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Abstract

Type one diabetes occurs when the pancreas stops producing glu-
cose reducing insulin. Regular injections of exogenous insulin are re-
quired for survival but the amount is difficult to determine to maintain
optimal blood glucose levels. The goal of this research is to create a
new blood glucose model that can predict future blood glucose levels
in response to carbohydrate and insulin stimuli. We use a linear com-
bination of kernel functions and use least squares to find the response
functions. This simple model is able to fit the existing data as well as
existing models but needs refinement so it has some predictive value.
Future research could add biological knowledge and nonlinearity to
this model.

1 Introduction

1.1 The Blood Sugar Control System

The body possesses many systems that regulate chemical concentrations in
the blood. One of the most important systems controls blood sugar levels.
Most of the cells in the body use glucose as fuel to operate[3]. When food is
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eaten and digested, blood glucose rises. Then the pancreas receives signals to
release insulin into the bloodstream, letting cells use the glucose for growth
and energy. The liver also plays a role in glucose regulation by storing glucose
in glycogen when insulin is detected and releasing it between meals (e.g. at
night). In a type-one diabetes patient, we simulate this by delivering a burst
of insulin in the first bite of food. Then a steady stream of insulin is released
to control blood glucose.

1.2 Diabetes Description

Diabetes is a disorder that drastically impacts the body’s ability to handle
glucose with insulin. The causes of diabetes are various or unknown but the
primary result of the disease is persistent elevated blood glucose levels. For
people with diabetes, the pancreas does not automatically release the correct
amount of insulin to keep control of blood sugar, instead, the pancreas either
produces little or no insulin, or the cells do not have an appropriate response
to released insulin. Thus, blood glucose will increase and is excreted through
urine. Although the blood glucose level is high, cells cannot use blood glucose
for growth and energy, and the body loses its main source of fuel. The
classic symptoms of untreated diabetes are weight loss, polyuria (frequent
urination), polydipsia (increased thirst), and polyphagia (increased hunger).
Its long-term complications include to damage to blood vessels, eyes, nerves.
There is no known cure for diabetes and management is usually essential
for survival. It is divided into three major categories: type 1, type 2, and
gestational. Gestational diabetes is a temporary resistance to insulin during
pregnancy that affects approximately 18 percent of pregnancies [I]. Type 2
diabetes is the most common kind of diabetes and occurs the cells in the body
become resistant to insulin. Type 1 diabetes occurs when the body’s immune
system destroys the insulin producing cells of the pancreas [4]. Injections of
exogenous insulin are required to survive in the case of type 1 diabetes as
toxic levels of sugar will otherwise accumulate.

2 Model

Our model takes in tuning parameters, insulin administered, and carbohy-
drates and outputs a predicted blood sugar value at a certain time. It uses
response functions to predict the impact of a certain quantity of insulin of



carbohydrates on the blood sugar level. For example, the response function,
FC(t), gives the change in blood sugar for one gram of carbs eaten. Each re-
sponse function is in turn divided into multiple kernel functions. The tuning
parameters are the weights for each kernel function. Each individual kernel
function should look like a step function that is perhaps smoothed. The total
response function should look like a smoothed step function that is zero for
times less than zero (no influence before stimulus). The transient behavior of
the blood sugar level is determined by the intermediate values of the response
function. This is the primary behavior that we would like to predict because
low or high blood sugar spikes are uncomfortable and often dangerous.

2.1 Detailed Description

Each response function (for carbs, insulin, and liver) is in the following for-

mat.
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F(t) =3 a0 (t — 1) 1)
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Where ¢ is a kernel function and m is the number of kernel functions used
to make a response function (typically 20). We use the probability density
function of the Gaussian as the Kernel estimation for the derivative of the
response function F’(t). Thus, the kernel function for response function F(t)
is the cumulative distribution function of the Gaussian.

0(1) = 51+ () ¢l

o determines the time scale of the kernel function. Our function accepts data
in m x 2 matrices. Each data point is a row with a time and a value. There
are six data matrices: the insulin matrix, the carb matrix, the liver matrix,
and their corresponding coefficient matrices. Consider the carb response
function. A¢ is the coefficient matrix for carbs shown below.
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This makes a response function in the following way.

“(t, A®) = Z a; ¢’ (t — ;) (3)
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It is possible to reformulate it as a convolution of distributions. Convert the
data into a distribution with the following identification.

¢ 5 AC = Z a5de (4)
Substituting [ into [3] we get
FO(t, A%) = ¢ x A = Z ¢ (al0e) = Y aid”(t — ;) (5)
i=1

The total response function is a combination of the individual response func-
tions. ¢; is the amount of carbs given at time ¢

G(t,I,A',C, A% L, A") =) " FO(t — 17, A9) (6)

i=1
Formatting the carb dosage and timing data matrix, ', as a distribution C
as in [4] gives
G(t,C,A%) = ZZQCLJQM (t -t —1%) (7)
=1 j=1

The total response function is
G(t, I, A", C,A° LAY =Cx A" 5 ¢% —Tx AT x ¢ + Lx Al x 97 (8)

We would like to evaluate the model function at the blood sugar measurement
times and minimize the difference between the model and the measurements.
Given the measured blood sugar as a function of time, B(t), define a function

M(A) = ||G(t, 1, A", C, A%, L, A")=B)|5 = Y _(Glty, I, A", C, A% L, AM) =B

k
(9)
Our goal is to use the blood sugar measurement, insulin dosage, and carb
consumption data to train the model. The error between the model and
actual blood sugar is given by M(A) this corresponds to minimizing M.
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2.2 Implementation Details

MATLAB was used to implement the model. For loops in MATLAB are
notoriously inefficient so we would like to find a way to complete computa-
tions using matrix operations instead of iterations. There are m t;’s and n
t;’s that are used in each convolution where m determines the granularity
of the response function and n is determined by the number of data values
(i.e. insulin doses and times or meal quantities and times). If we create a
matrix with entries W;; = c;a; and a matrix of all the times in With entries
T =t—1tf — gjc_ The contribution of the carb response to the blood sugar

function is then given by W4¢7(Ty;) = >° > W97 (Ty;).
g

3 Goals for Modeling

The goals of this research is to create a modular model that can be easily
expanded and altered to better model data. The objectives are: First, create
a model that fits existing data well. Second, see that the response functions
are in fact reasonable. Third, predict when blood sugar will spike below or
above healthy values.

4 Model fitting

We attempted many tests of the model to predict blood glucose behavior but
most were unsuccessful. The base problem was a conflict between the model
being able to fit the data and the model having realistic intermediate values.
The metric we used to test the model’s ability to fit data was the following.

1M (A

PO =" Fs)

(10)

where F(B) is some function to normalize the range of the error metric.
Error values should range from zero to one. A value of zero indicates a per-
fect fit while a value of one indicates a model with little ability to explain
blood sugar fluctuations. When evaluating a certain model, it is important
to generate control models to judge performance. Two kinds of controls were
used in evaluating the data from the model: average and random. An aver-
age control model uses a coefficient matrix with columns of contiguous ones.



For example, a daily average (or offset) model matrix is A;; = 64(;,); where
f(t;) = floor(t;) — ming floor(¢) counts what day ¢; is on. Average model
matrices were often a part of the model so an additional type of control is also
needed. The model matrix was sometimes substituted with random numbers
for comparison purposes. We would like to use physical knowledge of the
system to add predictive value. Using non-negative least squares (NNLS)
to find the response functions makes them monotonic. However, this re-
duces the freedom of fit and the fit quality according to our metric The
full dataset was too large to handle with Matlab’s general constrained least
squares algorithm. However, the algorithm for non-negative least squares is
more efficient and supports larger problem sizes. While the kernel function
parameters are constrained to be non-negative, some tuning parameters may

not be constrained. For a problem such as
min,>o|| Az + By — b||2 (11)

we must convert the unconstrained variables to non-negative variables. Set
y = y4 — y_ The problem [11]is equivalent to

ming,, , >ol|Az + By, — By_ — b||» (12)

5 Data

We tried several different ways to fit the data. Several types of preprocessing
were used to

Table 1: Residual norms and ratios

All Data All Data | Lunch Data
Data Norm | 8521.3 With Offsets | 2946.2 1049.6
Model Matrix LS 0.3868 LS 0.9455 0.7495
NNLS 0.4125 NNLS 0.9699 0.7896
Control Matrices | Random 0.99 Random 0.98872 | 0.9489
Average 0.3947
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Figure 1: Actual blood sugar values compared with fit data.
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Figure 2: Lunchtime blood sugar response to glucose.
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Figure 3: Lunchtime blood sugar data compared to model.
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Figure 4: Lunchtime blood sugar data compared to model. (Detail)



6 Discussion

The first use of the model was thought to be successful because the model
explained 59 or 61% of the blood sugar data depending on whether or not
non-negative least squares was used. This appeared to be very good com-
pared to the 1% explained by random chance. However, an average explains
61% of the data as well. Examining the fit showed that the model was quite
flat and not fluctuating with the data. Another attempt tried to use daily
offsets to improve the model. However, the models only explained 3 or 5% of
the data compared to 1% for random. The most promising results were found
when fitting to a lunchtime subset of the blood sugar data. In this case, the
daily offsets were essential to the model and the baseline model was the daily
average model. The model fit with least squares explained 25% of the data
and 21% when fit with non-negative least squares. This compares favorably
to the 5% explained by the random matrix. An example of the plausibility of
the model is explored in figure [2] The response function is nonsensical when
daily offsets are not utilized. The function goes negative which suggests that
glucose administration decreases blood glucose levels, an obviously unphysi-
cal result. When daily offsets are used, the function does not go negative but
it does oscillate which is again unphysical. With non-negative least squares,
a reasonable, monotonic response function is obtained. From figure {4] it is
clear that the model is able to follow some of the data and the fitting method
does not appear to change much. However, the NNLS fit is less oscillatory
which is a good indicator that NNLS reduces overfitting. The success of this
model is in the midrange of the models considered in [2]. Many of these
models are more sophisticated. Some use multiple compartments which ac-
count for different reservoirs of glucose in the body while our model only
has one compartment, the bloodstream. More compartments could be added
but more data would be needed to train the model. The model did not have
enough predictive value to forecast dangerous blood sugar events.

7 Conclusion

This research was largely successful in creating an algorithm capable of ex-
plaining blood sugar fluctuations of a type 1 diabetic. Several factors tended
to improve the plausibility of the model. Due to uncertainties and complex-
ities in biological systems, models tend to drift away from reality without



corrections. This was incorporated into the model by adding daily offsets.
Another problem is that the calculated dose response of both glucose and
insulin were unrealistic (i.e. negative or non-monotonic). This was the re-
sult of 'overfitting’ and the problem was reduced by using non-negative least
squares to fit the model matrix. With these adjustments, we were able to
fit the data as well as some existing models. The model was able to fit ap-
proximately 21 percent of the data which is in the midrange in the models
created in [2]. However, our model is much simpler and does not use as much
biological information and has greater potential for improvement.
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