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As an ongoing effort to develop a computer aid for detection of masses on mammograms, we
recently designed an object-based region-growing technique to improve mass segmentation. This
segmentation method utilizes the density-weighted contrast enhancement~DWCE! filter as a pre-
processing step. The DWCE filter adaptively enhances the contrast between the breast structures
and the background. Object-based region growing was then applied to each of the identified struc-
tures. The region-growing technique uses gray-scale and gradient information to adjust the initial
object borders and to reduce merging between adjacent or overlapping structures. Each object is
then classified as a breast mass or normal tissue based on extracted morphological and texture
features. In this study we evaluated the sensitivity of this combined segmentation scheme and its
ability to reduce false positive~FP!detections on a data set of 253 digitized mammograms, each of
which contained a biopsy-proven breast mass. It was found that the segmentation scheme detected
98% of the 253 biopsy-proven breast masses in our data set. After final FP reduction, the detection
resulted in 4.2 FP per image at a 90% true positive~TP! fraction and 2.0 FPs per image at an 80%
TP fraction. The combined DWCE and object-based region growing technique increased the initial
detection sensitivity, reduced merging between neighboring structures, and reduced the number of
FP detections in our automated breast mass detection scheme. ©1999 American Association of
Physicists in Medicine.@S0094-2405~99!00808-1#

Key words: computer-aided diagnosis, digital mammography, breast mass detection, density-
weight contrast enhancement, region growing
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I. INTRODUCTION

Mammographic screening has proven to be an effec
method for early detection of breast cancer. Women i
regular mammographic screening program have a sta
cally significant reduction in breast cancer mortality wh
compared to women not in such a program.1 In addition,
independent double reading by two radiologists has pro
to significantly increase the sensitivity of mammograp
screening.2 Therefore, regular screening and double read
would appear to be a sensible approach for breast ca
detection. While regular screening is emphasized in he
care programs, the higher cost and increased workload on
radiologists may make double reading by two radiologi
impractical in a general screening situation. Computer-ai
diagnosis~CAD! is one alternative that could allow a larg
number of mammograms to be double read by a single r
ologist aided by the computer. This technique may impro
the accuracy of both detection and characterization of br
lesions.

Many researchers have been interested in computer
analysis of mammograms3 and a number of groups have d
veloped algorithms for automated detection of breast mas
The detection of spiculated masses has been of partic
importance because of its high likelihood of malignanc
Karssemeijer et al.,4 Kobatake et al.,5 and Kegelmeyer
et al.6 have all proposed methods for detecting spicula
masses on digitized mammograms. However, since a num
1642 Med. Phys. 26 „8…, August 1999 0094-2405/99/26„8
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of malignant masses are not spiculated, other groups h
tackled the general problem of identifying all types of bre
masses on digitized mammograms.3,7–11

Our research group has reported on a method for a
matically detecting masses on digitized mammograms.10,12

The method employed multiple stages of density-weigh
contrast enhancement~DWCE! segmentation. The DWCE
segmentation was first applied to the full mammogram, a
then reapplied to local regions within the mammogram
improve object border definition. A final object splittin
stage was employed to eliminate merging between neigh
ing or overlapping breast structures. False positive~FP! re-
duction based on extracted morphological features was
plied after each segmentation step with texture analysis u
as a final arbitrator between masses and normal structu
The segmentation was evaluated on 168 digitized mam
grams and it achieved a performance of 4.4 FPs per imag
a 90% true positive~TP! detection fraction and 2.3 FPs pe
image at an 80% TP detection fraction.10

Our approach to mass detection has been to first iden
all significant structures within the breast region using a g
bal segmentation technique and then refine the initial ob
borders using local processing. Finally, we differentiate
tween true masses and normal structures using morpho
cal and texture information. Our method is therefore diffe
ent from other detection algorithms that utilize the obje
shape information for initial detection. The disadvantage
1642…/1642/13/$15.00 © 1999 Am. Assoc. Phys. Med.
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1643 Petrick et al. : Combined adaptive enhancement and region-growing segmentation of breast masses 1643
our combined global and local detection approach is tha
large number of normal structures are identified in the ini
stage. This can lead to additional FPs if the classificatio
suboptimal. However, the advantage of this approach is
it can identify difficult masses since the initial detection
not based on shape information. The shape informatio
still used in the classification stage to reduce FPs.

In this paper, we present an improved version of our tw
stage DWCE segmentation approach. This new scheme
designed to both increase specificity and reduce the ov
complexity of the segmentation. A primary motivation is
develop a method for eliminating the merging betwe
neighboring structures in the local DWCE processing s
and thus improve local segmentation. We introduce
object-based region-growing technique to perform this ta
Improved local segmentation serves a number of purpo
First, it improves the morphological and texture informati
used for FP reduction as well as eliminates the need for
shape-based splitting step. It also enables us to eliminate
morphological FP reduction steps. This significantly redu
the overall complexity of the detection program and sho
lead to a more practical implementation in a general clini
setting. In this paper, we summarize the intermediate
overall detection performance of the improved mass segm
tation algorithm and describe some of its limitations.

II. METHODS

A. Database

The clinical mammograms used in this study were
lected from the files of patients who had undergone biops
the University of Michigan Hospital. The mammogram
were acquired with American College of Radiology~ACR!
accredited mammography systems. Kodak MinR/MR
screen/film systems with extended cycle processing w
used as the image recorder. The mammography systems
a 0.3-mm focal spot, a molybdenum anode, 0.03-mm th
molybdenum filter, and a 5:1 reciprocating grid. The sel
tion criterion used by the radiologists was simply that
biopsy-proven mass existed on the mammogram. The
set consisted of 253 mammograms from 102 patients, an
included 128 malignant and 125 benign masses. Sixty-th
of the malignant and six of the benign masses were judge
be spiculated by a MQSA approved radiologist. The size
the masses ranged from 5 to 29 mm~mean size512.5 mm!
and their visibility ranged from 1~obvious! to 5 ~subtle!
~mean52.1!. Figures 1 and 2 show the histograms of m
size and mass visibility for the data set.13 These distributions
characterize the difficulty and diversity of the cases c
tained in the data set.

The mammograms were digitized with a LUMISYS DIS
1000 laser film scanner with a pixel size of 100mm and 12
bit gray level resolution. The gray levels were linearly pr
portional to optical density in the 0.1 to 2.8 optical dens
unit ~O.D.! range. The slope was 0.001 O.D./pixel value. T
slope gradually fell off in the 2.8 to 3.5 O.D. range.10,13 A
large pixel value corresponds to a low optical density w
this digitizer.
Medical Physics, Vol. 26, No. 8, August 1999
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The location and extent of all the biopsy-proven mas
were marked on the original films. The radiologist then ide
tified both the centroid of the lesion and the smallest bou
ing box containing the entire lesion using an interactive i
age manipulation tool on a workstation. Both procedu
were performed using the original marked film as a gui
The lesion centroid was used to identify TP detections a
the morphological FP reduction step. If a segmented ob
was within 4 mm of the mass centroid, it was considere
TP. All other segmented objects were considered as FPs.
final free-response receiver operating characteristic~FROC!
curves following texture-based classification used the m
precise mass bounding box for TP identification. A regi
was considered a TP only when it contained more than 5
of the mass bounding box.

FIG. 1. Histograms of mass size for the 253 masses contained in our dat
Mass sizes were measured as the largest axis of the mass by an exper
breast radiologist.

FIG. 2. Histograms of mass subtlety for the 253 masses contained in our
set. Mass subtleties were rated by an experienced breast radiologist fr
~obvious!to 5 ~subtle!.
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1644 Petrick et al. : Combined adaptive enhancement and region-growing segmentation of breast masses 1644
B. Density-weighted contrast enhancement
segmentation

The block diagram for the proposed detection schem
shown in Fig. 3. Global DWCE segmentation was used
identify an initial set of breast structures on the digitiz
mammograms. These objects were then used as seed
tions to perform gradient-based region growing. A thorou
description of the DWCE technique can be found in t
literature.10,12,14 Briefly, the DWCE technique employs a
adaptive filter to enhance the local contrast and thus ac
tuate mammographic structures in an image. As the t
implies, the parameters of the enhancement filter are ba
on the local density within the image and the filter is appl
to the image on a pixel-by-pixel basis. The filter is design
to suppress very low contrast values, to emphasize the lo
medium contrast values and to just slightly deemphasize
high contrast values. The effect of suppressing the extrem
low contrast values is to reduce bridging between adjac
breast structures. Pixels with low to medium contrast val
are enhanced so that more subtle structures can be dete
Finally, the slight deemphasis of the high contrast structu
is included to provide a more uniform intensity distributio
for detected structures. After contrast enhancem
Laplacian–Gaussian edge detection is applied and all
closed objects are filled to produce a set of detected st
tures for the image. The DWCE segmentation is applied
mammograms that have been smoothed and subsam
from their original 100mm pixel size to an 800mm pixel
resolution.10 The DWCE stage has been found to be effect
in detecting most breast structures including a signific
portion of breast masses. However, the DWCE borders u
ally fall well inside the true borders of an object and a s
nificant number of adjacent structures are merged into sin
objects. This occurs most frequently when the adjac
breast structures have some tissue overlap.

FIG. 3. Block diagram of the breast mass segmentation scheme. A digi
mammogram undergoes DWCE segmentation followed by object-base
gion growing and then morphological and texture classification. The per
mance of the segmentation scheme was evaluated by FROC analysis.
Medical Physics, Vol. 26, No. 8, August 1999
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C. Object-based region-growing segmentation

1. Initial gray-scale region growing

Before gradient-based region growing was applied, an
tial set of seed objects was identified. This was accomplis
by first identifying all local maxima in the original gray-sca
image which occurred within the extent of the DWCE o
jects. Local maxima were defined using the ultimate eros
technique described by Russ.15 In simple terms, a pixel was a
local maximum if and only if its value was at least as large
all nearest neighbor pixel values. All maxima were identifi
and grown into larger objects by a simple gray-scale reg
growing technique as follows. Gaussian smoothing~s52.0!
was applied to the gray-scale image, and a maximum an
minimum pixel value threshold were specified to selec
range of acceptable pixel values. The thresholds were
fined as

Gi
max151.01Gi

UEP ~1!

and

Gi
min150.99Gi

UEP, ~2!

where Gi
UEP was the pixel value of theith maximum and

Gi
max1 and Gi

min1 were the maximum and minimum pixe
value thresholds, respectively. All pixels within a radius
20 pixels from a maximum location and with a pixel valu
inside the defined range were considered to be part of
object. This was repeated for all maxima within an imag
Figures 4~a!–4~d! show an original gray-scale image an
corresponding images with the DWCE objects, the lo
maxima, and the gray-scale region-grown objects hi
lighted. The expanded objects were used as seeds for
gradient-based region growing, described below.

2. Gradient images

A mammogram at 200mm resolution was used in th
gradient-based region-growing stage. The 200mm resolution
image was obtained by averaging 232 pixels from the origi-
nal image. The reduced resolution image had to be smoo
again before gradient filtering because the mammograp
tissue produced gradients not only within individual bre
structures but also throughout the background portions of
image. Figure 5~b!shows the gradient magnitude image r
sulting from vertical and horizontal Sobel filtering applied
the 200mm gray-scale image shown in Fig. 5~a!. It clearly
demonstrates the large number of gradients throughout
image and the difficulty in applying object-based regi
growing without additional smoothing. For our applicatio
the smoothing needed to reduce the spurious gradients
accomplished by frequency-weighted Gaussian~FWG! filter-
ing. Frequency-weighted filtering is a technique in which
pixels within the image are split into a base and a resid
term. The residual is either positive or negative. This te
nique produces three subimages from an original imageF,
where

F5FF1Fsub11Fsub2. ~3!

ed
re-
r-
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FIG. 4. Objects produced by each segmentation step for a typical mammogram from our data set:~a! the original mammogram with the mass locatio
identified,~b! the DWCE objects,~c! the local maxima,~d! the objects obtained with gray-scale region growing,~e! the objects obtained with gradient-base
region growing, and~f! the objects remaining after morphological FP reduction.
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The first filter component,FF , is a filtered version of the
original image. In our case, a Gaussian filter,G(m50,s
510), was used. The second and third images are the p
tive and negative residual images ofF2FF , respectively.
The Fsub1 residual is nonzero where the image intensity
larger than the local background andFsub2 is nonzero where
the image intensity is smaller than the local background.
a particular image pixel, (x,y), the residual images are de
fined as

Fsub1~x,y![H F~x,y!2FF~x,y!, F~x,y!.FF~x,y!,

0, otherwise,
~4!

and

Fsub2~x,y![H F~x,y!2FF~x,y!, F~x,y!,FF~x,y!,

0, otherwise.
~5!

Two FWG filters were designed for sequentially process
the mammograms. The first FWG filtering step reduced
gradients within the breast structures and produced an in
mediate image,F1 , which had the form

F1~F !5 3
4FF~F !1 1

4Fsub1~F !, ~6!
Medical Physics, Vol. 26, No. 8, August 1999
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where theFF and Fsub1 images were derived fromF, the
original 200mm resolution gray-scale image. A second FW
filtering step was used to eliminate gradients in the bre
background. It produced imageF2 , which had the form

F2~F1!5Fsub1~F1!, ~7!

where theFsub1 image was derived from imageF1 . The
result of applying the two FWG filters to the original mam
mogram in Fig. 5~a!is shown in Fig 5~c!. In this image, a
significant amount of background has been eliminated
the gradients in the remaining structures have been redu
Horizontal and vertical Sobel filters15 were then applied to
imageF2 and the magnitude calculated to produce a grad
image as shown in Fig. 5~d!. Finally, 535 median filtering
was used to produce the final gradient image shown in F
5~e!. This image was used in the gradient-based reg
growing step.

3. Final gradient-based region growing

Each initially grown object~described in Sec. II C 1!was
again grown by applying an adaptive technique to the gra
ent image,F2 , described in Sec. II C 2. The region-growin
technique was based on the work of Chang and Li16 and their
adaptive homogeneity test for determining the similarity b
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1646 Petrick et al. : Combined adaptive enhancement and region-growing segmentation of breast masses 1646
FIG. 5. Processing steps used to define the gradient images:~a! the original mammogram with the mass location identified;~b! the gradient magnitude image
obtained from horizontal and vertical Sobel filtering of the original mammogram;~c! the image resulting from FWG filtering of the original mammogram;~d!
the gradient magnitude image resulting from horizontal and vertical Sobel filtering of the FWG image; and~e! the image resulting from median filtering o
the gradient magnitude image.
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tween regions. We have modified this technique to perfo
object-based region growing. For a mammogram, the co
sponding gradient image was smoothed using a Gaus
filter ~s52.0!. A cumulative distribution function~CDF! of
pixel values was then calculated from the smoothed grad
image for each object. For each object, the pixel va
thresholds were defined as

Gi ,0
maxF5$g:CDFi ,0~g!51.0% ~8!

and

Gi ,0
minF5$g:CDFi ,0~g!50.0%, ~9!

whereg was a pixel value and CDFi ,0(g) was the cumulative
pixel value distribution within the border of objecti and for
initial growing iteration 0. The initial growing threshold
simply correspond to the maximum and minimum pixel v
ues within an object. Single-pixel growing was performed
all objects using the thresholds for each individual objec
define a range of acceptable pixel values. In this cont
single-pixel growing meant growing was limited to on
those pixels directly connected to the initial border. On
single-pixel growing was applied to all objects within th
image, the thresholds were adjusted and a second iteratio
growing was performed. Iterative single-pixel growing w
Medical Physics, Vol. 26, No. 8, August 1999
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employed to limit the influence of the order that objects we
grown within an image. The thresholds used for theith ob-
ject during thejth growing iteration were defined as

Gi , j
maxF5$g:CDFi . j~g!51.0% ~10!

and

Gi , j
maxF5H g:CDFi , j~g!5

j

30J , ~11!

where CDFi , j (g) was the cumulative pixel value distributio
from the smoothed gradient image within the current bord
of object i. Single pixel growing was applied to all object
within the image. This iterative procedure was repeated u
no more connected pixels had a value within the appro
ately defined range. Note that neighboring objects were
allowed to merge together during this region-growing sta
so that growing between adjacent objects stopped with
least a one pixel gap between them. Figures 4~d! and 4~e!
show the initial seed objects and the final gradient gro
objects for the example shown in Fig. 4~a!.
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D. False positive reduction

The DWCE segmentation and region growing do not d
ferentiate masses from normal tissues, therefore, a l
number of breast structures were usually detected in e
mammogram. Since the shape and texture of mass objec
general, should be different from those of normal bre
structures, a set of features was extracted from each dete
object and used to differentiate between the detected s
tures. The feature set included both morphological and
ture features. These features were then used in a seque
classification scheme to reduce the number of FP detect
in the mammograms. The sequential application of differ
classifiers has been found to increase classifica
accuracy,17 and it also allows more computationally inte
sive classifiers to be applied to as few objects as possibl
flow chart depicting the general approach employed for
reduction is shown in Fig. 6. In this study, morphologic
classification was initially used to eliminate objects that h
shapes significantly different from breast masses. Tex
features were then computed for all remaining objects
used with a linear classifier as a final arbiter between ma
and normal structures. The following sections describe
major components of the FP reduction scheme.

FIG. 6. Flowchart of the FP reduction scheme. The images were sepa
into ten independent groups. Each group underwent morphological FP
duction with the nine other groups used for classifier training. The redu
objects were recombined and stepwise feature selection was performed
images were again separated into the ten groups and each group unde
LDA texture classification again using the nine other groups for class
training. All test scores were then recombined and final FROC analysis
performed.
Medical Physics, Vol. 26, No. 8, August 1999
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1. Morphological feature-based FP reduction

The mammograms were partitioned into a number of d
ferent groups so that the morphological classifiers could
trained and tested to differentiate masses from normal st
tures. In this study, the 253 mammograms were rando
partitioned into ten independent groups. Each mammog
was allowed to appear in only one group, and all imag
from the same patient were grouped together. The goal of
partitioning was to have approximately the same numbe
images in each group under the given constraints. Classi
tion of the objects within each individual group was pe
formed with a classifier trained using the objects from t
nine other image groups. This allowed an approximate
training-to-test ratio for morphological classification. By r
tating the test group through all ten image sets, each m
mogram served as a test case once.

Eleven morphological features were used in the initial d
ferentiation of the detected structures. These features
cluded the following object-based measures: number of
rimeter pixels, area, perimeter-to-area ratio, circular
rectangularity, and contrast. In addition, five normalized
dial length~NRL! features introduced by Kildayet al. were
also utilized.18 They included the NRL mean value, standa
deviation, entropy, area ratio, and zero-crossing count.
definition for each morphological feature can be found in
literature.10 They are also included in Appendix A of thi
paper.

The morphological features were used as input variab
for two different classifiers. A simple threshold classifier w
followed by a linear discriminant analysis~LDA! classifier in
the morphological FP reduction step. The simple thresh
classifier set a maximum and minimum value for each m
phological feature based on the maximum and minimum f
ture values found from the breast masses in the data set.
LDA classification was applied to all objects remaining af
threshold classification. The LDA classifier is a linear cla
sifier based on Fisher’s discriminant, which is optimal for t
two-class, multivariate normal, equal covarian
problem.19,20 The LDA classifier was trained for each train
ing set and applied to the appropriate test set. The L
classifier produced a single discriminant score for each
ject in the test set. A threshold was defined as the maxim
discriminant score of the masses. This threshold was app
to the test set to further differentiate breast masses for nor
structures. The threshold was again based on all masse
the data set to ensure that no mass would be lost during
initial stage. Figure 4~f!shows the results of morphologica
FP reduction for the example depicted in the figure.

2. Texture feature-based FP reduction

Texture-based classification followed the morphologi
FP reduction. A large set of multiresolution texture featu
was extracted for each detected object in the mammogr
Stepwise feature selection was then used to choose the
appropriate set of features for linear classification. The
lected features were subsequently used with a LDA class
to produce a single discriminant score for each detected
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TABLE I. The number of detected masses and FPs, the single stage reduction, the mean object area (mArea), and
standard deviation of the object areas (sArea) for the initial stages in the mass detection scheme. Note texture
reduction followed the morphological FP reduction stage.

Stage
TPs

fraction
FPs/image

~initial stages! Reduction mArea ~mm2) sArea ~mm2)

DWCE 97% 49.1 ¯ 33.6 66.8
Region growing 97% 45.3 0% 52.4 85.1
Morph. FP reduction 97% 35.5 22% 51.9 52.1
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ject. The overall performance of the detection scheme
then evaluated with FROC analysis. The texture-based
duction scheme has been documented in the literature; th
fore, this paper will only summarize the important comp
nents of the texture analysis and point out any differen
from the previously described techniques.10,21,22

Regions of interest~ROIs!containing each object remain
ing after morphological FP reduction were extracted fro
the 100mm resolution mammograms. The ROIs had a fix
size of 2563256 pixels and the center of each ROI co
sponded to the centroid location of a detected object.
only exception was when the object was located near
border of the breast and a complete 2563256 pixel ROI
could not be defined. In this case the ROI was shifted u
the appropriate edge coincided with the border of the orig
mammogram.

Global and local multiresolution texture features, bas
on the spatial gray level dependence~SGLD! matrix,23,24

were used in texture analysis.22 An element of the SGLD
matrix, pd,u( i , j ), is defined as the joint probability that gra
levels i and j occur at a given interpixel separationd and
directionu. In this study, 13 texture measures were defin
for each SGLD matrix. These measures were correlation,
ergy, entropy, inertia, inverse difference moment, sum av
age, sum variance, sum entropy, difference average, di
ence variance, difference entropy, information measure
correlation 1, and information measure of correlation 2. T
definition for all texture measures can be found in t
literature22 and are included in Appendix B of this paper.

The wavelet transform with a four-coefficient Daubech
kernel was used to decompose individual ROIs into differ
scales. For global texture features, four different wave
scales, 14 different interpixel distances and 2 different ang
were used to produce 28 SGLD matrices. This resulted
364 global multiresolution texture feature for each ROI.
further describe the information specific to the mass and
surrounding normal tissue, a set of local texture featu
were calculated for each ROI.10,22,25Five rectangular subre
gions were segmented from each ROI; an object subre
defined by the detected object in the center and four per
eral regions at the corners. Eight SGLD~four interpixel dis-
tances and two angles!and a total of 208 local features we
calculated from the object subregion and the periphery. T
included 104 features in the object region and an additio
104 features defined as the difference between the fea
values in the object and the periphery.

In order to improve the generalization of the texture cl
l. 26, No. 8, August 1999
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sification, stepwise feature selection was used to select a
set of feature from the pool of 572 global and local featur
Feature selection was performed using texture features
rived from the ROIs obtained from all 253 images. A total
40 texture features were selected by stepwise feature s
tion. Details on the application of stepwise feature select
can be found in our previous publications.21,26

At this point in texture classification, the mammogram
were again divided into the same ten partitions as descr
in the morphological FP reduction step. Texture classifi
tion was performed on each test group with a trained LD
classifier employing the selected features. The training w
based on the texture features derived from the ROIs in
nine other image groups. The test scores within each gr
were combined with the scores from the other groups to fo
a complete test set of discriminant scores.

The FROC analysis based on the single set of test sc
was used to evaluate the overall performance of the segm
tation method.27,28

III. RESULTS

The number of TP and FP detections found following t
DWCE, region-growing, and morphological FP reducti
stages of the segmentation algorithm are summarized
Table I. The DWCE segmentation identified 97% of t
breast masses. Table I also includes the reduction percen
the mean object areas (mArea) and the standard deviations i
the object areas (sArea) for these initial stages. Table II sum
marizes the mass type, mass size, mass subtlety, and

TABLE II. The mass type, mass size, mass subtlety, and mammogra
tissue density for the mammograms where the mass was not identifie
the initial segmentation. In the table, B dentifies a benign lesion, M ide
fies a malignant lesion, the subtlety is on a scale of 1~obvious!to 5 ~subtle!,
and breast density uses the BIRADS density scale of 1~fatty! to 4 ~dense!.
Both the subtlety and density rankings were performed by an experien
breast radiologist.

Mass no. Type Size~mm! Subtlety Breast density

1 M 6 4 1
2 B 10 2 1
3 B 14 2 2
4 B 10 2 3
5 B 10 2 3
6 B 14 2 3
7 B 12 4 4

Average 10.9 2.6 2.4



nd a

1649 Petrick et al. : Combined adaptive enhancement and region-growing segmentation of breast masses 1649
FIG. 7. Examples of masses missed during the initial DWCE segmentation stage:~a! a mammogram with a dense pectoral muscle, fatty breast tissue, a
subtle malignant mass~mass 1 in Table II!;~b! a mammogram containing a low contrast benign mass~mass 3 in Table II!; and~c! a mammogram with dense
structures next to a lower contrast benign mass~mass 4 in Table II!.
ss
ur
is
ge

that
ure
fore
was
overall mammographic tissue density for the seven ma
missed during the initial DWCE segmentation stage. Fig
7 shows examples of the cases where the mass was m
during the DWCE stage. Figure 8 shows example ima
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with corresponding gradient and object images for cases
had problems during the region-growing stage. This fig
contains an example where the mass stopped growing be
it reach the correct edge, and an example where the mass
-
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FIG. 8. A mammographic case con
taining a mass that stopped growin
before it reached the correct edge~a!–
~c! and a case containing a mass th
was split into two pieces during grow
ing ~d!–~f!. This figure includes~a!
and ~d! the original mammograms
with the mass locations identified,~b!
and~e! the corresponding gradient im
ages, and~c! and ~f! the final grown
objects.
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split into two pieces during region growing. Finally, Fig.
show the FROC training and test performance for the co
plete segmentation scheme. A summary of the overall p
formance is given in Tables III and IV for a number of di
ferent TP detection fractions. The test performance for
combined DWCE and region-growing segmentation te
nique at a 90% TP detection level was 4.2 FPs per image
2.0 FPs per image at an 80% TP level.

IV. DISCUSSION

The purpose of the initial DWCE segmentation stage w
to have a method sensitive enough to identify breast ma
but which also limited the number of normal structures d
tected. We have found the DWCE segmentation to be ef
tive in this task. In this study, DWCE segmentation identifi
246 of the 253~97%! masses in the images. Table II sum
marizes the properties of the masses missed in DWCE
mentation. Masses 1 and 2 were missed because of a d
pectoral muscle visible on the mammogram which ov
whelmed all lower-density structures~i.e., both mammo-
grams had BIRADS category 1 breast density!. The dense
pectoral muscle caused the lower level of the DWCE int
sity range to be set so high that lower intensity structu
were missed. Figure 7~a!shows the mammogram of th
missed malignant mass~mass 1 from Table II!. The pectora
muscle is much denser than the mass. This led to the m
One possible method for eliminating this type of miss m
be to identify the pectoral muscle in the mammogram and
apply DWCE segmentation to only the remaining breast
gion. Mass 3 in Table II was missed because of the sm
contrast difference between the mass and the backgro
tissue even though the mass was not particularly smal
subtle. The mammogram containing this mass is depicte
Fig. 7~b!. The remaining masses were missed in mam
grams containing denser breast tissue. It was observed
DWCE segmentation had problems detecting masses
were located near much denser normal structures. The d

FIG. 9. The training and test FROC curve obtained following LDA class
cation using 40 selected texture features. The training scores were obt
by averaging the nine training scores from each detected object. The F
data points were obtained by varying the discriminant decision thres
from the maximum to the minimum value.
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structures were detected but the masses were missed. F
7~c! shows an example of this type of miss. It shows t
mammogram containing mass 4 from Table II. Again t
dense pectoral muscle may have also hindered detectio
the mass in this case. Other than these problems, the DW
segmentation performed reasonable well as a first stag
mass segmentation. It could identify the majority of t
masses while eliminating many of the lower contrast ba
ground structures. However, the DWCE segmentation u
ally underestimated the actual borders of most structure
also had a tendency to merge the mass with neighbo
structures that may have had some tissue overlap with
breast mass. A total of 48 masses had significant merg
between the mass and adjacent tissues after DWCE seg
tation. This limited the effectiveness of the morphological
reduction step and limited the localization of the mass dur
texture-based classification.

The region-growing stage reduced the effects of obj
merging and significantly increased the size of the init
DWCE objects. This is clearly shown in Table I where t
average size of a structure increases from 33.6 mm2 with
DWCE alone to 52.4 mm2 following region growing. Like-
wise, a comparison of objects from Figs. 4~b! and 4~e!shows
the improvement in border definition following region grow
ing. A combination of gray-scale and gradient-based reg
growing was used because of the difficulty in stopping gr
scale region growing at the correct edge and the need
large seed objects in gradient-based region growing.
combination approach performed adequately in our detec
task and led to an improvement in both morphological a
texture-based FP reduction. However, some problems w
observed. One problem was that small and low-contr
structures had a tendency to grow into the background
become large regions even though the actual structures
quite small. This did not occur with masses, but it did occ
with other breast structures. Another problem was that str
tures containing internal gradients did not always grow to
correct border, but ended up containing only a section of
true object. This occurred to some mass objects and le
either inaccurate structural information or a mass being s
into multiple pieces. Figure 8 shows an example of bo
incomplete growing and a mass split into pieces during
gion growing. While these problems reduced the effecti
ness of the morphological FP reduction, we have found t
the overall benefit of region growing outweights its dra
backs and leads to an improvement in detection accur
with our segmentation scheme.

The final step in the segmentation was FP reduction. M
phological feature classification was performed first in o
reduction scheme. The morphological classification redu
the number of FPs per image from 45.3 to 35.5 as show
Table I. Following morphological reduction, the average s
of the objects was similar to the average size before red
tion, but the standard deviation in object size fell from 85
mm2 before reduction to 52.1 mm2 after reduction. This in-
dicates that morphological reduction eliminated objects t
were either much larger or much smaller than the aver
object size, but had trouble differentiating between TPs a
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FPs of similar sizes. Therefore, a classifier that can be
differentiate between these similar shaped objects was
necessary. This was achieved, to a large extent, with text
based feature classification.

A LDA, classifier based on SGLD texture features e
tracted from ROIs defined by each detected object
proven to be effective in differentiating between simil
shaped objects. The training and test FROC performa
curves following final texture classification are shown in F
9. In addition, the number of FPs per image for different
fractions are given in Tables III and IV for the two curve
As discussed in the Methods section, the mammograms w
divided into ten independent groups and a 9:1 training-to-
ratio was employed in the classification. Therefore, the
value for an object was its single testing score, and its tra
ing value was the average of the scores obtained for
object during training with the nine different training grou
combinations. The first point to note in Tables III and IV
that the initial TP detection fraction has increased from 9
in Table I to 98%~i.e., 247 total masses were detected!. This
is due to the change in the definition of a TP with the text
ROIs. The additional mass was detected because in on
the seven mammograms where no object contained the m
centroid, an object ROI overlapped with at least 50% of
mass. The texture classification was able to reduce the n
ber of FPs per image from an initial value of 35.5 to appro
mately 19 without the loss of any TPs, achieving a 45
reduction. While the number of FPs is still large, it indicat
that the more computationally intensive texture classificat
performs better than morphological reduction. Additional
duction in FPs can be achieved with lower TP detect
thresholds. For example, at a 90% TP fraction the FPs
creased to 4.2 per image and at an 80% TP level the
decreased to 2.0 per image. Comparing with our previou

TABLE III. Summary of the training FROC result depicted in Fig. 9. T
table contains the number of FPs per image for different TP fractions a
with the percentage of FPs reduced at each TP level relative to the in
value of 19.4 FPs per image. The first entry in the table is the reduc
achieved without missing any additional breast masses.

TP fraction FPs/image FP reduction

98% 19.4 0%
95% 6.1 69%
90% 4.0 79%
80% 1.9 90%

TABLE IV. Summary of the test FROC result depicted in Fig. 9. The ta
contains the number of FPs per image for different TP fractions along
the percentage of FPs reduced at each TP level relative to the initial val
19.2 FPs per image. The first entry in the table is the reduction achie
without missing any additional breast masses.

TP fraction FPs/image FP reduction

98% 19.2 0%
95% 6.7 65%
90% 4.2 78%
80% 2.0 90%
Medical Physics, Vol. 26, No. 8, August 1999
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reported two-stage DWCE edge detection segmenta
technique10 ~discussed in Sec. I!, we obtained improved p
formance at all TP levels despite the fact that the data set
increased from 168 to 253 mammograms and two fewer
reduction stages were used with the new segmentation t
nique.

The results presented in this paper do not reflect res
from a completely independent test set because the fea
selection and the selection of morphological classificat
thresholds were based on the entire image set. This was
essary to obtain the best possible mass statistics from
limited data set at the intermediate stages of the algorithm
database is currently being collected so that completely
dependent testing can be performed using the propo
method.

V. CONCLUSION

We have reported on an improved version of a bre
mass detection scheme. The scheme employs DWCE
mentation and object-based region growing. Its overall p
formance has achieved a 90% TP detection level with
FPs per image and an 80% TP detection level with 2.0 F
per image with a diverse database of 253 mammograms.
addition of region growing improved the borders of the d
tected objects and reduced merging between adjacen
overlapping structures. This improved the morphological
formation extracted from the detected breast masses and
the differentiation between masses and normal tissues.
FP reduction was also simplified to a single stage of morp
logical feature classification and a single stage of SGLD t
ture feature classification. It is expected that a simplified
reduction scheme has the potential to generalize better th
more complicated scheme when CAD is implemented in
clinical setting. This breast mass segmentation scheme
vided improved FROC performance compared to our pre
ously reported two-stage DWCE technique. Further inve
gations are under way to improve the region-growi
segmentation by analyzing different growing methods t
may improve the border definition of the detected structur
as well as to develop new object features that may furt
differentiate masses from normal structures. Preclinical t
ing of this algorithm on a large set of independent mamm
grams will also be conducted.

ACKNOWLEDGMENTS

This work is supported by the Whitaker Foundation~NP!,
USPHS Grant No. CA 48129, a Career Development Aw
DAMD 17-96-1-6012~BS!, and research grant DAMD 17
96-1-6254 from the U.S. Army Medical Research and Ma
riel Command. The content of this publication does not n
essarily reflect the position of the government, and
official endorsement of any equipment or product should
inferred.

g
ial
n

h
of

ed



uc
a

iz
se
g

e

e
o

g
ct

t

nd
ls

ng
d

nd

re

ge.
for

1652 Petrick et al. : Combined adaptive enhancement and region-growing segmentation of breast masses 1652
APPENDIX A: MORPHOLOGICAL FEATURE
DEFINITIONS

A set of 11 features is used in morphological FP red
tion. Ten of these features are based solely on the bin
object defined by the segmentation. The other feature util
the original gray scale values inside and surrounding the
mented object. An individual object segmented from ima
F(x,y) is defined as:

Fobji
~x,y!5H 1, ~x,y! is a pixel in object i ,

0, otherwise.
~A1!

In addition, FBBi
(x,y) defines the pixels contained in th

smallest bounding box completely containing objecti and
FEqvi

(x,y) defines the pixels of the circle with the same ar
as Fobji

and centered at its centroid location. The radius
FEqvi

(x,y) is given by

r Eqv5Aarea ~Fobji
!

p
. ~A2!

Five features are based on the normalized radial len
~NRL!, defined as the Euclidean distance from an obje
centroid to each of its edge pixels and normalized relative
the maximum radial length for the object.18 This results in a
NRL vector for each objecti given as

Ri5$r i , j :0< j <Ne21%, ~A3!

where Ne is the number of edge pixels in the object a
r i , j<1. The histogram of the normalized radial length is a
calculated and is given by

Pi5$probi , j :0< j <Nh21%, ~A4!

whereNh is the number of bins used in the histogram. Usi
these basic definitions, the morphological features are
fined as follows. Perimeter:

Perimi5 (
;x,;y

pi~x,y!, ~A5!

where

pi~x,y!5H 1, Fobji
~x,y! is an edge pixel of objecti ,

0, otherwise.

Area:

Areai5 (
;x,;y

Fobji
~x,y!. ~A6!

Perimeter-to-area ratio:

PARi5
Perimi

Areai
. ~A7!

Circularity:

Circi5
(;x,;yFobji

ùFEqvi

Areai
. ~A8!

Rectangularity:
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Recti5
Areai

(;x,;yFBBi

. ~A9!

NRL mean:

mNRLi
5

1

Ne
(
j 50

Ne21

r i , j . ~A10!

NRL standard deviation:

sNRLi
5A 1

Ne
(
j 50

Ne21

~r i , j2mNRLi
!2. ~A11!

NRL entropy:

ENRLi
52 (

j 50

Nh21

probi , j• log2~probi , j !. ~A12!

NRL area ratio:

AreaRi5H 1

NemNRLi

(
j 50

Ne21

~r i , j2mNRLi
!:r i , j.mNRLiJ .

~A13!

NRL zero-crossing count:

ZCCi5 (
j 50

Ne21

zi , j , ~A14!

where

zi , j5H 1, ~r i , j 21.mNRLi
!ù~r i , j 11,mNRLi

!,

1, ~r i , j 21,mNRLi
!ù~r i , j 11.mNRLi

!,

0, otherwise.

Contrast:

Conti5
gini

gouti

, ~A15!

wheregini
is the average gray value inside objecti andgouti

is the average gray value of the one-pixel wide backgrou
surrounding the object.

APPENDIX B: SGLD TEXTURE FEATURE
DEFINITIONS

Global and local multiresolution texture features a
based on the spatial gray level dependence~SGLD!
matrix.22–24 An element of the SGLD matrix,pd,u( i , j ), is
defined as the joint probability that gray levelsi and j occur
at a given interpixel separationd and directionu. In this
study,n is defined as the number of gray levels in an ima
A total of 13 different texture measures were defined
each SGLD matrix. They were defined as follows.22

Energy:

E5 (
i 50

n21

(
j 50

n21

pd,u
2 ~ i , j !. ~B1!

Correlation:
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R5
( i 50

n21( j 50
n21~ i 2mx!~ j 2my!pd,u~ i , j !

sxsy
, ~B2!

where

mx5 (
i 50

n21

(
j 50

n21

ipd,u~ i , j !, ~B3!

my5 (
i 50

n21

(
j 50

n21

jpd,u~ i , j !, ~B4!

sx5A( i 50
n21( j 50

n21~ i 2mx!
2pd,u~ i , j !, ~B5!

and

sy5A( i 50
n21( j 50

n21~ j 2my!2pd,u~ i , j !. ~B6!

Entropy:

H52 (
i 50

n21

(
j 50

n21

pd,u~ i , j !log2„pd,u~ i , j )…. ~B7!

Inertia:

In5 (
i 50

n21

(
j 50

n21

~ i 2 j !2pd,u~ i , j !. ~B8!

Inverse difference moment:

IDM5 (
i 50

n21

(
j 50

n21
1

11~ i 2 j !2 pd,u~ i , j !. ~B9!

Sum average:

mx1y5 (
k50

2n22

kpx1y~k!, ~B10!

where

px1y~k!5 (
i 50

n21

(
j 50

n21

pd,u~ i , j !,

i 1 j 5k and k50,...,2n22. ~B11!

Sum variance:

sx1y
2 5 (

k50

2n22

~k2mx1y!2px1y~k!. ~B12!

Sum entropy:

Hx1y52 (
k50

2n22

px1y~k!log2„px1y~k!…. ~B13!

Difference average:

mx2y5 (
l 50

n21

lpx2y~ l !, ~B14!

where

px2y~ l !5 (
i 50

n21

(
j 50

n21

pd,u~ i , j !, u i 2 j u5 l and l 50,...,n21.

~B15!
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Difference variance:

sx2y
2 5 (

l 50

n21

~ l 2mx2y!2px2y~ l !. ~B16!

Difference entropy:

Hx2y52 (
l 50

n21

px2y~ l !log2„px2y~ l !…. ~B17!

Information measure of correlation 1:

IMC15
H2H1

max$Hx ,Hy%
. ~B18!

Information measure of correlation 2:

IMC25A12exp22~H22H !, ~B19!

where

Hx52 (
i 50

n21

px~ i !log2„px~ i !…, ~B20!

Hy52 (
j 50

n21

py~ j !log2„py~ j !…, ~B21!

H152 (
i 50

n21

(
j 50

n21

pd,u~ i , j !log2„px~ i !py~ j !… ~B22!

and

H252 (
i 50

n21

(
j 50

n21

px~ i !py~ j !log2„px~ i !py~ j !…. ~B23!
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