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As an ongoing effort to develop a computer aid for detection of masses on mammograms, we
recently designed an object-based region-growing technique to improve mass segmentation. This
segmentation method utilizes the density-weighted contrast enhanc€dWQE) filter as a pre-
processing step. The DWCE filter adaptively enhances the contrast between the breast structures
and the background. Object-based region growing was then applied to each of the identified struc-
tures. The region-growing technique uses gray-scale and gradient information to adjust the initial
object borders and to reduce merging between adjacent or overlapping structures. Each object is
then classified as a breast mass or normal tissue based on extracted morphological and texture
features. In this study we evaluated the sensitivity of this combined segmentation scheme and its
ability to reduce false positive-P) detections on a data set of 253 digitized mammograms, each of
which contained a biopsy-proven breast mass. It was found that the segmentation scheme detected
98% of the 253 biopsy-proven breast masses in our data set. After final FP reduction, the detection
resulted in 4.2 FP per image at a 90% true positiMe) fraction and 2.0 FPs per image at an 80%

TP fraction. The combined DWCE and object-based region growing technique increased the initial
detection sensitivity, reduced merging between neighboring structures, and reduced the number of
FP detections in our automated breast mass detection scherd®9® American Association of
Physicists in Medicing.S0094-2405(99)00808-1]
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I. INTRODUCTION of malignant masses are not spiculated, other groups have

) ) ~ tackled the general problem of identifying all types of breast
Mammographic screening has proven to be an effectivg,,sses on digitized mammografris!

method for early detection of breast cancer. Women in a o ; research group has reported on a method for auto-

regular mammographic screening program have a stafistiy aica)y detecting masses on digitized mammogriig.
cally significant reduction in breast cancer mortality WhenThe method employed multiple stages of density-weighted

F:ompared to women not. in-such a prqgr]ar‘r_m addition, contrast enhancemetbWCE) segmentation. The DWCE
independent double reading by two radiologists has proven . ) .

S . o .“segmentation was first applied to the full mammogram, and
to significantly increase the sensitivity of mammographic

screeningd. Therefore, regular screening and double readin fhen reapplied to local regions within the mammogram to
i » €9 9 gkpprove object border definition. A final object splitting

would appear to be a sensible approach for breast canc ! loved to eliminat ina bet iahb
detection. While regular screening is emphasized in healty 29€ Was eémployed o eliminate merging between neighbor-

care programs, the higher cost and increased workload on tHgd O Overlapping breast structures. False positk) re-
radiologists may make double reading by two radiologistsducuon based on extracted morphological features was ap-

impractical in a general screening situation. Computer-aidelied after each segmentation step with texture analysis used
diagnosis(CAD) is one alternative that could allow a large @S @ final arbitrator between masses and normal structures.
number of mammograms to be double read by a single radil e segmentation was evaluated on 168 digitized mammo-
ologist aided by the computer. This technique may improvedrams and it achieved a performance of 4.4 FPs per image at
the accuracy of both detection and characterization of breag 90% true positivéTP) detection fraction and 2.3 FPs per
lesions. image at an 80% TP detection fractith.

Many researchers have been interested in computerized Our approach to mass detection has been to first identify
analysis of mammograrﬁand a number of groups have de- all significant structures within the breast region using a glo-
veloped algorithms for automated detection of breast massegal segmentation technique and then refine the initial object
The detection of spiculated masses has been of particul&orders using local processing. Finally, we differentiate be-
importance because of its high likelihood of malignancy.tween true masses and normal structures using morphologi-
Karssemeijer et al.} Kobatake etal.’ and Kegelmeyer cal and texture information. Our method is therefore differ-
et al® have all proposed methods for detecting spiculatecent from other detection algorithms that utilize the object
masses on digitized mammograms. However, since a numbshape information for initial detection. The disadvantage of
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our combined global and local detection approach is that a 30 T , !
large number of normal structures are identified in the initial ’ ‘
stage. This can lead to additional FPs if the classification is
suboptimal. However, the advantage of this approach is that
it can identify difficult masses since the initial detection is
not based on shape information. The shape information is =
still used in the classification stage to reduce FPs.
In this paper, we present an improved version of our two- g
stage DWCE segmentation approach. This new scheme was g
designed to both increase specificity and reduce the overall 2
complexity of the segmentation. A primary motivation is to
develop a method for eliminating the merging between
neighboring structures in the local DWCE processing step
and thus improve local segmentation. We introduce an
object-based region-growing technique to perform this task. 1 5 9 13 17 21 25 29
Improved local segmentation serves a number of purposes. MASS SIZE (MM)
First, it improves th_e morphologlcallaqd texture information Fic. 1. Histograms of mass size for the 253 masses contained in our data set.
used for FP reduction as well as eliminates the need for th@ass sizes were measured as the largest axis of the mass by an experienced
shape-based splitting step. It also enables us to eliminate twweast radiologist.
morphological FP reduction steps. This significantly reduces
the overall complexity of the detection program and should

Ieaql toa more practical |mplementa_\t|on na general_ clinical The location and extent of all the biopsy-proven masses
setting. In this paper, we summarize the intermediate and

. . were marked on the original films. The radiologist then iden-
overall detection performance of the improved mass segmen-. . .
) . . L tified both the centroid of the lesion and the smallest bound-
tation algorithm and describe some of its limitations. . L . . . . S
ing box containing the entire lesion using an interactive im-
age manipulation tool on a workstation. Both procedures
Il. METHODS were performed using the original marked film as a guide.
A. Database The lesion centroid was used to identify TP detections after
the morphological FP reduction step. If a segmented object

The clinical mammograms used in this study were S€was within 4 mm of the mass centroid, it was considered a

lected from the files of patients who had undergone biopsy atp || other segmented objects were considered as FPs. The

the Univer_sité/ of hMichiggn HosEital. 'I;he gjalmmograms final free-response receiver operating characteri§iROC)
were acquired with American College of RadiologyCR) curves following texture-based classification used the more

accredited mammography systems. Kodak MinR/MREg/recise mass bounding box for TP identification. A region

screen/film systems with extended cycle processing wer: as considered a TP only when it contained more than 50%
used as the image recorder. The mammography systems ha(‘ffathe mass bounding box

a 0.3-mm focal spot, a molybdenum anode, 0.03-mm thick
molybdenum filter, and a 5:1 reciprocating grid. The selec-
tion criterion used by the radiologists was simply that a

[ mmmm MALIGNANT | |

25 C— BENIGN

ASSES

20
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15
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biopsy-proven mass existed on the mammogram. The data 60 ! !
set consisted of 253 mammograms from 102 patients, and it
included 128 malignant and 125 benign masses. Sixty-three ¢, 50 ] ;, “Bnéh:ngNT -
of the malignant and six of the benign masses were judged to ﬁ
be spiculated by a MQSA approved radiologist. The size of ‘2 40
the masses ranged from 5 to 29 nimean size=12.5 mm), =
and their visibility ranged from 1(obvious)to 5 (subtle) 3 30
(mean=2.1). Figures 1 and 2 show the histograms of mass g
size and mass visibility for the data $éfThese distributions B oo I |-
characterize the difficulty and diversity of the cases con- &
. : =)
tained in the data set. Z 40 - L
The mammograms were digitized with a LUMISYS DIS-
1000 laser film scanner with a pixel size of 10éh and 12 .ﬁ
bit gray level resolution. The gray levels were linearly pro- 0-
portional to optical density in the 0.1 to 2.8 optical density 1 2 3 4 S
unit (O.D.)range. The slope was 0.001 O.D./pixel value. The MASS SUBTLETY RATING

; 3
SlOpe gradually fell off in the 2.8 to 3.5 O.D. ranboel' A Fic. 2. Histograms of mass subtlety for the 253 masses contained in our data

Iarge .pi.x.el value corresponds to a low optical density Withget mass subtleties were rated by an experienced breast radiologist from 1
this digitizer. (obvious)to 5 (subtle).
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[ Digitized Mammogram ] C. Object-based region-growing segmentation

1. Initial gray-scale region growing
A

[ DWCE Segmentation ]

Before gradient-based region growing was applied, an ini-
tial set of seed objects was identified. This was accomplished
by first identifying all local maxima in the original gray-scale
] image which occurred within the extent of the DWCE ob-

jects. Local maxima were defined using the ultimate erosion
technique described by Rusin simple terms, a pixel was a
local maximum if and only if its value was at least as large as

Object-Based
Region Growing

4 all nearest neighbor pixel values. All maxima were identified
| FP Reduction | and grown into larger objects by a simple gray-scale region
growing technique as follows. Gaussian smoothiog2.0)
v was applied to the gray-scale image, and a maximum and a
[FROC Analysis] minimum pixel value threshold were specified to select a

range of acceptable pixel values. The thresholds were de-

Fic. 3. Block diagram of the breast mass segmentation scheme. A digitizeHned as
mammogram undergoes DWCE segmentation followed by object-based re- Gmaxl— 1 OlG\UEP
gion growing and then morphological and texture classification. The perfor- i Bt

mance of the segmentation scheme was evaluated by FROC analysis. and

G"™=0.99G"%", 2)

B. Density-weighted contrast enhancement where G'*F was the pixel value of théith maximum and
segmentation G and G"™ were the maximum and minimum pixel

The block diagram for the proposed detection scheme igalut—_:- thresholds, respectively. A.” pixels w_ithin a radius of
shown in Fig. 3. Global DWCE segmentation was used tQZO_plers from a maximum location gnd with a pixel value
identify an initial set of breast structures on the digitized'ns‘Ide the defined range were considered to be part of the

mammograms. These objects were then used as seed |08§ject. This was repeated for. 6}" maxima withip an image.
tions to perform gradient-based region growing. A thorough':Igures 4("’.“}4@) show an original gray-sca}le image and
description of the DWCE technique can be found in thecorre_zspondlng images with the D_WCE ObJeCtS.’ the chal
literature'®1214 Briefly, the DWCE technique employs an maxima, and the gray-scale region-grown objects high-

adaptive filter to enhance the local contrast and thus accetjfght?d' The expan_ded Obje.CtS Were_used as seeds for the
tuate mammographic structures in an image. As the temgradlent-based region growing, described below.

implies, the parameters of the enhancement filter are based

on the local density within the image and the filter is applied2, Gradient images

to the image on a pixel-by-pixel basis. The filter is designed

. A mammogram at 20Qum resolution was used in the
to suppress very low contrast values, to emphasize the low to

medium contrast values and to just slightly deemphasize th%radmnt—based reglon—growmg_stage._The Mresolut{o_n
Image was obtained by averaging 2 pixels from the origi-

high lues. The eff f ing th ly o
Igh contrast values hee ecto supbpressing the extr'eme Xal image. The reduced resolution image had to be smoothed
low contrast values is to reduce bridging between adjacent

again before gradient filtering because the mammographic

breast structures. Pixels with low to medium contrast value§ . L
Igsue produced gradients not only within individual breast
are enhanced so that more subtle structures can be detecte?

Finally, the slight deemphasis of the high contrast structured ructures but also throughout the background portions of the

is included to provide a more uniform intensity distribution Image. Figure 5_(b)shows the_ gradient mag.”'“!de image re-
ulting from vertical and horizontal Sobel filtering applied to

for detected structures. After contrast enhancemenﬁqe 200um gray-scale image shown in Fig(e. It clearly

LapIaC|an.—Gau53|ar! edge detection is applied and all end_emonstrates the large number of gradients throughout the
closed objects are filled to produce a set of detected struc- e : . . .
tures for the image. The DWCE segmentation is applied g nage and the difficulty in applying object-based region

' (rjowing without additional smoothing. For our application,

mammograms that have been smoothed and subsampl ! . .

from their original 100um pixel size to an 80Qum pixel € smopthlng needed to redu_ce the spurious grac_ilents was
resolution'® The DWCE stage has been found to be effectivef”lccomp“Shed by frgquency-wglghted Gaus§|aNQ)f|Itgr-
in detecting most breast structures including a significanln.g' Frequency-weighted filtering is a technique in which all

portion of breast masses. However, the DWCE borders USLf_lxels within the image are split into a base and a residual

S . . term. The residual is either positive or negative. This tech-
ally fall well inside the true borders of an object and a sig- . . S
o . . . ~ nique produces three subimages from an original imé&ge,
nificant number of adjacent structures are merged into single
. : . here
objects. This occurs most frequently when the adjacen

breast structures have some tissue overlap. F=Fr+Fqu+Fsup- 3)

@
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Fic. 4. Objects produced by each segmentation step for a typical mammogram from our ddfa thet:original mammogram with the mass location
identified, (b) the DWCE objects(c) the local maxima(d) the objects obtained with gray-scale region growifeg the objects obtained with gradient-based
region growing, andf) the objects remaining after morphological FP reduction.

The first filter componentf, is a filtered version of the where theFp and Fg+ images were derived frorf, the
original image. In our case, a Gaussian filt&(u=0,0  original 200um resolution gray-scale image. A second FWG
=10), was used. The second and third images are the podiltering step was used to eliminate gradients in the breast
tive and negative residual images Bf-Fg, respectively. background. It produced imad®,, which had the form
The Fg,,+ residual is nonzero where the image intensity is Fo(Fy)=Fou (Fy) %
larger than the local background aRg - is nonzero where 2t sub™i 1
the image intensity is smaller than the local background. Fowhere theFg,» image was derived from imagg;. The
a particular image pixel,x,y), the residual images are de- result of applying the two FWG filters to the original mam-
fined as mogram in Fig. 5(ajs shown in Fig 5(c). In this image, a
significant amount of background has been eliminated and
FOGY)=Fe(xy),  F(Xy)>Fe(xy), the gradients in the remaining structures have been reduced.
0, otherwise, Horizontal and vertical Sobel filtefswere then applied to
(4) imageF, and the magnitude calculated to produce a gradient
image as shown in Fig.(8). Finally, 5X5 median filtering

Fsupr (X,Y)= {

and was used to produce the final gradient image shown in Fig.
F(x,¥)—Fr(x,y), F(XYy)<Fg(x,y), 5(e). This image was used in the gradient-based region-
Fsup-(X,y)= 0 otherwise. growing step.

(5)
] ] . 3. Final gradient-based region growing
Two FWG filters were designed for sequentially processing

the mammograms. The first FWG filtering step reduced the Each initiagy grovlvn_ objec(%escribed ir;]S_ec. . C]rA])/as di
gradients within the breast structures and produced an intefld2IN grown by applying an adaptive technique to the gradi-
mediate imageF;, which had the form ent imagefF,, described in Sec. 11 C 2. The region-growing

technique was based on the work of Chang artfiamd their
F1(F)=3Fc(F)+ Fsup (F), (6)  adaptive homogeneity test for determining the similarity be-

Medical Physics, Vol. 26, No. 8, August 1999



1646 Petrick et al.: Combined adaptive enhancement and region-growing segmentation of breast masses 1646

Fic. 5. Processing steps used to define the gradient iméajte original mammogram with the mass location identifigd;the gradient magnitude image
obtained from horizontal and vertical Sobel filtering of the original mammogtenthe image resulting from FWG filtering of the original mammograd);
the gradient magnitude image resulting from horizontal and vertical Sobel filtering of the FWG image;) &mel image resulting from median filtering of
the gradient magnitude image.

tween regions. We have modified this technique to perfornremployed to limit the influence of the order that objects were
object-based region growing. For a mammogram, the corregrown within an image. The thresholds used for itfreob-
sponding gradient image was smoothed using a Gaussigact during thejth growing iteration were defined as

filter (60=2.0). A cumulative distribution functioGCDF) of
pixel values was then calculated from the smoothed gradient

maxs _p . _
image for each object. For each object, the pixel value Cij —19:CDF;(9)=1.0 (10)
thresholds were defined as
Gio "={g:CDF o(g)=1.0} g and
and j
i maxe_ | . _ 1
Gy =1{9:CDF, o(9)=0.0}, 9) G = 9-CDF|,;(9)—30], (11)

whereg was a pixel value and CD(g) was the cumulative

pixel value distribution within the border of objecand for ~ where CDF;;(g) was the cumulative pixel value distribution
initial growing iteration 0. The initial growing thresholds from the smoothed gradient image within the current borders
simply correspond to the maximum and minimum pixel val-of objecti. Single pixel growing was applied to all objects
ues within an object. Single-pixel growing was performed onwithin the image. This iterative procedure was repeated until
all objects using the thresholds for each individual object tano more connected pixels had a value within the appropri-
define a range of acceptable pixel values. In this contextately defined range. Note that neighboring objects were not
single-pixel growing meant growing was limited to only allowed to merge together during this region-growing stage
those pixels directly connected to the initial border. Onceso that growing between adjacent objects stopped with at
single-pixel growing was applied to all objects within the least a one pixel gap between them. Figurés) 4nd 4(e)
image, the thresholds were adjusted and a second iteration sfiow the initial seed objects and the final gradient grown
growing was performed. lterative single-pixel growing wasobjects for the example shown in Fig. 4(a).
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Detected 1. Morphological feature-based FP reduction
Object Set

The mammograms were partitioned into a number of dif-
ferent groups so that the morphological classifiers could be
trained and tested to differentiate masses from normal struc-
tures. In this study, the 253 mammograms were randomly
partitioned into ten independent groups. Each mammogram
was allowed to appear in only one group, and all images
from the same patient were grouped together. The goal of the
partitioning was to have approximately the same number of
images in each group under the given constraints. Classifica-

[Morpho.ogica. Reduceﬂ tion of the objects within each individual group was per-
Object Set formed with a classifier trained using the objects from the
l nine other image groups. This allowed an approximate 9:1
[ Stepwise Selection ] training-to-test ratio for morphological classification. By ro-
(672 Total Texture Features) tating the test group through all ten image sets, each mam-

mogram served as a test case once.

Eleven morphological features were used in the initial dif-
ferentiation of the detected structures. These features in-
cluded the following object-based measures: number of pe-
rimeter pixels, area, perimeter-to-area ratio, circularity,
rectangularity, and contrast. In addition, five normalized ra-

FROC dial length(NRL) features introduced by Kildagt al. were
also utilized!® They included the NRL mean value, standard
deviation, entropy, area ratio, and zero-crossing count. The
Fic. 6. Flowchart of the FP reduction scheme. The images were separate§efinition for each morphological feature can be found in the

into ten independent groups. Each group underwent morphological FP re- 10 . . . .
duction with the nine other groups used for classifier training. The reduce terature:” They are also included in Appendlx A of this

objects were recombined and stepwise feature selection was performed. TR&PEr.
images were again separated into the ten groups and each group underwent The morphological features were used as input variables
LDA texture classification again using the nine other groups for classifierfOr two different classifiers. A simple threshold classifier was
training. All test scores were then recombined and final FROC analysis Waf . L e
performed. ollowed by a linear discriminant analysisDA) classifier in
the morphological FP reduction step. The simple threshold
classifier set a maximum and minimum value for each mor-
phological feature based on the maximum and minimum fea-
ture values found from the breast masses in the data set. The

D. False positive reduction LDA classification was applied to all objects remaining after

The DWCE segmentation and region growing do not dif-threshold classification. The LDA classifier is a linear clas-
ferentiate masses from normal tissues. therefore. a |arg%'fier based on Fisher’s discriminant, which is optimal for the
number of breast structures were usually detected in eactHVO'ClaSlsg' 20 multivariate __normal, .equal covarlarjce
mammogram. Since the shape and texture of mass objects ﬁ)ﬁoblem. ““The LDA classifier was trained for each train-
general, should be different from those of normal breast"9 Set and applied to the appropriate test set. The LDA

structures, a set of features was extracted from each detecug,ﬁlss'f'er produced a single discriminant score for each ob-

object and used to differentiate between the detected struéQCt n t_he test set. A threshold was d_efmed as the maximurm
: . discriminant score of the masses. This threshold was applied

tures. The feature set included both morphological and tex: . :
; to the test set to further differentiate breast masses for normal

ture features. These features were then used in a sequenti

| : .
classification scheme to reduce the number of FP detectio Sfructures. The threshold was again based on all masses in

in the mammoarams. The sequential application of diﬁerenrlﬁe data set to ensure that no mass would be lost during this
9 ' d bp Initial stage. Figure 4(fshows the results of morphological

classifiers has been found to increase classiﬁcatior&P reduction for the example depicted in the figure
accuracyt’ and it also allows more computationally inten- '

sive classifiers to be applied to as few objects as possible. A )

flow chart depicting the general approach employed for FF2- Texture feature-based FP reduction

reduction is shown in Fig. 6. In this study, morphological ~ Texture-based classification followed the morphological
classification was initially used to eliminate objects that hadFP reduction. A large set of multiresolution texture features
shapes significantly different from breast masses. Textur@vas extracted for each detected object in the mammogram.
features were then computed for all remaining objects an&tepwise feature selection was then used to choose the most
used with a linear classifier as a final arbiter between massesppropriate set of features for linear classification. The se-
and normal structures. The following sections describe théected features were subsequently used with a LDA classifier
major components of the FP reduction scheme. to produce a single discriminant score for each detected ob-
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TaBLE I. The number of detected masses and FPs, the single stage reduction, the mean objggarearfd
standard deviation of the object areas,(,) for the initial stages in the mass detection scheme. Note texture FP
reduction followed the morphological FP reduction stage.

TPs FPs/image
Stage fraction  (initial stages) Reduction  waea(MM?) T prea (MNP)
DWCE 97% 49.1 E 33.6 66.8
Region growing 97% 45.3 0% 52.4 85.1
Morph. FP reduction 97% 35.5 22% 51.9 52.1

ject. The overall performance of the detection scheme wasification, stepwise feature selection was used to select a sub-
then evaluated with FROC analysis. The texture-based reset of feature from the pool of 572 global and local features.
duction scheme has been documented in the literature; therEBeature selection was performed using texture features de-
fore, this paper will only summarize the important compo-rived from the ROIs obtained from all 253 images. A total of
nents of the texture analysis and point out any differenced0 texture features were selected by stepwise feature selec-
from the previously described techniqu8g22 tion. Details on the application of stepwise feature selection

Regions of interestROIs) containing each object remain- can be found in our previous publicatiof?®
ing after morphological FP reduction were extracted from At this point in texture classification, the mammograms
the 100um resolution mammograms. The ROIs had a fixedwere again divided into the same ten partitions as described
size of 256256 pixels and the center of each ROI correin the morphological FP reduction step. Texture classifica-
sponded to the centroid location of a detected object. Théon was performed on each test group with a trained LDA
only exception was when the object was located near thelassifier employing the selected features. The training was
border of the breast and a complete 2&56 pixel ROl  based on the texture features derived from the ROIs in the
could not be defined. In this case the ROI was shifted untihine other image groups. The test scores within each group
the appropriate edge coincided with the border of the originalvere combined with the scores from the other groups to form
mammogram. a complete test set of discriminant scores.

Global and local multiresolution texture features, based The FROC analysis based on the single set of test scores
on the spatial gray level dependent®GLD) matrix?®?*  was used to evaluate the overall performance of the segmen-
were used in texture analy$$.An element of the SGLD tation method’?8
matrix, pq ¢(i,]), is defined as the joint probability that gray
levelsi andj occur at a given interpixel separatiehand |lIl. RESULTS

direction 6. In this study, 13 texture measures were defined The number of TP and FP detections found following the

for each SGLD matrix. These measures were correlation, efs\\cg region-growing, and morphological FP reduction
ergy, entropy, inertia, inverse difference moment, sum averx ’ ’

. . ... Stages of the segmentation algorithm are summarized in
age, sum variance, sum entropy, dlfference.average, diffe [able I. The DWCE segmentation identified 97% of the
ence varance, d|f.ference.entropy, information MeasUre %reast masses. Table | also includes the reduction percentage,
correlation 1, and information measure of correlation 2. The[he mean object areagif,,) and the standard deviations in

e e . re
Qeflnmonz for all texture measures can be f‘?“”d in thethe object areasay.,) for these initial stages. Table Il sum-
literaturé? and are included in Appendix B of this paper.

The wavelet transform with a four-coefficient Daubechiesmarlzes the mass type, mass size, mass subtlety, and the
kernel was used to decompose individual ROls into different
scales. For global texture features, four different waveleff4sLe Il. The mass type, mass size, mass subtlety, and mammographic
scales, 14 different interpixel distances and 2 different anglelssue density for the mammograms where the mass was not identified by
were used to produce 28 SGLD matrices. This resulted i he initial §egment§tlon. In the tablg, B dentifies a bgnlgn lesion, M identi-

. . ies a malignant lesion, the subtlety is on a scale @hvious)to 5 (subtle),

364 global multiresolution texture feature for each ROI. TO,nq preast density uses the BIRADS density scale @étty) to 4 (dense).
further describe the information specific to the mass and it8oth the subtlety and density rankings were performed by an experienced
surrounding normal tissue, a set of local texture featuregreast radiologist.
were calculated for each R&1:#?%Five rectangular subre-

gions were segmented from each ROI; an object subregion

Mass no. Type Sizémm) Subtlety Breast density

defined by the detected object in the center and four periph- 1 M 6 4 1
eral regions at the corners. Eight SGItur interpixel dis- 2 B 10 2 L
3 B 14 2 2
tances and two angleahnd a total of 208 local features were 4 B 10 5 3
calculated from the object subregion and the periphery. They g B 10 2 3
included 104 features in the object region and an additional 6 B 14 2 3
104 features defined as the difference between the feature 7 B 12 4 4
values in the object and the periphery. Average 10.9 26 2.4

In order to improve the generalization of the texture clas
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Fic. 7. Examples of masses missed during the initial DWCE segmentation sgagemammogram with a dense pectoral muscle, fatty breast tissue, and a
subtle malignant magsnass 1 in Table II)(b) a mammogram containing a low contrast benign ntasass 3 in Table Il); anéc) a mammogram with dense
structures next to a lower contrast benign m@sass 4 in Table II).

overall mammographic tissue density for the seven massesith corresponding gradient and object images for cases that
missed during the initial DWCE segmentation stage. Figurédnad problems during the region-growing stage. This figure

7 shows examples of the cases where the mass was misseshtains an example where the mass stopped growing before
during the DWCE stage. Figure 8 shows example image# reach the correct edge, and an example where the mass was

Fic. 8. A mammographic case con-
taining a mass that stopped growing
before it reached the correct ed@g—
(c) and a case containing a mass that
was split into two pieces during grow-
ing (d)—(f). This figure includes(a)
and (d) the original mammograms
with the mass locations identifie¢h)
and(e) the corresponding gradient im-
ages, andc) and (f) the final grown
objects.
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1.0 - structures were detected but the masses were missed. Figure
ﬁ”—f 7(c) shows an example of this type of miss. It shows the
0.8 R mammogram containing mass 4 from Table Il. Again the
= / dense pectoral muscle may have also hindered detection of
,% 0.6 1 the mass in this case. Other than these problems, the DWCE
- / segmentation performed reasonable well as a first stage in
T 0.4 mass segmentation. It could identify the majority of the
= masses while eliminating many of the lower contrast back-
o2 d ] TRAINING FROC | ground structures. However, the DWCE segmentation usu-
—— TEST FROC ally underestimated the actual borders of most structures. It
0.0 N O also had a tendency to merge the mass with neighboring
01 2 3 45 6 7 8 9 10 structures that may have had some tissue overlap with the
NUMBER OF FPs/IMAGE breast mass. A total of 48 masses had significant merging

between the mass and adjacent tissues after DWCE segmen-
Fic. 9. The training and test FROC curve obtained following LDA classifi- tation. This limited the effectiveness of the morphological FP

cation using 40 selected texture features. The training scores were obtainggduction step and limited the localization of the mass during
by averaging the nine training scores from each detected object. The FRO. xture-based classification

data points were obtained by varying the discriminant decision threshol . . .
from &e maximum to the mi,ﬁmurzvgme_ The region-growing stage reduced the effects of object

merging and significantly increased the size of the initial

DWCE objects. This is clearly shown in Table | where the
split into two pieces during region growing. Finally, Fig. 9 average size of a structure increases from 33.6° mwith
show the FROC training and test performance for the comDWCE alone to 52.4 mfnfollowing region growing. Like-
plete segmentation scheme. A summary of the overall peiwise, a comparison of objects from Figgb#and 4(e)shows
formance is given in Tables Ill and IV for a number of dif- the improvement in border definition following region grow-
ferent TP detection fractions. The test performance for théng. A combination of gray-scale and gradient-based region
combined DWCE and region-growing segmentation techgrowing was used because of the difficulty in stopping gray-
nique at a 90% TP detection level was 4.2 FPs per image argfale region growing at the correct edge and the need for
2.0 FPs per image at an 80% TP level. large seed objects in gradient-based region growing. The
combination approach performed adequately in our detection
task and led to an improvement in both morphological and
IV. DISCUSSION texture-based FP reduction. However, some problems were

The purpose of the initial DWCE segmentation stage wa®bserved. One problem was that small and low-contrast

to have a method sensitive enough to identify breast masseasructures had a tendency to grow into the background and
but which also limited the number of normal structures de-become large regions even though the actual structures were
tected. We have found the DWCE segmentation to be effecguite small. This did not occur with masses, but it did occur
tive in this task. In this study, DWCE segmentation identifiedwith other breast structures. Another problem was that struc-
246 of the 253(97%) masses in the images. Table Il sum- tures containing internal gradients did not always grow to the
marizes the properties of the masses missed in DWCE segorrect border, but ended up containing only a section of the
mentation. Masses 1 and 2 were missed because of a dertsee object. This occurred to some mass objects and led to
pectoral muscle visible on the mammogram which over-either inaccurate structural information or a mass being split
whelmed all lower-density structureg.e., both mammo- into multiple pieces. Figure 8 shows an example of both
grams had BIRADS category 1 breast densiffhe dense incomplete growing and a mass split into pieces during re-
pectoral muscle caused the lower level of the DWCE intengion growing. While these problems reduced the effective-
sity range to be set so high that lower intensity structuresess of the morphological FP reduction, we have found that
were missed. Figure 7(sshows the mammogram of the the overall benefit of region growing outweights its draw-
missed malignant magmass 1 from Table Il). The pectoral backs and leads to an improvement in detection accuracy
muscle is much denser than the mass. This led to the miswith our segmentation scheme.
One possible method for eliminating this type of miss may The final step in the segmentation was FP reduction. Mor-
be to identify the pectoral muscle in the mammogram and tghological feature classification was performed first in our
apply DWCE segmentation to only the remaining breast rereduction scheme. The morphological classification reduced
gion. Mass 3 in Table Il was missed because of the smallhe number of FPs per image from 45.3 to 35.5 as shown in
contrast difference between the mass and the backgrounthble I. Following morphological reduction, the average size
tissue even though the mass was not particularly small oof the objects was similar to the average size before reduc-
subtle. The mammogram containing this mass is depicted ition, but the standard deviation in object size fell from 85.1
Fig. 7(b). The remaining masses were missed in mammaomn? before reduction to 52.1 nfafter reduction. This in-
grams containing denser breast tissue. It was observed thdicates that morphological reduction eliminated objects that
DWCE segmentation had problems detecting masses thatere either much larger or much smaller than the average
were located near much denser normal structures. The denebject size, but had trouble differentiating between TPs and
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TasLE lIl. Summary of the training FROC result depicted in Fig. 9. The reported two-stage DWCE edge detection segmenta[ion
table contains the number of FPs per image for different TP fractions alon;echniquéo (discussed in Sec |) we obtained improved per-

with the percentage of FPs reduced at each TP level relative to the initi .
value of 19.4 FPs per image. The first entry in the table is the reductio ,Ormance atall TP levels despite the fact that the data set was

achieved without missing any additional breast masses. increased from 168 to 253 mammograms and two fewer FP
reduction stages were used with the new segmentation tech-
TP fraction FPs/image FP reduction nique.
98% 19.4 0% The results presented in this paper do not reflect results
95% 6.1 69% from a completely independent test set because the feature
90% 4.0 79% selection and the selection of morphological classification
80% 1.9 90%

thresholds were based on the entire image set. This was nec-
essary to obtain the best possible mass statistics from our
limited data set at the intermediate stages of the algorithm. A
FPs of similar sizes. Therefore, a classifier that can bettedatabase is currently being collected so that completely in-
differentiate between these similar shaped objects was stitlependent testing can be performed using the proposed
necessary. This was achieved, to a large extent, with texturenethod.
based feature classification.

A LDA, classifier based on SGLD texture features ex-
tracted from ROIls defined by each detected object has
proven to be effective in differentiating between similar V. CONCLUSION
shaped objects. The training and test FROC performance
curves following final texture classification are shown in Fig.

We have reported on an improved version of a breast

9. In addition, the number of FPs per image for different TpMass Qetectlon sgheme. The sgheme e_mploys DWCE seg-
mentation and object-based region growing. Its overall per-

fracti_ons are given in Tables Il! a_nd IV for the two curves. formance has achieved a 90% TP detection level with 4.2
As discussed in the Methods section, the mammograms weles per image and an 80% TP detection level with 2.0 FPs

divided into ten independent groups and a 9:1 training-to-test . . .

. . O er image with a diverse database of 253 mammograms. The
ratio was employed in the classification. Therefore, the te L . o

) o . . - —addition of region growing improved the borders of the de-
value for an object was its single testing score, and its train: . : .
. . tected objects and reduced merging between adjacent or
ing value was the average of the scores obtained for the

g . - . . . o overlapping structures. This improved the morphological in-
object during training with the nine different training group :
o ) : . . formation extracted from the detected breast masses and thus
combinations. The first point to note in Tables Ill and IV is

that the initial TP detection fraction has increased from 970/the dlffere_nt|at|0n betwe_en masses a’?d normal tissues. The
P reduction was also simplified to a single stage of morpho-

in Table | to 98%(.e., 247 total masses were detegtekhis logical feature classification and a single stage of SGLD tex-
is due to the change in the definition of a TP with the texture 9 9 9

ROIs. The additional mass was detected because in one ;[)lfre feature classification. It is expected that a simplified FP

; . reduction scheme has the potential to generalize better than a
the seven mammograms where no object contained the mass . o .
. . ; more complicated scheme when CAD is implemented in a
centroid, an object ROI overlapped with at least 50% of the .. . . !
e clinical setting. This breast mass segmentation scheme pro-
mass. The texture classification was able to reduce the nuni- . :
. vided improved FROC performance compared to our previ-

ber of FPs per image from an initial value of 35.5 to approxi- . . .
mately 19 without the loss of any TPs, achieving a 45%ously reported two-stage DWCE technique. Further investi

reduction. While the number of FPs is still large, it indicatesg:tlomnesnt:trign US de;ﬂ;;’?{ﬂ to di:‘?;Fr)er(r)]\t/e r;ﬁnreﬂgg;ggzwmgt
that the more computationally intensive texture classification 9 y yzing g N

: : ", may improve the border definition of the detected structures,
performs better than morphological reduction. Additional re- .
as well as to develop new object features that may further

duction in FPs can be achieved with lower TP detection. . )
differentiate masses from normal structures. Preclinical test-

thresholds. For example, at a 90% TP fraction the FPs deh of this alaorithm on a large set of independent mammo-
creased to 4.2 per image and at an 80% TP level the FPSY 9 9 P

decreased to 2.0 per image. Comparing with our previousl)gJrams will also be conducted.

TaBLE IV. Summary of the test FROC result depicted in Fig. 9. The table

contains the number of FPs per image for different TP fractions along witr ACKNOWLEDGMENTS
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19.2 FPs per image. The first entry in the table is the reduction achieved This work is supported by the Whitaker FoundatitiP),
without missing any additional breast masses. USPHS Grant No. CA 48129, a Career Development Award

DAMD 17-96-1-6012(BS), and research grant DAMD 17-

TP fraction FPs/image FP reduction B
96-1-6254 from the U.S. Army Medical Research and Mate-
982" 19.2 0‘(’? riel Command. The content of this publication does not nec-
ggoﬁ i'; sgoﬁ essarily reflect the position of the government, and no
80% 20 90% _of;‘icialdendorsement of any equipment or product should be
inferred.

Medical Physics, Vol. 26, No. 8, August 1999



1652 Petrick et al.: Combined adaptive enhancement and region-growing segmentation of breast masses 1652

APPENDIX A: MORPHOLOGICAL FEATURE Areg

DEFINITIONS Rect= (A9)

Z‘v’x,VyFBBi .
A set of 11 features is used in morphological FP reduc- .
. - “NRL mean:
tion. Ten of these features are based solely on the binary

object defined by the segmentation. The other feature utilizes 1 Nelt

the original gray scale values inside and surrounding the seg- A#NRL;— N_e ]ZO Fij- (A10)

mented object. An individual object segmented from image

N

F(x,y) is defined as:

NRL standard deviation:

1, (x,y) is a pixel in objecti \/1 Ne t
Fon,OGY)=1 (AL =\ M= fnrl)> Al1
oin(X,Y) [0, otherwise. ) ONRL; N, jzo ( i MNRLI) ( )
In addition, FBBi(x,y) defines the pixels contained in the NRL entropy:
smallest bounding box completely containing objecnd Np—1
Fequ(X,y) defines the pixels of the circle with the same area Egg = — 2 proh ;-log,(proh ;). (A12)
I i =0 , ,

asFop; and centered at its centroid location. The radius of

Feqv(X.y) is given by

NRL area ratio:

Ne—1
area (Fp; _ .
- 7(7 obJ.). A2) AreaR—{l\lem\lRLi j§=:0 (Fi ;= MNRL) T > MNRL | -
(A13)
Five features are based on the normalized radial IengtRlRL zero-crossing count:
(NRL), defined as the Euclidean distance from an object’s ‘
centroid to each of its edge pixels and normalized relative to Ne—1
the maximum radial length for the objetThis results in a ZCG= ZO zZ, (A14)
NRL vector for each objedtgiven as =
, where

Ri={ri;:0<j<=N.—1}, (A3)
where N, is the number of edge pixels in the object and Lo (Fima s ) 0T 2 e,
r;,j=<1. The histogram of the normalized radial lengthis also  z; ;=9 1, (Fij-1<anre) N (i j+1> KnrL)
calculated and is given by 0. otherwise.

Pi={proh ; :0<j<Np—1}, (A4)  Contrast:
whereN,, is the number of bins used in the histogram. Using 9
these basic definitions, the morphological features are de- cont=—-, (A15)
fined as follows. Perimeter: out

Perim= 2, Pi(xy), (A5)
where
1, Fobji(x,y) is an edge pixel of object,
Pix.y)= 0, otherwise.
Area:
Area:v;vy Fop O6Y). (A6)
Perimeter-to-area ratio:
Peri
PAR = Ares' (A7)
Circularity:
Circi= Zvx,vyFon; M Feqy a8)

Areg

Rectangularity:
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wheregini is the average gray value inside objéend Jout

is the average gray value of the one-pixel wide background
surrounding the object.

APPENDIX B: SGLD TEXTURE FEATURE
DEFINITIONS

Global and local multiresolution texture features are
based on the spatial gray level dependen@&GLD)
matrix?*~2* An element of the SGLD matrixpg 4(i,j), is
defined as the joint probability that gray levélandj occur
at a given interpixel separatiotd and directioné. In this
study,n is defined as the number of gray levels in an image.
A total of 13 different texture measures were defined for
each SGLD matrix. They were defined as folloffs.

Energy:
n-1n-1

E=> > p3i.i). (B1)
i=0 j=0

Correlation:
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Zn lEn l( — ) (J— My)pd,ﬁ(iaj)

Ox0y
where
n-1n-1
= 2 2 iPaing),
n-1n-1

py= 2, 2 iPas(iii),
i=0 j=0

= V202230 — 10 ?Pa, (i),

and
y= V2000 — 1) 2Pa,oi )
Entropy:
n—-1n-1
-2 JEO Pa,a(i,1)10Gx(Pg (i .]))-
Inertia:

n-1n-1

In=2 > (i—j)2pg,q(i,i)-
i=0 j=0

Inverse difference moment:
n—-1n-1

1
IDM= 2 2 mpdﬁ(l )

Sum average:
2n—2
pxry= 2 Kbriy(K),

where

px+y(k)=§ 2 Pa,o(i ),

i+j=k andk=0,...,2n—2.

Sum variance:
2n—2

0->2<+y: I;O (k— /-Lx+y)2px+y(k)-

Sum entropy:
2n—2

Hyy=— go Prsy(K)0Go(Py 1 y(K)).

Difference average:

n—1
-y= IZO Ipry(l)a
where
n-1n-1

Pey(N=2 2 Paglisi), li—j|=I
=0 j=0
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and =0

Difference variance:
(B2)

= .:20 (1= sx—y) 2Py (D). (B16)

(B3) Difference entropy:

n—-1
== 2 Puy(DIogy(py—y(1). (B17)
(B4) =0
Information measure of correlation 1:
(B5)
IMC, =1 B18
1= max(Hy Hyl (B12)
(B6) Information measure of correlation 2:

IMC,= 1 —exp 2H2=H) (B19)

(B7)  where

n-1
= 2 Pu(D)Iogz(py(i)), (B20)
(B8) n-1
=2 py()1og:(py(): (B21)
n-1n-1
B9)  Hi=—2 3 pa(i.Iog(p(i)py(i) (B22)
and
n-1n-1
(B10)  Hy=-2 jZO Px(1)Py(1)10g>(Px(i )Py (})). (B23)
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