Evaluating computer-aided detection algorithms
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Computer-aided detection (CAD) has been attracting extensive research interest during the last two
decades. It is recognized that the full potential of CAD can only be realized by improving the
performance and robustness of CAD algorithms and this requires good evaluation methodology that
would permit CAD designers to optimize their algorithms. Free-response receiver operating char-
acteristic (FROC) curves are widely used to assess CAD performance, however, evaluation rarely
proceeds beyond determination of lesion localization fraction (sensitivity) at an arbitrarily selected
value of nonlesion localizations (false marks) per image. This work describes a FROC curve fitting
procedure that uses a recent model of visual search that serves as a framework for the free-response
task. A maximum likelihood procedure for estimating the parameters of the model from free-
response data and fitting CAD generated FROC curves was implemented. Procedures were imple-
mented to estimate two figures of merit and associated statistics such as 95% confidence intervals
and goodness of fit. One of the figures of merit does not require the arbitrary specification of an
operating point at which to evaluate CAD performance. For comparison a related method termed
initial detection and candidate analysis was also implemented that is applicable when all suspicious
regions are reported. The two methods were tested on seven mammography CAD data sets and both
yielded good to excellent fits. The search model approach has the advantage that it can potentially
be applied to radiologist generated free-response data where not all suspicious regions are reported,
only the ones that are deemed sufficiently suspicious to warrant clinical follow-up. This work
represents the first practical application of the search model to an important evaluation problem in
diagnostic radiology. Software based on this work is expected to benefit CAD developers working
in diverse areas of medical imaging. © 2007 American Association of Physicists in Medicine.
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I. INTRODUCTION

Computer-aided detection (CAD) has been attracting exten-
sive research interest during the last two decades. Many stud-
ies indicate that radiologists are not perfect in lesion detec-
tion tasks. For example, it is difficult for radiologists to
detect cancers at screening mammography where a large
number of images have to be read to find a small number of
cancers (there are approximately 3—6 cancers per 1000 pa-
tients). As a result 10%—-30% of breast cancers that are ret-
rospectively visible are missed by radiologists.l’2 Missed
cancers are not uncommon in computed tomography (CT) or
radiograph interpretation for lung nodules.”® In CT colonog-
raphy it has been reported that approximately 17%-21% of
false-negative polyp diagnoses are due to perceptual errors.’
One possible solution to reduce perceptual misses in radio-
logical interpretation tasks is to perform double reading.g’9
However, double reading is expensive since it essentially
doubles the demand on radiologists’ time. CAD has been
proposed as an alternative to double reading. A CAD algo-
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rithm is intended to assist the radiologist by showing suspi-
cious regions that may be otherwise overlooked. CAD sys-
tems have been developed to assist radiologists in a number
of tasks, including the detection of masses and microcalcifi-
cations on mammograms, detection of lung nodules in tho-
racic CT volumes and chest radiographs, and detection of
polyps in CT colonography.

Historically, mammography has been the most widely re-
searched area in CAD. Commercial CAD systems are being
routinely used in a large number of medical centers to assist
radiologists interpreting screening mammograms and mam-
mography CAD is rapidly becoming accepted clinical
practice.lo Commercial CAD systems are also available for
lung cancer detection on chest radiographs and CT images.
In all of these application areas the full potential of CAD
systems in the clinical environment can only be realized by
improving the performance and robustness of CAD
algorithms.z’“_13 This requires accurate and precise evalua-
tion methodology that would permit CAD designers to opti-
mize CAD systems.

© 2007 Am. Assoc. Phys. Med. 2024
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In a general sense CAD could be regarded as an algorith-
mic observer for medical imaging tasks. The receiver oper-
ating characteristic (ROC) method is the most common way
of evaluating observer performance in imaging tasks."* In the
ROC method the observer classifies each image as normal or
abnormal. A correct classification of an abnormal case is
termed a true positive and an incorrect classification of a
normal case is termed a false-positive. The ROC curve is
defined as a plot of true positive fraction (TPF) relative to the
total number of abnormal cases versus false positive fraction
(FPF) relative to the total number of normal cases. A pair of
TPF and FPF values defines an operating point on the curve.
By changing the confidence level for rendering an abnormal
classification, the operating point can be moved along the
ROC curve. TPF is synonymous with sensitivity and FPF is
the complement of specificity. Observer performance can be
quantified by the area A, under the ROC curve. Software is
available that allow one to estimate A, and associated statis-
tics and analyze more complex ROC-based study designs.14

Because of incompatibility in the data-structures ROC
methodology is rarely used to assess CAD performance.
[Note that CAD in this work refers to the detection/
localization task. Algorithms, termed CADx, that determine
if an already detected lesion is malignant or benign, are ap-
propriately assessed by the ROC method.] The ROC data-
structure consists of a single numerical rating per image,
expressing the degree of confidence that the image is abnor-
mal. In contrast, CAD algorithms yield a variable number
(0,1,2,...,) of mark-rating pairs per image. A mark is the
physical location of a suspicious region identified by CAD
and the rating is the degree of suspicion that the region is a
lesion. This data-structure is characteristic of the free-
response paradigm.ls_18 Because of the identical data struc-
tures, the free-response method is widely used to assess CAD
algorithms.lgf21 Although the CAD outcome could be con-
verted into a ROC data structure by using the highest rating
in a case (or an image) as the confidence that the case is
abnormal, studies have shown that one pays a price in terms
of reduced statistical power.lg’22

Before free-response data can be analyzed each mark has
to be classified as lesion localization (LL) or nonlesion lo-
calization (NL). [In the context of free-response studies we
avoid usage of the terms true and false positives, true and
false negatives, sensitivity, specificity, and detection, as these
terms are widely used in ROC methodology where no loca-
tion information is collected and the data structures are in-
compatible.] The LL/NL classification necessitates the adop-
tion of a proximity criterion that determines how close a
marked region has to be to an actual lesion in order to be
classified as lesion localization. Alternatively, an overlap cri-
terion between the computer-detected and truth panel indi-
cated regions can be used.” According to the proximity or
overlap criteria, if a mark is close to a true lesion it is scored
as lesion localization and otherwise it is scored as NL. A
free-response receiver operating characteristic (FROC) curve
is defined as the plot of lesion localization fraction (LLF)
relative to the total number of lesions versus the nonlesion
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localization fraction (NLF) relative to the total number of
images. It is a graphical summary of the information in a
free-response data set.

For a particular image set the CAD designer knows the
locations of all regions that were tagged as suspicious by the
algorithm and the associated degrees of suspicion (i.e., rat-
ings). The number of suspicious regions is typically large
and the ratings are finely spaced, allowing a quasicontinuous
FROC curve to be plotted. We refer to this type of detailed
data, available only to the CAD designer, as designer-level
data. In clinical applications of CAD only marks with de-
grees of suspicion exceeding a preset designer-specified cut-
off are shown (or “cued”) to the radiologist, typically 0.5-3
marks per view for mammography CAD, and one is inter-
ested in measuring performance of the radiologist with and
without CAD assistance. Because radiologists mark even
fewer locations than are cued by CAD and cannot provide
finely spaced ratings data, clinical free-response studies gen-
erally yield a limited number (typically 3-5) of operating
points.m’24 We refer to this type of data observed in clinical
studies as clinical-level data.

A prerequisite for comparing CAD algorithms is defini-
tion of a figure of merit (FOM) that rewards an observer for
marking lesions while penalizing the observer for marking
nonlesions. A commonly used figure of merit is the lesion
localization fraction LLF,, at a specified value a of NLF and
other figures of merit involving the slope of the curve at a
specified «, the average LLF over the range NLF=«; and
NLF=a, have also been proposed.ZS’26 Parametric and non-
parametric approaches27_29 have been described for estimat-
ing some of these figures of merit. These methods appear to
have been developed for designer-level data. We are not
aware of any applications of these methods to clinical free-
response studies. There is no consensus on the optimal «
value, or range of values, at which to report CAD perfor-
mance. One designer may state performance at &«=0.5 while
another designer may state performance at @=1.0 and it is
difficult to compare them even if the algorithms were evalu-
ated on the same reference data set. A method of comparing
CAD systems that is independent of a and can be applied to
clinical-level data is desirable. Software implementations of
the methods described earlier are not readily available, and
most, if not all, CAD optimization research to date has used
empirical (e.g., graphical or interpolation) methods to esti-
mate LLF, and compare different algorithms. The jackknife
free-response receiver operating characteristic (JAFROC)
method'® has been used to compare human observer free-
response performanc:e%‘30 where the number of marks per
view is relatively small. JAFROC ignores all NLs on abnor-
mal images and all but the highest rated NL on normal im-
ages but nevertheless has superior power to ROC."® How-
ever, use of JAFROC for CAD evaluation is questionable,
since at the designer level there are more marks per view and
JAFROC cannot predict an FROC curve and LLF,, which
are of most interest to CAD designers.

The approach taken in this article builds on the initial
detection and candidate analysis (IDCA) method® of fitting
designer-level FROC data. While this method has been in-
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formally used by some CAD designers21’31 to draw smooth
FROC curves through data points, the contribution of the
IDCA work was to provide a theoretical foundation for the
ad-hoc procedure. Aims of this study were: (1) to examine
the assumptions underlying IDCA that limit it to designer-
level data and develop a software implementation of this
method, including quantitative fit statistics that would make
it more useful to CAD designers, which to our knowledge is
currently unavailable. (2) To develop a method that relaxes
the assumptions and is not only applicable to designer-level
data but is potentially applicable to clinical-level data. The
method is based on a psychophysical model of visual
search®* that closely parallels the approach used in the
design of CAD algorithms. (3) To develop a method for ana-
lyzing CAD data that does not require specification of an
arbitrary operating point or « value. The organization of the
article is as follows: introductory material is presented to
define the CAD designer-level free-response data structure
and to establish notation and plotting of FROC data points.
Descriptions of IDCA and the search model and expressions
for fitted FROC curves and two figures of merit are derived,
one of which does not require specification of an arbitrarily
chosen operating point. The IDCA and search model maxi-
mum likelihood estimation procedures are described as well
as calculation of relevant statistics such as confidence inter-
vals and goodness of fit. Practical details of CAD data sets,
in particular case-based versus view-based scoring, are re-
viewed. Results of applications of both methods to seven
CAD designer-level data sets are presented and discussed, as
well as differences between IDCA and the search model,
their relationship to JAFROC, and avenues for further re-
search are indicated.

Il. METHODS
A. FROC and pseudo-ROC operating points

CAD identifies regions suspicious for lesions and for each
region, or decision site, it calculates a decision variable z
related monotonically to the estimated probability that a le-
sion is present. It is assumed that the truth regarding these
regions is known to the designer and higher values of z cor-
respond to higher probabilities. N' regions corresponding to
nonlesions are termed noise sites and U’ regions correspond-
ing to lesions are termed signal sites. The primes are needed
to distinguish between these integers that are known to the
algorithm designer, from similar numbers in the search
model, described below, that are unknown. A cutoff variable
{ determines if a suspicious region is marked, if z> ¢, or not
marked, if z=< {. Marked regions corresponding to lesions are
classified as LLs and all other marked regions are classified
as NLs. Let F({) and T({) denote the numbers of NL and LL
marks, respectively, where both are functions of {. The ordi-
nate of the FROC operating point corresponding to cutoff ¢
is y({)=T({)/N,, where N, is the total number of lesions in
the data set. The corresponding abscissa is x({)=F({)/Nj,
where N, is the total number of images. Considering the N’
and U’ regions as normal and abnormal “cases,” respec-
tively, in a pseudo-ROC study, the cutoff yields F({) “false
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Fi. 1. This figure illustrates the IDCA approach to fitting FROC operating
points. IDCA regards the lesion and nonlesion localization counts as arising
from normal and abnormal cases in a pseudo-ROC study. The counts are
analyzed by ROC curve-fitting software yielding the fitted curve shown in
the upper panel. The FROC curve, shown in the lower panel, is obtained by
a mapping operation indicated by the arrow, consisting of a point-by-point
multiplication of the pseudo-ROC curve along the y axis by »’, and along
the x axis by \’, where (\’, ") are the coordinates of the observed end point
of the FROC curve. Therefore, the corner (I, 1) maps to the end point
(\',v") and each pseudo-ROC point maps to a unique FROC point. Four
pseudo-ROC and four FROC operating points and the corresponding cutoffs
g (i=1, 2, 3, 4) are shown.

positives” and T({) “true positives.” The ordinate of the
pseudo-ROC operating point is 7({)/ U’ and the correspond-
ing abscissa is F({)/N'. If £ is now gradually lowered, it will
eventually drop below the z sample(s) of the next-most sus-
picious region(s), until now unmarked, and these region(s)
will be marked. This will result in an upward-right jump to
the next FROC and pseudo-ROC operating points. The
FROC and pseudo-ROC operating points have a one-to-one
correspondence. The staircase like FROC plot resulting from
this procedure is often referred to as the “raw” FROC curve.
The FROC curve starts at (0,0) corresponding to {=% when
no regions are marked and F({)=T({)=0. It ends at (\",v’),
where \'=F(-%)/N,=N'/N; and v'=T(-»)/N,=U'/Ny,
when all regions being marked. The corresponding pseudo-
ROC curve starts at (0,0) and ends at (1,1).

B. IDCA

Figure 1 illustrates the IDCA approach to fitting FROC
operating points. IDCA regards the lesion and nonlesion lo-
calization counts as arising from normal and abnormal cases
in a pseudo-ROC study. The counts are analyzed by ROC
curve-fitting software yielding the fitted curve shown in the
upper panel. The FROC curve, shown in the lower panel, is
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obtained by a mapping operation indicated by the arrow, con-
sisting of a point-by-point multiplication of the pseudo-ROC
curve along the y axis by v/, and along the x axis by \’,
where (A", v’) are the coordinates of the observed end point
of the FROC curve, i.e., the point farthest from the origin.
Therefore, the corner (1,1) of the pseudo-ROC curve maps
to the end point (\’, »") and each pseudo-ROC point maps to
a unique FROC point. Four pseudo-ROC and four FROC
operating points and the corresponding cutoffs (i
=1,2,3,4) are shown in Fig. 1. The ROC fitting procedure is
based on a probabilistic model for the ratings, most com-
monly the binormal model,35 but other models*®™° can be
used. Let xgoc(d),yroc({) denote the coordinates of a par-
ticular operating point on the fitted pseudo-ROC curve and
let x(£),y({) denote the coordinates of the corresponding
point on the fitted FROC curve. The observed endpoint is
reached by including all suspicious regions in the NL and LL
counts

)\'=—, V'=_. (1)

According to IDCA the fitted FROC curve is obtained by
scaling the pseudo-ROC curve as follows:

x({) = )\/xRoc(f)a ()= V,yROC(§)~ (2)

If the binormal model is used to fit the pseudo-ROC data
points then

xroc(§) =1=P(), yroc(d) =1-P(b{~a), (3)

where ®(¢) is the cumulative distribution function corre-
sponding to the zero-mean unit-variance normal distribution
and a and b, the parameters of the binormal model,*” can be
calculated by available software (e.g., ROCFIT or RSCORE-
I1, links to which are to be found at http://www.mips.ws).

Consider an R-rating free-response study where the deci-
sion variable z is binned into one of R bins labeled
1,2,...,R, with higher bin labels corresponding to higher
probability that a lesion is present (R=4 in the example
shown in Fig. 1). The R bins correspond to R ordered cutoffs
£(i=1,2,...,R), see Figs. 2(a) and 2(b). For convenience
define dummy cutoffs {y=—o and {,,;=. The cutoff vector
¢ is defined as £=(¢y,¢1,4, .. Lr>Lryy) and the binning
rule is that if {;<z<<{;, then the corresponding decision site
is marked and rated in bin “i,” and if z<<{; then the site is
not marked, and by definition these belong to the default bin
“0.” The NL ratings vector is F=(F,,,F|,F5,...,Fg) and the
LL vector is T=(T,,T,,T5,...,Tg), where F; is the sum
over all images of NLs rated in bin i and 7; is the corre-
sponding number for LLs. The pseudo-ROC and FROC op-
erating points corresponding to bin j(j=0,1,...,R) are de-
fined by

. SRR SR
XRoc = N YRoc = U (4)
SRR SR
X = N V= N (5)
I L
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FiG. 2. This figure compares the cutoffs implicit in the two models; panel
(a) corresponds to IDCA and panel (b) corresponds to the search model. For
an R-rating free-response study there are R ordered cutoffs ¢; (i
=1,2,...,R). The observed nonlesion and lesion localization counts are F;
and T, respectively. Since the pseudo-ROC point corresponding to the low-
est bin is (1, 1), the corresponding cutoff £, is negative infinity and no
counts are possible below it, whereas in the search model ¢ is finite and an
unknown number of counts are possible below it. It is this difference that
makes search model parameter estimation more difficult.

IDCA assumes that all suspicious regions are binned in
non-default bins, i.e., each mark is explicitly rated 1 or
higher. Therefore, Fy=T,=0 and Ef:lF,-:N’and Ef:]TI:U’.
This implies x1110c=)’1110c=1v in other words the most-lax
pseudo-ROC operating point, corresponding to £, is at the
upper-right corner. The upper-right corner of a ROC plot is
known to correspond to a cutoff at negative infinity. There-
fore, the IDCA assumption is equivalent to {;=—%, see Fig.
2(a). Since the (1, 1) point on the pseudo-ROC curve point is
mapped to N\',v" on the FROC curve, it follows that the
observed end point of the FROC curve also corresponds to a
cutoff at negative infinity. Since the cutoff is at its lowest
limit the observer cannot move past the observed end point,
i.e., have an operating point that is upward-right with respect
to the observed end point. Figure 2(b) shows the cutoffs
(i=1,2,...,R) necessary to model an R rating free-
response study according to the search model. Note that in
this case the lowest cutoff is not at negative infinity—a cru-
cial difference from IDCA that necessitates a more complex
estimation procedure as will be shown later. The numbers of
unmarked suspicious regions with z samples below {; are
unknown to the investigator. Therefore, N and U, the true
total numbers of noise and signal sites, respectively, includ-
ing the unmarke sites, are unknown and must be treated as
non-negative random integers. In IDCA the number of un-
marked regions is assumed to be known, specifically it is
assumed to be zero, therefore N’, U’ are known, and hence,
the notational distinction between primed and unprimed vari-
ables.

The claim that {;=- for IDCA may appear surprising
since the smallest z sample for a particular CAD data set is
some finite number z}, not negative infinity, and therefore, on
the face of it, {;=z] should equal this number. Here r is the
replication or “realization” index, r=1,2,..., corresponding
to different dataset realizations from an underlying popula-
tion of datasets, all analyzed by the same CAD algorithm.
The apparent paradox is resolved if one bears in mind that a
smaller theoretical cutoff {; <z} will also result in the same
observed numbers of counts, and therefore cannot be ruled
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out. Moreover, the fact that for every realization r there are
zero counts below zj implies that the true lowest cutoff for
each realization must be at negative infinity. It may be no-
ticed that in IDCA cutoffs {, and {; are both equal to —e. To
describe the IDCA model we need not have introduced the
dummy cutoff ,. However, {, is needed when one cannot
assume {;=-, as in the search model.

C. Figure of merit

A commonly used figure of merit in CAD algorithm op-
timization is the LLF at a specified value « of NLs per image
(i.e., NLF=a). This quantity is denoted LLF, and one ex-
pects that LLF,=LLF(a,b,\",v',a). The value of a de-
pends on the CAD application. For example, for lesion de-
tection on mammograms, typical values of « currently lie in
the range of 0.5-3.0, while for lung nodule detection on ra-
diographs or CT volumes typical values of a are usually
higher. LLF, was computed by solving

a=N[1-d(,)] (6)
for £,. Then
LLE, = v/'[1 = ®(b{, - a)]. )

The IDCA parameters a,b,N ,v',{,,...,{r were esti-
mated as described in Ref. 29. Note that since IDCA assumes
{;=—o this parameter is absent from the parameter list.
Methods for calculating relevant statistics, including asym-
metric 95% confidence interval for v’ and LLF,, and the y°
goodness of fit statistic, are described in Appendix A.

D. Search model

Medical images are interpreted by radiologists who do not
report all suspicious regions, only those considered suffi-
ciently suspicious to warrant clinical action. The observed
end point for radiologists cannot correspond to {;=-. For
this reason it would be incorrect to apply the IDCA proce-
dure to radiologist free-response data, a possibility noted in
the IDCA publication. We will shortly describe a method by
which a theoretical FROC curve can potentially be fitted to
either clinical-level data or designer-level CAD data. The
method***! is based on a two-stage cascaded visual interpre-
tation model®>>* that closely parallels the approach used in
the design of CAD algorithms (see Sec. IV). The first stage
identifies suspicious regions that need further examination
and decision making. At the second stage the observer cal-
culates a decision variable (or z sample) for each suspicious
region that was identified at the first stage. A region is
marked if the z sample exceeds the observer’s lowest report-
ing cutoff ¢, and the rating assigned to the mark depends on
how the z sample is binned. Regions identified at the first
stage that correspond to nonlesions are termed noise sites
and regions corresponding to lesions are termed signal sites.
Signal and noise sites are collectively referred to as decision
sites. The number n of noise sites on an image is modeled by
a Poisson process42 with mean N. The number u of signal
sites on an abnormal image is modeled by a Binomial
process42 with success probability v and trial size s, where s
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is the number of lesions in the image. The lowercase vari-
ables n and u pertain to individual images and the uppercase
variables N and U denote the corresponding quantities
summed over all images. Let Ny and N, denote the number
of normal and abnormal images, respectively, and let k de-
note the image index, i.e., k=1,2,...,Ny+N, and N;=Ny
+N,. Since n, u, and s depend on the image, they are denoted
Ny, Uy, and s;. Then

Ny+Ny
N: 2 Ny, (8)
k=1
Ny
U= 2 Uy, (9)
k=1
and
Na
NL = 2 Sk. (10)
k=1

Noise-site z samples are obtained by sampling from the
zero mean unit variance normal distribution and signal-site z
samples are obtained by sampling from the unit variance
normal distribution with mean wu.

E. Search model predicted FROC curves
The probability that a noise site z sample exceeds { is
P(z > {|noise site) = 1 — ®({). (11)

Because of the assumed Poisson process the mean number
of noise sites on an image is A and therefore the mean num-
ber of NLs per image, i.e., the FROC x coordinate is

x(O=N1-®()]. (12)
The probability that a signal site z sample exceeds ¢ is
P(z > {|signal sites) = 1 — ®({ - w). (13)

Because of the assumed Binomial process, the expected
number of signal sites on an image is s;v, where s; is the
number of lesions in the ith abnormal image. Therefore, the
expected number of LLs in the ith abnormal image is s;1{1
—®({-p)]. The y coordinate of the FROC curve is obtained
by summing this quantity over all images and dividing by the
total number of lesions, i.e.,

Ny

Y= ool - B~ =1 - D= ). (14

Li=1

F. Figure of merit

The figure of merit LLF,=LLF,(u,\, v, @) for the search
model was computed by solving

a=)\[1_q)(§a)]’ (15)
for {,. Then
LLF,=1[1-®({,—m]. (16)
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G. An alternate figure of merit

A quantity 6 where 0<6<1 was defined®” as the prob-
ability that the highest z sample on an abnormal image ex-
ceeds that on a normal image. For normal images the highest
z sample is necessarily from a noise site but for an abnormal
image it could be either from a noise site or a signal site,
whichever has the greater z sample. Assuming the highest z
sample on an image is used as the single “ROC-like” z
sample for the image, it was shown*' that 6 is identical to the
area under the search model predicted ROC curve. This
curve is not to be confused with the pseudo-ROC which was
defined by treating the noise and signal sites as images. One
has 6= 6(u,\,v,s) where s=(s;,5,, ... ,sNA) denotes the vec-
tor of numbers of lesions in the abnormal images. [The figure
of merit LLF,, does not depend on the vector s.] As shown
carlier and as expected on physical grounds, 6
=60(u,\,v,s) increases as the number of lesions per image
increases. To remove this dependence, which would bias the
measurement in favor of CAD algorithms evaluated with
lesion-rich image sets, we propose as the free-response figure
of merit the area under the search model predicted ROC
curve for a hypothetical data set where every abnormal im-
age has one lesion, namely, 6,=6(u,\,v,1). The fitting al-
gorithm function takes into account the actual vector s
=(51,5,... ,sNA) but the figure of merit 6,=6(u,\,v,1) cor-
responds to s=1.

H. Estimating the search model parameters

Maximum likelihood (ML) is a common method of esti-
mating the parameters of a statistical model.”® Let &
=(u,N\,v,{,,...,L{g) denote the R+3 dimensional vector of
search model parameters. The log likelihood function £L£
=LL(§) for the search model is given in Appendix C.
Maximizing £ L is equivalent to minimizing —£ L. The fol-
lowing algorithm was used. One regards {; as a deterministic
function of \ instead of as an independent parameter and the
new parameter vector is &' =(u,\,v,4,...,{g). The relation
between £, and A is

N =M1-D(Z)], (17)

where N\’ is the abscissa of the observed end point. A value
for A was selected and the corresponding {; determined by
solving the above equation. Next —£ £ was minimized with
respect to the remaining parameters &'=(u,v,&,...,L{r).
The method of simulated annealing44 as implemented in the
GNU libraury45 was used to find the minimum value of —L L,
namely —£ L, (\). The parameter N was varied until a global
minimum of —£L,(\) was found. Since 0<1-P({)) =<1,
Eq. (17) implies that A=\’. Methods for calculating statis-
tics for the search model, including asymmetric 95% confi-
dence interval for v', LLF,, and 6;, and the X2 goodness of
fit statistic, are described in Appendix A.

|. Case-based versus view-based analysis

So far we have implicitly assumed that each image corre-
sponds to a different patient (or case) so that the number of
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images and cases are equal. In practice there could be more
than one image per case. In mammography usually there are
four views per case: two views per breast (craniocaudal and
mediolateral) and two breasts per case. Depending on the
slice reconstruction interval, in CT screening for lung cancer
there could be several hundred slices per case.*® Therefore,
new definitions are needed to account for the distinction be-
tween cases and views. Define N5 and N as the numbers of
normal and abnormal cases, respectively, and Ny and N, as
the numbers of normal and abnormal views, respectively. A
normal view is defined as one in which no lesions are visible
to the truth panel, i.e., the radiologist(s) who specify the
locations of lesions. For each abnormal case the contralateral
breast may contribute two normal views, if they are lesion
free, and if a lesion is only visible on one view of the af-
fected breast, the other view would be counted as normal.
Assuming each case contributes the same number Ny of
views, the total number of views is Ny+N,=Ny(NG+N¢).

It is necessary at this point to distinguish between case-
based and view-based methods for calculating LLF, as both
methods are used and this distinction affects the analysis.
Calculation of NLF is the same for either method—the de-
nominator is always the total number of views. Essentially
the two methods employ different definitions of N; and what
constitutes lesion localization. In the case-based method LL
is defined as localization of any lesion in an abnormal case.
In the event of multiple LLs on a case the highest rated one
is used. Multiple LLs could represent localizations of the
same lesion visible on both views and/or localizations of
multiple lesions in a view. Therefore in the case-based
method the denominator for LLF is the number of abnormal
cases NX . Defining a general lesion count N; as the relevant
denominator for calculating LLF, for the case-based method
one has N;=NS. In the view-based method each LL is
counted individually and the relevant denominator is the to-
tal number of lesions, NL=E§\Q‘1S,<, where s; is the number of
lesions on the ith abnormal view. For either method if mul-
tiple marks occur near the same lesion the highest rated mark
is used. For either case-based or view-based method the fit-
ting algorithm requires appropriate values for LL and NL
counts, and appropriate values for calculating the denomina-
tors of LLF and NLF. Since the highest rating is used it may
be seen that the figure of merit for case based analysis will
exceed that for view-based analysis.

The CAD designer chooses a cutoff ¢ for displaying
marks and only marks with decision variable greater than ¢
are shown. This determines the average number of NLs that
are marked per image a=x({) and the corresponding ordi-
nate LLF,=y({) of the FROC curve. The choice of « is a
compromise between cuing more lesions, which favors large
a, and not cuing too many nonlesions, which favors small a.
The proximity or overlap criteria, namely how close a mark
had to be to a lesion in order to be counted as LL, were
specific to the different data sets.

The decision variable data (sometimes referred to as the
“raw data”) was binned into R categories. Starting with a
high value for cutoff (20) the cutoff was gradually lowered
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TaBLE 1. The characteristics of the mammography CAD data sets used in this work: Ny, is the number of views per case, Nf, is the number of normal cases,
Ng is the number of abnormal cases, Ny is the number of normal views, N, is the number of abnormal views, and N, is the relevant denominator for
calculation of LLF. N' and U’ are the observed numbers of NLs and LLs, respectively, and R is the number of discrete ratings. The quantity « is the x
coordinate of the operating point at which the CAD algorithm is to be used in the clinic. C and V denote the case-based and view-based methods, respectively.

Analysis
Data set Task Ny Nf,/NAC Ny/Ny N, N' U’ R a method
CAD_A Mass 4 200 / 250 1314 / 486 250 5014 234 20 0.48 Cc
CAD_B Mass 4 200 / 250 1314 / 486 250 4447 233 19 0.68 c
CAD_C Mass 4 0/111 195 /217 111 1139 95 17 0.59 C
CAD_D Mass 4° 0/195 342 /380 195 2029 189 18 0.46 C
CAD_E Micro 2 711796 1427192 218 2048 202 18 1.0 Vv
CAD_F Mass 2 0/58 0/116 116 465 101 12 2.0 1%
CAD_G Micro 2 71796 142 /192 96 2048 96 12 1.0 C

A few cases had only two views.

until both LLs and NLs counts in the highest bin exceeded 5,
thereby determining the highest cutoff. Next the cutoff was
lowered from the previous value until both LLs and NLs
counts in the next-highest bin exceeded 5. The procedure
was repeated until all marks were exhausted. The number of
bins identified as described above equals R and the bin index
runs from 1 to R. Since they do not generate marks, the
counts in the ‘0’ bin, that is how many z samples were below
the lowest cutoff are unknown. The minimum bin-count (5)
ensured that we could calculate a valid chi-square statistic.*?
Both IDCA and search model fits were calculated for each
data set. For the IDCA fits all counts 7; and F;(i
=0,1,...,R) are regarded as known. Specifically the counts
in the ‘0’ bin are assumed to be zero. For the search model
fits the counts 7, and F|, are regarded as unknown non-
negative random integers. [If there were more than 20 bins,
the minimum bin-count was incremented from 5 to 6, and the
procedure was repeated until the total number of bins was 20
or less. The restriction to 20 bins is so that we did not have
to estimate a large number of cutoffs. A similar restriction to
20 or less bins is performed in LABROC to convert quasi-
continuous rating data to a form amenable to ML analysis.47]

J. CAD data sets used in this work

Table T summarizes the relevant characteristics of the
seven mammography CAD data sets used in this work. Data
sets CAD_A, CAD_B, CAD_C, and CAD_D represent case
based analysis. The task was the detection of masses. All
cases in CAD_A and CAD_B had four views (i.e., Ny=4).
These data sets consisted of the same 1800 views (or 450
cases) that were processed by two CAD versions and 250
cases each had one malignant mass. Therefore N,=N§
=250 and Nf,:ZOO. Of the 250 masses, 236 were visible on
both views and 14 were visible only on one view. Therefore,
N,=2X236+14=486, and Ny=1800-486=1314. CAD_D
(CAD_C) included 195 (111) abnormal cases, in which 185
(106) masses were visible on both views. The remaining ten
(five) masses in these two data sets were visible only on one
view. These values can be used to verify the values of Ny
listed in Table I. A few cases had only two views and the rest
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had four views, therefore for these data sets Ny+N, A<4(N§,
+NYS). The same CAD version used for data set CAD_A was
applied to process CAD_C and CAD_D.

For CAD_E, CAD_F, and CAD_G there were two views
per breast (i.e., Ny=2). CAD_E and CAD_G illustrate the
difference between the view-based (CAD_E) and case-based
(CAD_G) methods. They represent the same data set with
different definitions for N; and what constitutes LL. The task
was the detection of microcalcification clusters. Each abnor-
mal case (N§=96) contained at least one microcalcification
cluster and there were N5=71 normal cases. A total of 104
clusters were visible on both mammographic views, while
ten were visible only on one view. Therefore, the total num-
ber of microcalcification cluster locations marked by the
truth panel was 218 and N;=218. Since each abnormal
breast in case-based CAD_G counts as one lesion, N;=96.
The task in dataset CAD_F was the detection of masses. The
view-based data set contained 58 malignant masses, all of
which were visible on both views, therefore N{=58 and N,
=116.

N’ ranged from 465 to 5014 NL marks and U’ ranged
from 95 to 234 LL marks. The average number of marks per
view ranged from 2.5 to 4 for all data sets except CAD_F, for
which it was 6.2. Values for N;, the total number of lesions,
ranged from 96 to 250. As explained earlier N; depends on
the analysis method. For case-based analysis NL=N/f and for
view-based analysis NLENAENS. In all cases U'=N,,
since a lesion can only be localized once, but N’ is unre-
stricted [possible upper limits on N’ are discussed later]. The
number of categories R ranged from 12 to 20, with the
smaller numbers corresponding to the smaller data sets (view
based CAD_E allowed more bins than CAD_G since there
were more abnormal views than abnormal cases). The « val-
ues as suggested by the algorithm designers ranged from
0.46 to 2.0 NLs per view. Note that three of the data sets,
C?D_C, CAD_D, and CAD_F, had no normal cases, i.e.,
Ny=0.

lll. RESULTS

A typical plot of —£.L,(\) vs \ for data set CAD_B is
shown in Fig. 3 where the ordinate is the value of
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FIG. 3. A typical plot of —£L,(\) vs \, where the ordinate is the value of
the negative of the log likelihood after it has been minimized with respect to
all parameters except \. It is seen that —£L,(\) has as a minima at \
=Ny and [Nz, \y] illustrates the construction of an asymmetric confidence
interval for \.

—LL(uw,\,v,{,..., L) after it has been minimized with
respect to all parameters except A. It is seen that —L L\ (\)
has a minimum. A unique minimum was found for all data
sets used in this work (uniqueness was tested by using dif-
ferent starting values for the parameters to be estimated).
This figure is shown to demonstrate that —£.L,(\) indeed
has a minimum. Initially we had some doubts whether the
parameters of this model were estimable since one can argue
that the parameters {; and A\ are degenerate, with an increase
in {; being compensated by an increase in A, to preserve the
observed total numbers of NLs. A similar degeneracy is pos-
sible between {; and v.

Figure 4 shows IDCA (upper panel) and search model
(lower panel) fits to data set CAD_A and Figs. 5 and 6 show
corresponding plots for data set CAD_B and CAD_F, respec-
tively. Shown are the raw data, showing the expected stair-
case pattern, the operating points used in the fitting algorithm
and the fitted curve. Note that the operating points are con-
strained to lie exactly on the raw data plot. Also shown are
95% confidence intervals for an intermediate operating point
calculated by the method described in Ref. 29 with a modi-
fication to account for expected asymmetry in the intervals.
For example, the y-confidence interval cannot include values
greater that 1.

Table II lists the results of IDCA analyses of the data sets.
The p' and ¢’ parameters refer to the mean and standard
deviation of the Gaussians of the binormal model. They are
related to the a and b parameters of the binormal model by
u'=alb and o'=1/b. The x and y coordinates of the ob-
served end point are identical to the corresponding IDCA
estimates N\’ and v’, respectively. The quantities in parenthe-
ses are asymmetric 95% confidence intervals. The figure of
merit LLF, using the « values listed in Table I ranged from
0.554 to 0.942. The p value is an indicator of the quality of
the fit, with larger p values corresponding to better fits. With
the exception of CAD_A, p value=0.0074, all fits are statis-
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FIG. 4. IDCA (upper panel) and search model (SM, lower panel) fits to data
set CAD_A. The dashed curves correspond to the model fits and the solid
curves are the raw data (the same raw data is plotted in the upper and lower
panels). Since the fits are close to the raw data it is difficult to distinguish
between them—the “staircase” pattern corresponding to the raw data may be
helpful. The solid circles are operating points resulting from binning the
data, and the binned data was used by the fitting procedures. They are
constrained to lie exactly on the raw curve. Shown are 95% confidence
intervals for an intermediate operating point. Both fits are visually excellent
although the statistical measures of quality of fit are not as good (p values
0.0074 and 0.0073).

tically acceptable. Further details for this data set are pro-
vided later. For our data sets the average reported number of
NLs was 2.5-6.2 per view, as reflected in the IDCA esti-
mates of the N’ parameter in Table II. Table III lists the
results of search model analyses of the data sets. The param-
eter estimates u, A, and v and their 95% confidence intervals
(in parentheses) are listed. For the search model the esti-
mated end point (N, ») does not, in general, coincide with the
observed end point (', v"). Since the search model is allow-
ing for unobserved counts below {; one expects A=\’, and
v=17', as observed in Tables II and III and as is evident from
Figs. 4—6. In other words N\ and v resulting from search
model analysis lie to the upper-right of the observed end
point, A" and v'.

Two figures of merit, namely LLF,, (for the same « values
in Table I) and 6, are listed in Table III. The figure of merit
LLF, ranged from 0.560 to 0.925 and 6, ranged from 0.624
to 0.833. The values of LLF, for the two methods are in
good agreement (the correlation coefficient was 0.93). For
the data sets CAD_E and CAD_G which used the same
mark-rating data, thereby permitting such comparisons, for
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FIG. 5. As in Fig. 4, except this is for data set CAD_B. Both fits are excel-
lent (p values 0.36 and 0.44).

both IDCA or search model analysis the case-based figures
of merit were larger than the corresponding view based
quantities. In terms of p values, the search model yielded
similar fits as IDCA for all data sets. The parameter estimates
for CAD_F had large variability, e.g., A was essentially in-
determinate. The IDCA and search model fits to this data set
are indistinguishable, see Fig. 6, and statistically both are
good fits to the data. IDCA or search model based estimates
of the variability of the ordinate of an operating are expected
to be smaller than that predicted by binomial statistics, since
the latter does not use all the data, only the portion that is
below (in the FROC plot) the chosen operating point. Ac-
cording to binomial statistics the standard deviation of y is
o=|ly(1-y)/N,]. For CAD_B at operating point
(0.860,0.852) the width of the search model based confi-
dence interval (40) for y=0.852 was 0.0565, and the corre-
sponding binomial estimate was 0.0898.

In Fig. 3 the minimum occurs at A=16.1, which is four
times the value of A\ listed in Table III. The ML analysis
treats N as the mean number of noise sites per case, but in
keeping with current convention, in the FROC plot the x axis
is defined per view. For this data set there were four views
per case. For data sets CAD_E, CAD_F, and CAD_G the
difference is a factor of 2, as there were two views per case.

IV. DISCUSSION

The search model used in this study was introduced to
model lesion and nonlesions localizations and the corre-
sponding z samples (decision variables) generated in a free-
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FI1G. 6. As in Fig. 4, except this is for data set CAD_F. Both fits are excel-
lent (p values 0.28 and 0.21).

response study.40 It was compared to other models, the
figure-of-merit 0=6(u,\,v,s) was defined and its depen-
dence on model parameters was analyzed. Assuming the
highest rating on an image is reported as the equivalent
single “ROC” rating for that image, search model predicted
ROC curves were described.”! However, the model was not
previously used to fit FROC data. In this study, we have
described a search model based technique for analyzing free-
response data generated by CAD algorithms. The method
yields the lesion localization fraction LLF, at a specified
value of «, the number of NLs per image. The figure of merit
LLF,, widely used by CAD designers, can be utilized to
optimize algorithms. The search model allows the calculation
of an alternate figure of merit 6;=6(u,\,v,1) measuring the
ability of the CAD system to discriminate between normal
and abnormal images in a hypothetical data set where each
abnormal image contains one lesion. This figure of merit
does not require specification of «. Since there is no consen-
sus on what value of « to use, the alternate optimization
scenario of maximizing ¢, may be advantageous. Alternative
a-based figures of merit****can be calculated from the search
model.

Unlike IDCA the search model approach is applicable not
only to designer-level data but potentially to clinical-level
data. This is because IDCA assumes that the lowest cutoff
{1=-%, i.e., all suspicious regions are reported. The search
model treats | as a free parameter to be estimated from the
data. This more closely models the clinical task since radi-
ologists do not report every region that was deemed suspi-
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TaBLE II. This shows the results of IDCA analyses. The x” and ¢’ parameters refer to the mean and standard
deviation of the Gaussian from which the signal-site decision variables are sampled, A" and v’ parameters are
the x and y coordinates of the observed end point, and quantities in parentheses are 95% confidence intervals.
The figure of merit LLF,, evaluated at the a values shown in Table I, is commonly used by CAD designers to
evaluate CAD performance. The p value is an indicator of the quality of the fit.

Data set o’ uw N v LLF, p value

CAD_A 1.02 1.98 2.79 0.936 0.791 7.35E-3
(0.882,1.15) (1.82, 2.13) (2.71, 2.86) (0.900, 0.962) (0.775, 0.806)

CAD_B 1.09 1.85 2.47 0.932 0.814 0.360
(0.954, 1.24) (1.69, 2.01) (2.40, 2.54) (0.895, 0.959) (0.800, 0.828)

CAD_C 1.14 1.17 2.57 0.856 0.554 0.247
(0.929, 1.35) (0.918, 1.42) (241, 2.72) (0.782, 0.915) (0.524, 0.585)

CAD_D 1.18 1.83 2.60 0.969 0.755 0.541
(0.996, 1.36) (1.63, 2.04) (2.49, 2.72) (0.937, 0.988) (0.736, 0.774)

CAD_E 0.928 2.15 6.13 0.927 0.830 0.821
(0.764, 1.09) (1.96, 2.34) (5.86, 6.40) (0.886, 0.957) (0.816, 0.845)

CAD_F 1.47 1.89 4.01 0.871 0.783 0.282
(1.10, 1.85) (1.49, 2.28) (3.64, 4.38) (0.801, 0.925) (0.755, 0.810)

CAD_G 0.958 2.40 6.13 1.0 0.930 0.324

(0.704, 1.21) (2.13, 2.67) (5.86, 6.40) (1.00, 1.00) (0.921, 0.939)

TaBLE III. This shows the results of search model analyses. The u parameter refers to the mean of the Gaussian
from which the signal-site decision variables are sampled (the standard deviation is assumed to be unity) and A
and v parameters are the x and y coordinates of the true end point. In addition to LLF,, which depends on the
choice of a, the search model provides a second figure-of-merit 6,=6(w,\,v,1) which is independent of a.
NA: confidence interval cannot be calculated due to floating point overflow.

Data set w N v LLF, 0, p value

CAD_A 2.00 2.92 0.936 0.792 0.747 7.33E-3
(1.82, 2.45) (2.79, 5.79) (0.900, 0.970) (0.761, 0.807) (0.722, 0.778)

CAD_B 2.06 4.02 0.941 0.814 0.736 0.440
(1.68, 2.57) (2.47, 10.7) (0.895, 0.989) (0.781, 0.840) (0.706, 0.768)

CAD_C 1.49 5.33 0.925 0.560 0.624 0.226
(0.924, 2.66) (2.57, 37.5) (0.782, 1.00) (0.528, 0.594) (0.585, 0.706)

CAD_D 2.16 5.96 0.992 0.763 0.737 0.573
(1.60, 2.80) (2.60, 17.4) (0.937, 1.00) (0.734, 0.790) (0.696, 0.783)

CAD_E 2.19 6.13 0.927 0.822 0.821 0.757
(2.02, 2.55) (6.13, 9.06) (0.886, 0.958) (0.799, 0.835) (0.796, 0.847)

CAD_F 2.84 95.6 1.00 0.789 0.771 0.210

(NA) (4.64, 1096) (NA) (NA) (NA)
CAD_G 242 6.13 1.00 0.925 0.833 0.303

(2.17, 3.04) (6.13, 14.8) (1.00, 1.00) (0.894, 0.932)  (0.793, 0.877)
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cious, only those meeting their criterion for clinical report-
ing. The essential difference between IDCA and the search
model is this: IDCA does not permit the fitted curve to ex-
tend beyond the uppermost observed operating point. This
fact is evident in all IDCA fits shown in this article. Consider
a human observer study involving a single reader reading
thousands of images (to eliminate sampling variability) and
assume that the reader is infinitely reproducible (to eliminate
that source of variability). If this study is repeated with the
observer using a laxer criterion, i.e., reporting more suspi-
cious regions, then some of the new operating points would
be to the upper-right of the end of the IDCA-fitted curve
based on the first reading. IDCA may yield a good fit to the
first study but it would not be able to fit all operating points
in the second study. By assuming that the lowest cutoff in the
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first study is negative infinity, the observer who rereads the
images is not permitted to adopt an even lower criterion
(nothing is smaller than negative infinity). In contrast the
search model curve does not end at the uppermost observed
operating point but generally extends beyond it. This fact is
evident in all search model fits shown in this paper and is
obvious in Figs. 5 and 6. This allows the search model to
better fit all acquisitions using the same reader, not just the
first. We have conducted preliminary studies showing the
feasibility of the search model approach using simulated
clinical data®® but a full study of applicability to clinical-
level data is outside the scope of this work.

The IDCA implementation described in this work in-
cludes an algorithm for calculating the figure of merit LLF,,
its 95% confidence interval, and a measure of quality of the
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fit. Both IDCA and the search model methods involve
maximum-likelihood estimation. Likelihood functions corre-
sponding to the two methods are compared in Appendix C
where it is shown that in the limit {;=-2 they are identical.
IDCA assumes that the true total number of noise and signal
sites equals the observed numbers N’ and U’, respectively.
This allows N’ and v’ to be readily estimated, see Eq. (1).
For the search model N and U are regarded as unknowns
(random) and the estimation procedure is necessarily more
complex. The IDCA procedure uses a two parameter model
(unequal-variance binormal, or perhaps a proper-ROC
model) to describe z sampling, whereas the search model
uses one parameter w, equivalent to an equal-variance binor-
mal model. However, both models involve identical numbers
of parameters. The extra z-sampling parameter in IDCA is
balanced by the fact that it assumes the lowest cutoff ;=
—cc and does not need to be estimated. Either method can be
used to compare different CAD algorithms applied to the
same of cases and where the marks are scored using the same
proximity criterion. To our knowledge no method exists that
can compare CAD performance on different case sets and
using different proximity criteria, although a method for
dealing with the arbitrary proximity criteria issue has re-
cently been suggested.49

Both methods involve parametric models and indepen-
dence assumptions and differ substantially from the quasi
non-parametric JAFROC (Ref. 18) method (JAFROC as-
sumes normal distributions at the analysis of variance step).
However, unlike JAFROC, parametric models use all the
data and predict FROC curves. JAFROC is unable to analyze
data sets with no normal images (CAD_C, CAD_D, and
CAD_F) but this is not a problem for IDCA or the search
model methods. Both IDCA and the search model assume
Poisson sampling. This permits large values of n, the num-
bers of noise sites per image. In reality the anatomic area to
lesion area ratio places a geometric upper limit on these
numbers. Therefore the Poisson assumption may not be valid
for some CAD data. [A binomial distribution for n, currently
under investigation, may be a better sampling model.] Based
on simulation work in the ROC (:ontext,50 failure of the
Gaussian assumption may not be critical but this needs to be
tested. Failure of the independence assumption is expected to
result in underestimation of confidence intervals. For modal-
ity comparisons the independence issue can be resolved us-
ing resampling schemes,”! e.g., jackkniﬁng,]g’52 and
bootstrapping.53 In the jackknife method, for each modality,
reader and case, one removes all responses pertaining to the
case, recomputes the figure of merit, and calculates a pseudo-
value. The array of pseudovalues is analyzed by analysis of
variance.”> When resampling methods are used the paramet-
ric assumptions needed to compute a figure of merit may not
be significant limitations. In other words, we are suggesting
the use of a parametric model to compute the FOM and
performing resampling analysis using this FOM to infer inter
modality differences. An advantage of this procedure over
other suggested nonparametric methods®”*® is that unlike
them it uses all the data, not just the data below NLF=a.
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An implication of the search model is that the actual num-
ber of decision sites on an image may exceed the observed
number in a designer-level data set. A typical CAD algorithm
has a prescreening step at which some regions are identified
as potential lesions, and a false-positive reduction or feature
analysis step. The prescreening step might start with the ap-
plication of a spatial filter that preferentially enhances re-
gions that resemble the type of lesions that the algorithm is
expected to find. For example, a microcalcification detection
algorithm might apply a band pass filter to the image to
enhance regions that might contain small objects with high
contrast. A cutoff and other rules may then be applied to the
filtered image to select regions that match the lesion criteria.
Therefore, the prescreening step typically produces a rela-
tively large number of candidate regions, but ideally misses
relatively few lesions. Some CAD systems reduce the num-
ber of candidate regions in two ways. First, an overlap crite-
rion may be used to eliminate regions that substantially over-
lap with each other. Second, the number of candidate regions
per image (or case) may be further limited to a specified
maximum number. In IDCA terminology the prescreening
step described above yields the initial detections. The false-
positive reduction or feature analysis step represents the can-
didate analysis, which yields the z samples. Since in effect
multiple rules and cutoffs are being applied prior to identifi-
cation of the initial detections, the reported number N’ is
expected to be smaller than the true N, where “true” is the
effective number of regions that are considered by the CAD
algorithm as possible candidates.

As noted previously, the CAD_A fits shown in Fig. 4 had
the smallest p values, representing the worst statistical fits,
yet both are seen to be excellent visual fits to the data. The
small p values (large chi-square statistics) resulted from a
few neighboring bins where the expected and observed
counts differed significantly but in opposite directions (i.e.,
in one bin the expected count was larger than the observed
count, but in the adjacent bin it was smaller). If these bins
were combined, the expected and observed counts were in
closer agreement and the p value improved markedly. For
example, using 17 bins (instead of 20) the p value of the
search model fit to CAD_A improved to 0.241 (the other
estimated quantities were essentially unaffected).

The search model N and v parameter estimates for
CAD_F are unreasonable, and therefore the estimated
figures-of-merit 6, may be unreliable. This may be due to the
significant linear portion of the raw data plot which is incon-
sistent with the search model. To accommodate a linear por-
tion one needs mixture distributions for both signal and
noise, specifically probability density functions with signifi-
cant components centered at a common value between 0 and
. [A mixture distribution for signal with a component cen-
tered at the origin is used in the contaminated binormal
model to predict an ROC curve with a linear portion.39]
However, the search model confidence interval for \ is very
large, which is due to a quasiflat likelihood function
—LL,(\) vs \ plot. Limitations of floating point arithmetic
prevented us from calculating confidence intervals for the
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remaining quantities for this data set. Nevertheless in the
common range (i.e., not extending beyond the observed end
point) both IDCA and search model yielded excellent and
essentially indistinguishable fits for all data sets.

If interest is in comparing designer-level CAD algorithms
data using LLF,, and a common « can be agreed upon and
which is in the accessible range of all algorithms being com-
pared, then either IDCA or the search model could be used.
The search model allows calculation of an additional figure
of merit 6;=6(w,\,v,1) that is independent of «. The dis-
tinction between FROC curve comparisons based on
(a,LLF,) and that based on 6;=6(u,\,v,1) is analogous to
ROC curve comparisons based on (specificity, sensitivity)
and that based on area under the ROC curve. In ROC appli-
cations usually the latter method is preferred. This does not
invalidate designer-level CAD optimization using LLF, but
evaluation of clinical-level CAD is best performed, in our
opinion, using a figure of merit like 6 that is independent of
any specific operating point on the FROC curve.

V. CONCLUSION

We have described two methods of fitting FROC curves
and obtaining figures of merit and their confidence intervals.
One method is termed IDCA and the other is based on a
recently introduced search model. Both methods closely par-
allel the approach used in the design of CAD algorithms. The
IDCA method is applicable to designer-level CAD data
where one knows all locations that were considered suspi-
cious, not just the ones that were actually marked. The search
model method is potentially applicable to clinical-level CAD
data and to human observers where only a small fraction of
all suspicious regions that are found are actually reported.
Both methods yielded excellent fits to seven designer-level
CAD data sets and either of them could be used to evaluate a
CAD algorithm at the designer level. A new figure of merit is
proposed for CAD evaluation that does not depend on arbi-
trary selection of an operating point on the FROC curve.
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APPENDIX A: FIT STATISTICS

1. IDCA confidence intervals

The R+3 parameters of the IDCA model are denoted by
the vector &=(\',v',a,b,,,...,{g). The IDCA likelihood
function® is the sum of three terms corresponding to three
independent sampling processes, Poisson for the number of
noise sites, binomial for the number of signal sites, and
binormal for the z sample. Therefore, the covariance of N’
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and v’ is zero as are the covariances of A’ and v’ with each

of the remaining parameters a,b,{,, ..., . The variances of
- 2

N and v’ are given by

Moo=

cN=y, N,

(A1)
The 95% confidence interval for v’ is v/ +20(v’) and
similarly for N. When v’ is close to unity, the above proce-
dure can result in an interval that is partially outside the
allowed range 0<v'<1. To circumvent this »' was trans-
formed to the unconstrained variable v' according to

v =1—exp[-exp(V)], (A2)

where —c0 <1/ <o, The variance of v/ was calculated from

;e\ (A3)
OOV

The symmetric confidence interval for #/, namely
V+20(1'), was inverse transformed to an asymmetric confi-
dence interval for v’ which was always inside the allowed
range 0<v'=<1. The covariance matrix of the parameters

ol(vf)=-<

a,b,l, ..., g, denoted COV’, is calculated by standard
ROC software. Regarding L£L£ as a function of §
=(\",v,a,b,{,,...,{g) the full covariance matrix is given
by
o, 0 0 0 0 0 0 0
0 o, 0 0 0 0 0 0
0 0 o
0 0 ;
cov= 7 o . (a4
0 0 i
0 O
0 o0
2
i 0 0 O-{R_

where the inner matrix (i.e., excluding the first two rows and
columns of COV) is COV’. A similar procedure to that de-
scribed above for v’ was used to calculate the asymmetric
confidence interval for LLF,. LLF, was transformed to an
unconstrained variable LLF' ; the variance of LLF, was cal-
culated by the multivariate delta method™ according to

t T t
o*(LLF) = {—ﬁ(L(;F“) } [Cov]{—a(L;F”) } )

In the earlier expression [(LLF,)/d¢] is the R+3 dimen-
sional column vector of the derivatives of LLF!, with respect
to the parameters and 7 denotes the transpose. Since LLF,
does not depend on the cutoffs the derivative vector has only
four nonzero elements, namely those with respect to N, v/, a,
and b. The symmetric 95% confidence interval for LLF,, is
LLF, +20(LLF.). This was inverse transformed to obtain the
asymmetric confidence interval satisfying O<LLF,<1.

(AS)
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2. Search model confidence intervals

The procedure for calculating search model confidence
intervals was different from that described earlier. The search
model expression for —L£LL [see Eq. (C6) vs Eq. (C8) in
Appendix C] was different and the minimization process was
significantly different. As noted earlier, it involved two
stages. In the first stage one selects A, calculates ¢, [Eq.
(17)], and minimizes with respect to all other parameters.
The minimum value of the negative log likelihood is
—LL,(\) and, as described earlier, the first stage minimiza-
tion determines the parameter estimates and the confidence
intervals. These are expected to be underestimates since they
do not take into account the variability of N. [The uncertainty
of N\ can be appreciated from the fact that the minimum in
Fig. 3 is not infinitely sharp. Since {; is regarded as a deter-
ministic function of \, its uncertainty is completely deter-
mined by that of N\ and therefore does not introduce addi-
tional uncertainty in the estimates of the other parameters. ]
In the second stage N\ was varied until a global minimum of
—LL,(\) was found (see Fig.3). Let N\, denote the corre-
sponding value of N. More realistic confidence intervals for
m, v, LLF,, and 6, were constructed using the following
ad-hoc procedure. [We are not aware of any method for es-
timating confidence intervals for the two stage minimization
approach and the asymmetric —£ £, (\) function.] The 95%
confidence interval for \, namely [A,,\;], corresponds to
twice the decrement or (increment) of N that results in
—LL,(\) increasing by one-half.>® Since the lower limit
cannot be smaller than N\’ [see Eq. (17)] if it was, it was
replaced with \’, i.e., A\;=max(\;,\"). We illustrate this pro-
cedure for u (analogous procedures were used for the other
quantities). Let [,uL ,,uU M] denote the confidence interval for
o as determined by the minimization performed at the first
stage. Here L and U denote lower and upper bounds, respec-
tively, and the superscript emphasizes that the confidence
interval is for a specific value of N\, namely \,,. The earlier
procedure was repeated for A=\; and A=\ This resulted in
two additional confidence intervals for w, namely [,uL , ,uU]
and [,uL ,,uU] The final conﬁdence interval for ,u was as-
sumed to be [min(upt, up¥, upt), max(upt, upt, ur?)],
which amounts to a worst case scenario.

3. Goodness of fit statistic

The statistical validity of the IDCA model was assessed
by computing the Pearson goodness of fit*? statistic X

=R
s L[ F=EY? (= (1Y)
V=2 | T

The expected value of F; and T; for IDCA and for the
search model are derived in Appendix B. The number of
degrees of freedom df associated with y? is df=2R—(3+R)
—1, ie., df=R-4. The * statistic is valid if the expected
number of counts in each bin is at least ﬁve,42 which condi-
tion was assured by the cutoff selection procedure described
previously. Define th as the chi-square distribution pdf for
df degrees of freedom. * Then, at the « level of significance,

(A6)
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the null hypothesis that the estimated parameter values are
identical to the true values is rejected in favor of the hypoth-
esis that at least one of them is different if x>> x}_ _a.dp Where
Xz wdf 18 @ value such that the 1ntegral of Xﬁr from O to X% adf
equals 1—a. The observed value of x* can be converted to a
significance value (p value) from y*= )(%_p,df. At the 5% sig-
nificance level, one concludes that the fit is not good if p
<0.05 (poor fits lead to small p values). [In practice one
occasionally accepts p>0.001 (Ref. 44) before completely
abandoning a model. It is known that adoption of a stricter
criterion (e.g., p>>0.05) can occasionally lead to rejection of
a retrospectively valid model. An example is shown in Fig. 4.
This is believed to be due to departures from the Gaussian
assumption on which the Pearson goodness-of-fit statistic
depends.**]

APPENDIX B: EXPECTED COUNTS

Let N(u, 1) denote the Gaussian distribution with mean u
and unit variance. The probability density and cumulative
distribution functions are

(x—,u)z}

i+ ] -

(B1)
D(x) = J $(y|0)dy.

For an R-rating free-response study define the cutoff vec-
tor £=(£o,&1» ..+ »LrsLrer) Where {p=- and {g, =+, as
shown in Fig. 2(b). The area under N(u,1) between neigh-
boring cutoffs ¢; and {;,,(i=1,2,...,R) and the abbrevia-
tions p; and g; are defined by

Gin1
DL ) = d(ylwdy,

G

pi=Di(L,0)=D(Ly,) - D), (B2)

q;= P& p) =P — ) =D — ).

In the following all uppercase variables refer to the whole
image set and lowercase variables refer to individual images.
Define the NL ratings vector F=(F|,F,,...,Fg), where F;
is the observed number of NLs rated in bin i. NLs can occur
on normal and abnormal images. The total number of NLs
over all images is F=2X | F,. Since N is the total numbers of
noise sites, the number of noise sites that were not marked is
Fy=N-F. Using the logic leading to Eqgs. (12) and (13) the
expected values of F; and T; are

(F)=N\'p;,

<Ti>=NLV,qi’ (B3)
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for IDCA, and the corresponding search model values are

(F)=N\p;, (T)=N_vg;. (B4)

APPENDIX C: LIKELIHOOD FUNCTION

1. Search model

The Poisson and binomial density functions are defined
by

)\}’l
Poi(n|\) = —ve-h, Bin(u
n:

s,v)=(s>uu(1—y)f-u. (1)
u

Given N noise sites and cutoff vector ¢ the probability of
observing the NL ratings vector F is

R .
P(F|N,§)=N!H@.

(C2)
izo Fi!

The sampling distribution of N (defined over all images)
is given by the Poisson distribution with mean N,\, namely
Poi(N|N,\). [The distribution of n (defined for an image) is
given by the Poisson distribution with mean \.] To obtain
P(F|\,Q), the probability for given N\ and ¢ that one will
observe the NL ratings vector F, one multiplies the earlier
equation by Poi(N|N,\) and sums over all values of N=F,

P(F|N,0) = X Poi(NINN)P(F|N, Q).

N=F

(C3)

The lower limit on N is due to the fact that for an image
set with F observed NLs, N must be at least F. This expres-
sion can be evaluated in closed form using MAPLE (MAPLE
8.00, Waterloo Maple Inc.).

Define the LL ratings vector T=(T,,T,,...,Tg), where T;
is the observed number of LLs rated in bin i. LLs can occur
only on abnormal images. The total number of LLs on all
images is T=E£1T,-. Since U is the total numbers of signal
sites, the number of signal sites that were not marked is T
=U-T. Given U signal sites and the cutoff vector { the prob-
ability of observing the LL ratings vector T is

17
PIUp0=U"T] Lol (C4)

Multiplying by Bin(U|N,, ), the binomial density func-
tion with mean v and maximum number of successes N;, and
summing over all values of U=T, one obtains for the like-
lihood function for the signal sites

N

P(T|u.&,v.Ny) = 2 Bin(UIN,, v) P(T|U, p.). (C5)
U=T

The lower limit on U is due to the fact that on an image
set with 7 lesion localizations, U must be at least 7. The net
likelihood is the product of the two likelihood functions de-
rived above, namely Eq. (C3) and Eq. (C5). Let £L denote
the logarithm of the net likelihood. Using MAPLE it can be
shown that
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R
LL={FInp;+T;Ing}+[FIn(\) = N\]
i=1
+ [TIH(V) + (NL - T)ln(l - V)] + N[}\p()
+(N,=Dn(1 - ¢q,), (Co)

where terms independent of the parameters are not shown.

2. Comparison to IDCA
Define

q; = P(bgiy —a) - (b - a), (C7)

where a and b are the parameters of the binormal model. The
expression for ¢/ is different from Eq. (B2) (hence, the
prime) since the IDCA z sampling allows unequal variances
for the signal and noise distributions (this is commonly re-
ferred to as the “binormal” model) whereas in the search
model they are equal (i.e., equal-variance binormal model).
In our notation and dropping terms that are independent of
parameters, the IDCA likelihood function is
R

LLipcp= 2 {Filnp;+T;Ing/} +[NIn(\") = N\']
i=1

+[U" In(v") + (N, - U")In(1 = 2v")]. (C8)

If one makes the IDCA assumption {;=— and further-
more sets b=1 and a=pu in order to make the two z-sampling
models identical, then expressions Egs. (C6) and (C8) be-
come identical. In the search model analysis one does not
assume {;=-= and therefore the additional terms shown in
Eq. (C6) are needed.
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