediction	method	in	section	3.3.	In	this	chapter,	I	test	the	

accuracy	and	efficiency	of	the	prediction	model	by	using	it	to	estimate	missing	

data	entry/entries	and	calculate	prediction	errors.		

I	start	the	accuracy	and	efficiency	test	from	an	easy	way	that	just	remove	one	

data	entry,	estimate	it	and	test	the	accuracy	and	efficiency.	If	the	estimation	is	

accurate	and	efficient,	I	have	the	motivation	to	remove	a	block	of	50	data	entries	

and	try	to	predict	them	in	the	same	way.	If	the	method	still	works	well,	it	proves	

the	validation	of	this	approach.		

	

4.1	Methods	

4.1.1	Estimate	one	missing	data	entry	
I	remove	each	one	data	entry	in	CI	matrix	(1799	by	8100)	one	by	one.	Use	

the	rest	values	of	the	matrix	as	training	data	to	estimate	the	missing	value.	In	

every	iteration,	the	removed	data	entry	will	be	taken	as	both	missing	data	and	

validation	data.	When	one	certain	data	entry	removed,	say,	data	entry	in	column	

A	and	row	B,	obtain	the	similarity	between	column	A	and	all	other	columns	by	

using	equation	(1)	with	data	in	all	rows	except	row	B.	Using	equation	(2),	with	

different	size	of	training	data,	it	will	gives	out	m-1	estimations.	Find	out	m-1	

estimation	errors,	pick	out	the	smallest	one	and	record	it	as	Minimum	Error,	the	

corresponding	amount	of	training	data	used	will	also	be	recorded	as	Size	of	

Training	Data.	In	this	way,	result	will	be	two	1799	by	8100	matrixes.	One	

records	minimum	error	from	each	iteration,	and	the	other	records	

corresponding	size	of	training	data.		

4.1.2	Estimate	a	block	of	50	missing	data	entries	
I	repeat	this	process	when	a	block	of	50	data	entries	are	moved	as	missing	

data	each	time,	with	a	revising	that	I	intended	to	find	out	the	minimum	average	

error	of	50	estimations	as	well	as	the	corresponding	size	of	training	data.		Unlike	
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1	data	entry	removing	experiment,	the	matrix	of	minimum	average	error	and	

corresponding	size	of	training	data	are	36	by	8100	matrices	in	this	experiment	

(1799	divided	by	50	rounds	up	to	36).		

4.1.3	Approximation	of	similarity	matrix		
One	thing	I	should	clarify	is	that	theoretically,	for	each	missing	data,	I	

should	use	the	remaining	data	to	calculate	a	specific	similarity	matrix	by	

Equation	(1),	and	then	plug	this	group	of	similarity	in	Equation	(2)	to	estimate	

this	missing	data.	However,	this	process	would	be	tedious	and	clumsy	in	

calculation.	The	comparison	between	the	similarity	matrix	of	the	original	entire	

matrix	and	the	matrix	with	one	data	missing	shows	neglectable	difference.	So	I	

use	the	similarity	of	the	original	entire	matrix	as	approximation	in	all	the	one	

missing	data	estimation,	which	helps	save	time	to	recalculate	similarity	matrix	

each	time.	However,	the	difference	of	the	similarity	matrix	with	a	block	of	data	

missing	and	the	original	entire	matrix	cannot	be	neglected,	especially	when	a	

large	group	of	data	is	missing.	Therefore	similarity	matrix	should	be	recalculated	

each	time	when	a	large	group	of	data	is	missing	each	time.	Proven	are	discussed	

as	following.	

Name the similarity matrix calculated by entire original matrix as matrix A, 

and the similarity matrixes calculated by the rest of values when 1 data entry was 

removed each time as matrix Bs. 1799 similarity matrices Bs are calculated by 

removing one of 1799 rows each time. Then the average value of 1799 difference 

matrix Cs which equals to A-Bs are recorded. Mean value of these 1799 average 

value is 0.0004. It is very small and neglectable. Therefore, I claim that I can use the 

similarity matrix calculated by entire original LCI database as the approximation of 

similarity matrix in section 4.1.1.   

	

4.2	Results	
Before	discussing	experiment	results	from	4.1.1	and	4.1.2,	I	sketched	a	

heat	map	of	the	process	similarity	matrix	acquired	from	original	entire	database,	

which	is	a	8100	by	8100	square	matrix.		

Then	I	drew	the	empirical	cumulative	distribution	graph	of	minimum	

error	matrix	and	size	of	training	data	matrix.	The	distribution	of	the	errors	

indicates	the	accuracy	of	the	estimation.	The	distribution	of	size	of	training	data	
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indicates	the	computational	efficiency.	The	less	processes	used	to	get	the	best	

estimate,	the	more	efficiency	the	calculation	would	be.	

4.2.1 Similarity of processes 
The	similarity-based	link	prediction	method	is	built	on	the	assumption	

that	similar	processes	have	similar	environmental	interventions.	The	heat	map	

(Figure	5)	confirms	the	assumption	that	when	the	process	in	both	rows	and	

columns	are	ranked	by	International	Standard	Industrial	Classification	of	All	

Economic	Activities,	Rev.4	(ISIC)	identification	number	from	01	to	99.		

The	diagonal	of	the	heat	map	is	a	white	line,	because	the	similarity	

between	a	process	and	itself	is	always	1.	In	addition,	there	are	light	squares	

around	the	diagonal,	which	indicates	that	processes	in	the	same	category	

generally	have	higher	similarity.		

	

																																						 	
Figure 5 Heatmap of similarity of CI database 

	

4.2.2	Results	of	estimating	1	missing	data	entry	

4.2.2.1	Minimum	errors	
For	CI	database,	Figure	6	shows	that	the	minimum	error	the	method	

could	capture	are	distributed	from	very	small	(less	than	10-10)	to	very	large	

(more	than	1010).	But	most	of	minimum	errors	are	among	10-5	to	1	and	nearly	89%	
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of	minimum	errors	are	less	than	0.1.	In	addition,	4%	minimum	errors	equal	to	0,	

which	means	4%	of	values	could	be	precisely	estimated.		

	

																				 	
Figure 6 Distribution of minimum error (with one data missing) 

	

4.2.2.2	Corresponding	size	of	training	data		
Figure	7 shows the cumulative distribution of corresponding size of training 

data, from which I can tell that nearly 24% minimum error are hit by only using value 

from the top 1 most similar process as training dataset. In addition, around 84% 

minimum errors can be found out with only less than 100 similar processes in the 

training dataset. The calculation is relatively efficient.  

	

89%	minimum	errors	 
are	less	than	0.1 

0.89 

10
-1
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Figure 7 Distribution of size of training data (with one data missing) 

	
	

4.2.3	Results	of	estimating	a	block	of	50	missing	data	entries	

4.2.3.1	Minimum	error		
When 50 data simultaneously miss in LCI database, the results are displayed 

in Figure	8 and Figure	9. Figure	8 shows the empirical cumulative distribution of 

average minimum error when a block of 50 data entries removed each time. It’s 

obvious that the value of minimum error is mainly greater than the values of 

minimum error when only 1 data entry removed each time. In this situation, most of 

minimum errors are between 10-3 to 1 and the proportion of value less than 0.1 

decreases to 58%.  

0.84 84%	optimal	training	data	size	 
are	less	than	100 



	
	

29	

 
 
 
 
 
 
 
 
 
 
 
	
 
 
 
 
 
 
 
 
 

4.2.3.2 Corresponding size of training data  
Figure	9 shows that nearly 48% average minimum errors are found by only 

using the most similar process as training data (size = 1). More than 99% average 

minimum error can be found with no more than 100 most similar processes. 

	

	

	

		

	

	

	

	

	

	

	

	

Figure 8. Distribution of minimum error (with a block of 50 data missing) 
 

Figure 9. Distribution of the size of training data (with a block of 50 data missing) 
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Results	of	these	two	experiments	show	the	promising	potential	of	the	

proposed	prediction	model	to	estimate	missing	LCI	data.	For	most	of	estimations,	

not	only	could	the	prediction	method	results	in	very	small	minimum	error,	but	

also	could	it	meet	less	calculation	complexity	by	only	using	small	size	of	training	

data.	In	addition	to	a	good	performance	of	estimating	1	missing	data,	this	

prediction	method	doesn’t	collapse	when	estimate	multiply	missing	data.		

This	prediction	model	needs	to	be	finalized	as	a	completed	system	to	

predict	by	defining	optimal	size	of	training	data.	This	will	be	discussed	in	

Chapter	6.		
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Chapter 5 Other Methods to Measure 
Similarity 

As	I	mentioned	in	chapter	3,	in	this	chapter,	I	propose	another	three	

algorithms	to	capture	similarity	matrix.	In	addition,	I	provide	the	method	to	do	

data	normalization	before	similarity	calculation.	I	also	try	to	calculate	similarities	

not	only	between	industrial	unit	processes,	but	also	between	environmental	

interventions.	I	mean	to	find	the	best	combination	of	methods	in	the	prediction	

model	that	can	give	us	the	best	estimation	of	CI	missing	data.		

	

5.1	Methods	

5.1.1	Additional	methods	to	measure	similarity	
Despite	Average	Distance	which	is	used	in	Chapter	4	to	calculate	

similarity,	three	other	algorithms	are	proposed	to	capture	the	similarity	between	

processes.	In	this	chapter,	in	spite	of	using	new	similarity	matrix,	other	sections	

of	the	experiment	in	this	chapter	are	the	same	with	4.1.1.		Minimum	errors	and	

the	corresponding	size	of	training	data	are	recorded	as	test	parameters	for	

accuracy	and	efficiency	analysis.		

In	addition	to	only	calculate	similarities	between	processes,	in	this	

chapter,	I	also	calculate	similarities	between	environmental	interventions	for	

estimation.	The	prediction	model	is	similar.	After	calculating	the	similarity	

matrix	of	environmental	interventions,	use	estimation	equation	(2)	to	estimate	

missing	data	by	using	all	environmental	intervention	values	in	the	same	process	

that	the	missing	data	belongs	to.	Estimation	error,	minimum	error	and	

corresponding	size	of	training	data	are	also	recorded	for	comparing.		

These	three	new	algorithms	are	described	below	and	their	mathematic	

functions	are	listed	in	Table	2.	

	Pearson	Correlation	Coefficient	

Pearson	Correlation	Coefficient	is	a	statistical	measure	reveling	the	linear	

relationship	between	two	variables.	The	equation	for	calculating	Pearson	

Correlation	Coefficient	between	variable	x	and	y	is:	
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𝑟!! =
𝑥𝑦 − 𝑥 𝑦

𝑁

( 𝑥! − ( 𝑥)!
𝑁 )( 𝑦! − ( 𝑦)!

𝑁 )
=

(𝑥! − 𝑥)(𝑦! − 𝑦!
!!! )
(𝑥! − 𝑥)! ∙ (𝑦! − 𝑦)!!

!!!
!
!!!

 

rxy	is	a	value	between	-1	to	1,	with	1	indicates	total	positive	correlation,	0	

is	no	correlation	and	-1	is	total	negative	correlation.	Pearson	Correlation	

Coefficient	measures	the	linear	dependence	between	two	variables.		

Pearson	Correlation	Coefficient	could	be	an	algorithm	to	describe	the	

relationship	between	two	processes	in	LCI	database.	It	could	be	developed	in	the	

research	by	simply	assigned	SPJ=rPJ	where	P	and	J	are	two	processes.		

Euclidean	Distance	

Euclidean	distance	is	a	mathematic	concept	that	widely	used	in	describing	

ordinary	distance	between	two	points	in	Euclidean	space.	Mathematically,	

Euclidean	distance	calculates	the	summation	of	square	difference	between	two	

points.	For	example,	in	a	N	dimension	space,	the	Euclidean	distance	between	

point	A	[A1,	A2,	…,	An]’	and	B	[B1,	B2,	…,	Bn]’	is:	

𝐷!" = (𝐴! − 𝐵!)!
!

!!!
 

Larger	distance	suggests	a	smaller	similarity.	Therefore	I	take	the	

negative	value	of	distance	to	adjust	the	function.	And	by	using	exponential	

function,	the	value	of	this	function	falls	into	an	interval	between	0	to	1.	Processes	

with	smaller	distance	will	be	assigned	a	higher	similarity	score.	The	finalized	

similarity	calculation	equation	is:	

𝑆!" = 𝑒
! (!!"!!!")!!

!!!

!  

Where:	

aki	is	the	value	of	environmental	flow	k	in	process	i;	

akj	is	the	value	of	environmental	flow	k	in	process	j;	

σ	is	an	adjustment	parameter	to	make	similarity	results	span	well	from	0	

to	1.	

If	the	two	processes	are	identical,	the	summation	of	 (a!" − a!")!!
!!! 	

should	equal	to	zero	and	therefore	the	similarity	score	between	two	processes	

should	have	the	score	1.		
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SimRank	

SimRank	is	a	method	first	proposed	for	website	network	analysis.	It	was	

aimed	to	measure	the	“similarity”	between	objects	in	a	given	web	network.	

Potentially,	we	regards	“two	objects	are	similar	if	they	are	related	to	similar	

objects.”	And	this	general	similarity	measure	is	called	SimRank	[40].	In	general,	

SimRank	is	a	method	to	calculate	the	average	of	similarities	between	the	

neighbors	of	two	objects.	Together	with	other	domain-specific	similarity	

measures,	it	could	be	adjusted	to	satisfy	different	types	of	network,	like	

homogenous	domain	and	bipartite	domain.		

Based	on	similarity	matrix	established	by	previous	algorithm,	an	adjusted	

SimRank	algorithm	could	be	used	in	this	research.	Firstly,	I	harvest	similarity	

matrix	by	Average	Difference	algorithm	between	processes,	and	I	regard	the	

network	as	a	homogenous	domain	with	only	industrial	processes.	Next,	by	

setting	a	threshold,	the	neighbors	of	a	process	is	defined	according	to	the	

similarity	from	Average	Difference	algorithm	(in	this	research,	I	take	the	most	N	

similar	processes	as	the	neighbors	of	a	certain	process).	Finally,	I	use	SimRank	

algorithm	to	calculate	new	similarity	between	two	processes	i	and	j: 

𝑆!" =
𝐶

𝐼(𝑖) 𝐼(𝑗) 𝑠(𝐼! 𝑖 , 𝐼! 𝑗 )
!(!)

!!!

!(!)

!!!

	

Where:		

C	is	a	parameter	to	adjust	the	similarity	locating	between	0	to	1.		

I(i)	and	I(j)	are	neighbors	of	i	and	j.	

In	this	research	for	CI	database,	when	calculate	similarity	between	

processes,	I	set	a=20,	C=1	and	N=5.	But	when	calculate	similarity	between	

environmental	interventions,	I	set	a=10,	C=1	and	N=5.		
Table 2 List of similarty algorithms 

 Similarity Algorithms for 

 Processes 

(i and j are two processes) 

Environmental interventions 

(p and q are two environmental interventions) 

Average 

Difference 
𝑠!" = 1 −

1
𝑛

|𝑎!" − 𝑎!"|
max (|𝑎!"|, |𝑎!"|)

    
!

!!!
 𝑠𝑝𝑞 = 1 −

1
𝑛

|𝑎𝑘𝑝 − 𝑎𝑘𝑞|
max (|𝑎𝑘𝑝|, |𝑎𝑘𝑞|)

    
𝑛

𝑘=1
 

Pearson 

Correlation 

Coefficient 

𝑠!" =
(𝑎!" − 𝑎!)(𝑎!" − 𝑎!!

!!! )
(𝑎!" − 𝑎!)! ∙ (𝑎!" − 𝑎!)!!

!!!
!
!!!

 𝑠!" =
(𝑎!" − 𝑎!)(𝑎!" − 𝑎!!

!!! )
(𝑎!" − 𝑎!)! ∙ (𝑎!" − 𝑎!)!!

!!!
!
!!!
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Euclidean 

Distance 𝑆!" = 𝑒
! (!!"!!!")!!

!!!
!  𝑆!" = 𝑒

! (!!"!!!")!!
!!!

!  

SimRank 𝑆!" =
𝐶

𝐼(𝑖) 𝐼(𝑗)
𝑠(𝐼! 𝑖 , 𝐼! 𝑗 )

!(!)

!!!

!(!)

!!!

 

where I(i) and I(j) are neighbors of i and j 

𝑆!" =
𝐶

𝐼(𝑝) 𝐼(𝑞)
𝑠(𝐼! 𝑝 , 𝐼! 𝑞 )

!(!)

!!!

!(!)

!!!

 

where I(i) and I(j) are neighbors of i and j 

 

5.1.2	Normalization	of	LCI	data	

5.1.2.1	The	significance	of	normalization	
There	are	many	types	of	environmental	interventions	in	LCI	database	

representing	input	as	resources,	materials	and	output	as	emissions.	Different	

types	of	environmental	intervention	have	different	unit,	for	example,	unit	of	

electricity	input	is	MJ,	but	unit	of	CO2	emission	is	ton.		Therefore,	the	values	in	

the	database	have	a	large	range	of	magnitude.	The	cumulative	distribution	of	all	

values	in	CI	database	is	shown	in	Figure	10.		

	

																																				 	
Figure 10 Cumulative distribution of values in CI database 

 
Data	magnitude	may	largely	affect	the	estimation.	For	example	if	I	use	

Euclidean	Distance	to	calculate	the	similarity,	data	value	with	larger	magnitude	

will	have	heavier	impact	to	the	similarity	score	than	value	with	smaller	

magnitude.	In	order	to	eliminate	impact	from	data	magnitude,	I	proposed	data	

normalization	method	to	process	data,	so	that	all	data	would	have	the	same	

degree	of	magnitude.		
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5.1.2.2	Normalization	method		
In	this	research,	I	first	find	the	maximum	value	in	each	environmental	

intervention,	and	then	use	this	maximum	divide	all	value	in	this	environmental	

intervention	to	normalize	the	database.	That	is	to	say,	every	data	entry	in	the	

matrix	is	divided	by	the	maximum	value	of	all	value	in	its	row.	It	could	be	written	

in	the	matrix	form	as:	

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 𝐶𝐼 = (𝐼×(𝑀𝐴𝑋))!!×𝐶𝐼	

Where,	

MAX	is	the	vector	of	maximum	value	in	each	types	of	environmental	

intervention.	i.e.	vector	of	maximum	value	of	each	row;	

CI	is	the	original	database;	

I	is	the	identity	matrix.	

Nevertheless,	this	normalization	would	not	make	any	difference	when	use	

Average	Difference	to	calculate	similarity	between	processes	and	when	use	

Pearson	Correlation	Coefficient	to	calculate	similarity	between	environmental	

interventions.	The	deduction	to	get	this	conclusion	is	listed	in	Appendix	A.	

5.1.3	Evaluation	of	methods		
I	intend	to	test	the	performance	of	three	new	similarity	algorithms,	data	

normalization	method	and	also	similarity	matrix	between	environmental	

interventions,	and	compare	the	results	with	prediction	model	using	Average	

Difference	similarity	algorithm	without	data	normalization	to	obtain	similarity	

between	processes	which	I	talked	in	chapter	4.		

Therefore,	I	have	in	total	16	combination	scenarios	to	text.	They	are	listed	in		
Table	3.	Taking	all	16	scenarios,	I	went	through	the	same	process	of	chapter	4.2.2	

that	is	to	remove	1	data	entry	one	by	one	and	predict	the	missing	data	each	time	

while	recording	their	minimum	errors	and	corresponding	size	of	training	data.	In	

this	chapter,	after	I	have	the	minimum	error	and	size	of	training	data	records,	I	

counted	the	percentage	of	minimum	error	less	than	0.1	and	equals	to	0.	For	size	

of	training	data,	I	counted	the	percentage	that	less	than	100	and	equals	to	1	for	

every	scenario	for	comparison.	I	define	a	good	estimation	is	minimum	error	less	

than	0.1	with	size	of	training	data	less	than	100.	
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Table 3 List of all combination scenarios 

Scenario	 Similarity	algorithm	 Data	normalization	 Similarity	between	

1	 Average	Difference	 NO	 Processes	

2	 Average	Difference	 NO	 Environmental	interventions	

3	
Pearson	Correlation	

Coefficient	
NO	 Processes	

4	
Pearson	Correlation	

Coefficient	
NO	 Environmental	interventions	

5	 Euclidean	Distance	 NO	 Processes	

6	 Euclidean	Distance	 NO	 Environmental	interventions	

7	 SimRank	 NO	 Processes	

8	 SimRank	 NO	 Environmental	interventions	

9	 Average	Difference	 YES	 Processes	

10	 Average	Difference	 YES	 Environmental	interventions	

11	
Pearson	Correlation	

Coefficient	
YES	 Processes	

12	
Pearson	Correlation	

Coefficient	
YES	 Environmental	interventions	

13	 Euclidean	Distance	 YES	 Processes	

14	 Euclidean	Distance	 YES	 Environmental	interventions	

15	 SimRank	 YES	 Processes	

16	 SimRank	 YES	 Environmental	interventions	

	

	

5.2	Preliminary	results	
Table	4	gives	the	overview	of	the	performance	in	minimum	error	and	

corresponding	size	of	training	data	for	the	proposed	16	scenarios	and	Figure	11	

shows	their	performance	on	minimum	error	less	than	0.1	and	size	of	training	

data	less	than	100.		

From	Table	4	and	Figure	11,	It	can	be	found	that	by	using	Average	

Difference	without	data	normalization	to	obtain	similarities	between	processes	

(scenario1),	89.41%	minimum	errors	are	less	than	0.1,	2.54%	missing	data	could	

be	accurately	estimated	with	0	estimation	error.	Its	performance	in	these	two	

parameters	are	much	better	than	most	of	other	scenarios,	only	Euclidean	
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Distance	with	data	normalization	calculating	similarity	between	processes	

(Scenario	13)	can	have	the	relative	competitive	performance	with	it.		

In	addition,	83.63%	minimum	error	could	be	found	with	a	small	size	of	

training	data	defined	as	less	than	100	most	similar	processes,	so	it	also	well	

performs	in	calculation	efficiency.	Although	many	other	scenarios	have	better	

efficiency	than	scenario	1	since	a	lot	more	scenarios	have	higher	percentage	in	

size	of	training	data	less	than	100,	the	efficiency	of	Scenario	1	is	adequate	

enough	for	computing	process	and	it’s	better	than	Scenario	13,	which	is	

competitive	in	the	previous	parameter.		

Therefore	it’s	reasonable	to	take	Average	Difference	without	data	

normalization	to	obtain	similarity	between	processes	(Scenario	1)	as	the	best	

combination	in	prediction	model.	And	this	combination	will	be	prioritized	in	the	

following	research.	There	are	graphs	of	minimum	error	and	size	of	training	data	

distribution	from	different	scenarios	listed	in	Appendix	B.		

 
Table 4 Parameter comparison between different scenarios 

	

		 		

Minimum	error	 Size	of	training	data	

0-0.1	 0	 0-100	 1	

1	 Average	Difference	 89.41%	 2.54%	 83.63%	 23.87%	
2	 Average	Difference	E	 72.02%	 0.55%	 90.26%	 18.38%	
3	 Correlation	Coefficient	 55.59%	 1.52%	 96.09%	 36.92%	
4	 Correlation	Coefficient	E	 17.73%	 0.18%	 95.40%	 31.80%	
5	 Euclidean	Distance	 22.27%	 0.00%	 87.17%	 16.76%	
6	 Euclidean	Distance	E	 16.92%	 0.00%	 95.58%	 50.70%	
7	 SimRank	 51.45%	 0.02%	 70.88%	 14.06%	
8	 SimRank	E	 40.92%	 0.00%	 84.23%	 18.45%	
9	 Average	Difference	N	 		 		 		 		
10	 Average	Difference	NE	 19.84%	 0.30%	 95.70%	 30.30%	
11	 Correlation	Coefficient	N	 64.96%	 0.87%	 97.39%	 35.91%	
12	 Correlation	Coefficient	NE	 		 		 		 		
13	 Euclidean	Distance	N	 86.76%	 0.98%	 58.72%	 22.07%	
14	 Euclidean	Distance	NE	 18.06%	 0.36%	 95.17%	 31.89%	
15	 SimRank	N	 		 		 		 		
16	 SimRank	NE	 13.46%	 0.00%	 95.71%	 30.24%	

Note:	Here	E	means	it	used	similarity	between	environmental	interventions	to	

predict.	N	means	it	processed	data	normalization	at	the	first	step.		
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Figure 11 Comparison graph of minimum error between 0-0.1 and size of training data between 

0-100 of different scenarios
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Chapter 6 Optimal Size of Training 
Data – Finalize Prediction Method  

The	previous	two	chapters	have	carefully	elaborated	that	for	Ecoinvent	

3.1	CI	database,	the	proposed	prediction	model	could	result	in	a	relative	accurate	

and	efficient	estimation	when	1	data	entry	miss,	and	a	little	less	accurate	but	

more	efficient	estimation	when	a	block	of	50	data	entries	miss.	Result	also	shows	

that	the	model	loaded	Average	Different	similarity	algorithm,	calculating	

similarities	between	processes	without	normalization	performs	best	among	all	

methods.		

Noticed	that	when	I	conduct	these	experiments,	since	I	have	an	intact	CI	

database,	i.e.	all	missing	data	have	their	related	validation	database,	it’s	

realizable	to	test	the	estimation	accuracy	and	efficiency	by	comparing	estimation	

with	validation	data.	However,	in	real	world,	there	isn’t	“true	value”	of	missing	

data	or	validation	dataset	when	we	want	to	predict	it.	Therefore,	we	cannot	

decide	the	certain	amount	of	training	data	that	can	generate	minimum	

estimation	error(s)	and	also	cannot	test	whether	the	estimation	is	accurate	or	

not.		

In	this	chapter,	I	use	CI	database	to	find	the	optimal	size	of	training	data	

that	generate	most	accurate	estimation.	I	take	Average	Difference	as	the	

similarity	algorithm	to	calculate	similarities	between	processes	and	not	use	

normalization	method.	This	size	of	training	data	can	become	a	reference	for	real	

missing	data	estimation.		

	

6.1	Methods	
Firstly	and	most	importantly,	I	propose	the	definition	of	optimal	

estimation	as:	when	we	use	a	certain	size	of	training	data,	we	can	get	the	smallest	

average	number	for	all	estimation	errors	when	1	data	entry	removed	and	
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estimated	in	the	given	database	one	by	one.		And	this	certain	size	of	training	data	

is	called	optimal	size	of	training	data.		

So	in	this	chapter,	similar	but	unlike	chapter	4.1.1,	after	I	obtain	the	

similarity	matrix,	I	do	not	record	minimum	errors	and	corresponding	size	of	

training	data.	Instead,	I	set	the	size	of	training	data	from	1	to	m-1	(m	processes	in	

total,	and	m	=	8100	in	CI	database),	and	calculate	the	average	value	of	estimation	

error	matrix	each	time	by	equation	(4).	This	value	of	𝑑!	is	also	regarded	as	the	

difference	between	original	value	and	estimation.			

𝑑! =
1
𝑠 ∗

|𝑒!" − 𝑎!"|
|𝑎!"|

           (𝑎!" ≠ 0)
!

!!!
                   (4)

!

!!!
	

where	i’s	are	environmental	interventions	and	j’s	are	processes.	𝑒!" 	is	the	

estimation	of	entry	ij	and	𝑎!" 	is	the	original	value	of	entry	ij.			

In	equation	(4),	s	is	the	total	elements	number	of	the	matrix	excluding	

infinite	number.	Since	there	may	be	no	consumption	or	emission	of	i	in	process	j,	

the	denominator	𝑎!" 	could	be	0	and	estimation	error	which	equals	to	
|!!"!!!"|
|!!"|

	

might	be	infinite,	I	intended	to	eliminate	these	infinite	numbers.	With	t	increases	

from	1	to	m-1,	there	are	m	-1	predict	matrices,	and	m-1	𝑑!’s.	The	t	gives	us	

smallest	𝑑!	is	the	optimal	size	of	training	data.  

	

6.2	Results	
Figure	12	shows	the	plot	between	t	and	dt.	It	tells	that	as	the	size	of	

training	data	increase,	the	estimation	difference	decrease	first,	but	after	t=7,	the	

estimation	difference	starts	to	increase.	After	around	t	=	7000,	the	estimation	

difference	grows	sharply.	The	curve	finally	shows	when	the	size	of	training	data	

is	7,	I	can	get	the	smallest	estimation	difference,	i.e.	the	best	estimation.		

Therefore,	I	claim	that	when	one	uses	my	proposed	similarity-based	link	

prediction	method	to	estimate	missing	data	in	Ecoinvent	3.1	CI	database,	seven	

most	similar	processes	is	the	optimal	size	of	training	data	to	procure	a	relative	

accurate	prediction.	In	addition,	seven	processes	comparing	with	total	8100	
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processes	is	relatively	a	small	value,	thus	this	prediction	method	is	also	an	

efficiency	approach.		

	

	
Figure 12 Relationship between size of training data and difference of prediction 

	
This	size	of	training	data	is	only	a	reference	for	real	world	application	

because	it	was	produced	under	the	situation	that	only	1	data	entry	removed	as	

missing	data	each	time	in	Ecoinvent	3.1	CI	database.	However,	people	can	repeat	

this	experiment	to	find	optimal	size	of	training	data	under	different	situations.	If	

this	similarity-based	link	prediction	method	is	used	to	predict	future	developing	

of	CI	database,	it	is	recommended	to	use	Average	Difference	algorithm	to	

calculate	similarity	between	processes,	and	take	7	most	similar	processes	as	

training	data.		

	 	

N=7 
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Chapter 7 Discussion and Future 
Development  

7.1	Discussion		
From	all	the	experiment	results,	it	shows	that	these	preliminary	

similarity-based	link	prediction	models	are	promising	and	have	strong	potentials	

in	LCA	data	estimation.	This	method	can	be	applied	to	LCI	database	to	improve	

the	efficiency	of	database	development,	evaluate	data	quality	and	predict	LCI	

data	for	emerging	technologies.	

First,	empirically	collecting	LCI	data	is	expensive	and	time-consuming.	

Predict	missing	links	in	the	network	constructed	based	on	limited	known	LCI	

data	is	equivalent	to	estimating	missing	data	in	the	LCI	database	without	

empirical	data.	This	will	significantly	reduce	the	cost	of	and	save	time	for	

creating	an	LCI	database.	

Second,	data	in	an	LCI	database	come	from	various	sources	with	different	

quality	and	accuracy.	One	can	use	a	portion	of	the	LCI	database	that	are	

trustworthy	to	predict	the	rest	of	observed	links	in	the	LCI	network.	By	

comparing	the	predicted	results	with	the	observed	data,	one	can	evaluate	the	

quality	of	those	observed	data.	The	distance	(error)	between	the	best	estimation	

and	the	true	value	indicates	the	quality	of	the	particular	data	point,	i.e.,	the	

quality	of	a	data	point	is	poor	if	the	error	is	large.	The	dataset	developer	may	

need	to	recheck	the	data	if	there	are	typo	mistake	exist,	such	as	wrong	unit,	etc.	

This	can	help	LCA	practitioners	assess	the	quality	of	their	LCI	data,	identify	

inaccurate	data,	and	guide	future	improvements[47].		

Lastly,	LCI	databases	are	always	expanding	due	to	the	addition	of	new	

unit	processes.	It	is	often	the	case	that	environmental	intervention	data	for	new	

unit	processes	are	incomplete,	especially	for	processes	representing	emerging	

technologies.	The	technology	system	is	constantly	evolving	in	the	way	that	new	

unit	processes	and	products	are	invented	all	the	time.	Predicting	emerging	links	

between	the	new	process	and	environmental	interventions	can	help	reasonably	
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estimate	LCI	data	for	unit	processes	of	emerging	technologies.	This	is	

particularly	useful	for	LCA	of	emerging	technologies	for	which	empirical	LCI	data	

are	less	available[48].	

	

7.2	Future	research	
Besides	Ecoinvent,	more	LCI	database	could	be	tested	with	this	method.	

Candidate	databases	for	further	consideration	includes	GREET	(greet.es.anl.gov)	

and	the	US	LCI	Database	(www.lcacommons.gov/nrel).	These	are	initially	

selected	because	they	represent	a	variety	of	LCI	databases.	In	particular,	

Ecoinvent	is	one	of	the	proprietary	databases	with	comprehensive	coverage;	

GREET	is	developed	for	a	particular	sector	(transportation);	and	the	US	LCI	

Database	is	a	national	reference	LCI	database	that	provides	industrial-

representative	LCI	data	for	a	particular	country.	GREET	(latest	1	Series	for	fuel	

cycle	and	2	Series	for	vehicle	cycle)	databases	come	as	Excel	spreadsheets	that	

are	ready	to	be	processed	and	converted	into	MATLAB	files.	The	US	LCI	Database	

has	recently	been	compiled	into	Excel	spreadsheets	by	[49]	with	open	access.	

Besides	similarity-based	link	prediction,	other	methods,	such	as	

maximum	likelihood	model	in	link	prediction,	matrix	completion	etc.	could	also	

be	used	to	predict	the	missing	data.	Maximum	likelihood	methods	predict	

missing	links	based	on	presupposed	structure	features	of	the	network.	Matrix	

completion	is	to	fill	in	the	missing	data	entries	of	a	partially	observed	matrix.	

Future	study	will	explore	the	potential	application	of	these	methods	in	LCI	

database	construction.	
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Appendix A  
Deduction	of	normalization	effect	on	four	similarity	algorithms	

Average	Difference	

𝑠!" = 1−
1
𝑛

|𝑎!" − 𝑎!"|
max (|𝑎!"|, |𝑎!"|)

                                        
!

!!!
1 	

	
After	the	data	normalization,	I	can	find	that	the	normalization	will	be	offset	if	I	

calculate	similarity	between	processes	by	Average	Difference.	Because:	

	

𝑠!"! = 1−
1
𝑛

𝑎!"
𝑀𝐴𝑋!

−
𝑎!"
𝑀𝐴𝑋!
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,
𝑎!"
𝑀𝐴𝑋!

!

!!!

= 1−
1
𝑛

1
𝑀𝐴𝑋!

∙ 𝑎!" − 𝑎!"
1

𝑀𝐴𝑋!
∙max 𝑎!" , 𝑏!"

!

!!!

= 1−
1
𝑛

𝑎!" − 𝑎!"
max 𝑎!" , 𝑎!"

!

!!!

=  𝑠!" 	

where	i,j	represents	two	processes,	

n	is	the	number	of	environmental	interventions,	

𝑎!" 	is	the	environmental	intervention	k	for	unit	process	i.	

But	for	similarity	calculation	between	environmental	interventions	by	Average	

Difference,	the	normalization	effect	will	hold	because	aki	and	akj	come	from	two	

different	environmental	interventions	thus	will	be	devided	by	two	different	

maximum	values	(MAXi,	MAXj).		

	

Pearson	Correlation	Coefficient	
Different	with	Average	Difference,	when	I	use	Pearson	Correlation	Coefficient,	

normalization	effect	will	offset	when	it	applied	to	calculate	similarities	between	

environmental	interventions.		It	also	can	be	proven	as	an	equation:		
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But	when	it	is	applied	between	processes,	each	term	in	the	polynomial	is	

supposed	to	be	divided	by	a	different	MAX.	In	the	equation,	MAXp	and	MAXq	

would	be	replaced	by	MAXk.	Therefore,	the	normalization	effect	does	not	be	

offset.		

	

Euclidean	Distance	
However,	the	difference	in	magnitude	between	data	would	dramatically	change	

the	similarity	result	from	Euclidean	Distance	algorithm.	Since	the	algorithm	of	

Euclidean	Distance	is:	

𝑆!" = 𝑒
! (!!"!!!")!!

!!!
!  

Data	with	large	magnitude	have	much	heavier	weights	in	term		 (𝑎!" − 𝑎!")!!
!!! .	So	

with	a	negative	sign	before	this	term,	the	similarity	between	i	and	j	is	determined	

by	data	with	small	magnitude	in	i	and	j	in	some	degree.	I	could	also	prove	this	

phenomenon	through	following	deduction:		

𝑒
! (!""!!"!!""!!")!

! = 𝑒
!!"" (!!"!!!")!

! ≪ 𝑒
! (!!"!!!")!

! 	
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SimRank	
SimrRank	is	built	based	on	Average	Difference.	It	uses	similarity	from	Average	

Difference	as	the	original	information	to	determine	“neighbors”.	Therefore,	how	

data	normalization	affect	basic	method	similarity	will	affect	results	from	

SimRank	in	the	same	way.	
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Appendix B 
Graphs	of	minimum	error	and	size	of	training	data	by	different	

similarity	algorithms	used	for	processes/environmental	

interventions	and	with/without	data	normalization	

	

1.	Use	Average	Difference	to	calculate	similarity	between	

processes	without	data	normalization		

See	Chapter	4.2.2	
	
2.	Use	Average	Difference	to	calculate	similarity	between	

environmental	interventions	without	data	normalization		

	

	
	

Figure 13 ECDF of minimum error and size of training data using Average Difference to calculate similarity between 
processes without data normalization in one data missing scenario 
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3.	Use	Pearson	Correlation	Coefficient	to	calculate	similarity	

between	processes	without	data	normalization		

	

	

4.	Use	Person	Correlation	Coefficient	to	calculate	similarity	

between	environmental	interventions	without	data	

normalization		

Figure 14 ECDF of minimum error and size of training data using Person Correlation Coefficient to calculate similarity 
between processes without data normalization in one data missing scenario 
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5.	Use	Euclidean	Distance	to	calculate	similarity	between	

processes	without	data	normalization	

		

	
	
	
	
	
	
	
	
	
	

Figure 15 ECDF of minimum error and size of training data using Pearson Correlation Coefficient to calculate similarity 
between environmental interventions without data normalization in one data missing scenario 

Figure 16 ECDF of minimum error and size of training data using Euclidean Distance to calculate similarity between 
processes without data normalization in one data missing scenario 
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6.	Use	Euclidean	Distance	to	calculate	similarity	between	
environmental	interventions	without	data	normalization	

	
	

7.	Use	SimRank	to	calculate	similarity	between	processes	

without	data	normalization	

	
	
	

Figure 17 ECDF of minimum error and size of training data using Euclidean Distance to calculate similarity between 
environmental interventions without data normalization in one data missing scenario 
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8.	Use	SimRank	to	calculate	similarity	between	environmental	

interventions	without	data	normalization	

	
	
9.	Use	Average	Difference	to	calculate	similarity	between	
processes	with	data	normalization	
	
Results	are	same	as	this	method	without	normalization.	
	
	
	
	
	
	
	
10.	Use	Average	Difference	to	calculate	similarity	between	
environmental	interventions	with	data	normalization	
	

Figure 18 ECDF of minimum error and size of training data using SimRank to calculate similarity between environmental 
interventions without data normalization in one data missing scenario 
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11.	Use	Pearson	Correlation	Coefficient	to	calculate	similarity	
between	processes	with	data	normalization	
	

Figure 19 ECDF of minimum error and size of training data using Average Difference to calculate similarity between 
environmental interventions with data normalization in one data missing scenario 
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Figure 20 ECDF of minimum error and size of training data using Pearson Correlation Coefficient to calculate 

similarity between processes with data normalization in one data missing scenario 
	
12.	Use	Pearson	Correlation	Coefficient	to	calculate	similarity	
between	environmental	interventions	with	data	normalization	
	
Results	are	same	as	this	method	without	normalization.	
	
13.	Use	Euclidean	Distance	to	calculate	similarity	between	
Processes	with	data	normalization	
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14.	Use	Euclidean	Distance	to	calculate	similarity	between	
environmental	interventions	with	data	normalization	
	

	

	
	
	
15.	Use	Euclidean	Distance	to	calculate	similarity	between	
Processes	with	data	normalization	
	
Results	are	same	as	this	method	without	normalization.	
	
	
	

Figure 21 ECDF of minimum error and size of training data using Euclidean Distance to calculate similarity between 
processes with data normalization in one data missing scenario 

Figure 22 ECDF of minimum error and size of training data using Euclidean Distance to calculate similarity between 
environmental interventions with data normalization in one data missing scenario 
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16.	Use	SimRank	to	calculate	similarity	between	environmental	
interventions	with	data	normalization	
	

	

Figure 23 ECDF of minimum error and size of training data using SimRank to calculate similarity between processes 
with data normalization in one data missing scenario 


