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The purpose of this work is to develop a computer-aided diagnosis �CAD� system to differentiate
malignant and benign lung nodules on CT scans. A fully automated system was designed to seg-
ment the nodule from its surrounding structured background in a local volume of interest �VOI� and
to extract image features for classification. Image segmentation was performed with a 3D active
contour method. The initial contour was obtained as the boundary of a binary object generated by
k-means clustering within the VOI and smoothed by morphological opening. A data set of 256 lung
nodules �124 malignant and 132 benign� from 152 patients was used in this study. In addition to
morphological and texture features, the authors designed new nodule surface features to character-
ize the lung nodule surface smoothness and shape irregularity. The effects of two demographic
features, age and gender, as adjunct to the image features were also investigated. A linear discrimi-
nant analysis �LDA� classifier built with features from stepwise feature selection was trained using
simplex optimization to select the most effective features. A two-loop leave-one-out resampling
scheme was developed to reduce the optimistic bias in estimating the test performance of the CAD
system. The area under the receiver operating characteristic curve, Az, for the test cases improved
significantly �p�0.05� from 0.821�0.026 to 0.857�0.023 when the newly developed image
features were included with the original morphological and texture features. A similar experiment
performed on the data set restricted to primary cancers and benign nodules, excluding the metastatic
cancers, also resulted in an improved test Az, though the improvement did not reach statistical
significance �p=0.07�. The two demographic features did not significantly affect the performance of
the CAD system �p�0.05� when they were added to the feature space containing the morphologi-
cal, texture, and new gradient field and radius features. To investigate if a support vector machine
�SVM� classifier can achieve improved performance over the LDA classifier, we compared the
performance of the LDA and SVMs with various kernels and parameters. Principal component
analysis was used to reduce the dimensionality of the feature space for both the LDA and the SVM
classifiers. When the number of selected principal components was varied, the highest test Az

among the SVMs of various kernels and parameters was slightly higher than that of the LDA in
one-loop leave-one-case-out resampling. However, no SVM with fixed architecture consistently
performed better than the LDA in the range of principal components selected. This study demon-
strated that the authors’ proposed segmentation and feature extraction techniques are promising for
classifying lung nodules on CT images. © 2009 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3140589�
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I. INTRODUCTION

Lung cancer is the leading cause of cancer death in the
United States, causing an estimated 160 400 deaths in 2007.
At the time of diagnosis, most patients already present ad-
vanced disease. Despite advances in treatment and diagnosis,
the 5 year overall survival rate is only 15%.1 As for earlier
detection, the “serendipitous discovery of lung cancer in as-
ymptomatic people is currently the principal way in which
stage I lung cancer is detected.”2 Thus, there is great interest
in determining whether earlier detection can reduce the mor-
tality rate. Previous trials in the 1970s for screening of lung
cancer with chest x-ray and sputum analysis did not result in

3
a significant reduction in mortality.
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Computed tomography �CT� has been shown to have
higher sensitivity in detecting small lung nodules compared
to chest x ray.4–10 This suggests that CT screening has a
strong potential for improving the likelihood of detecting
lung cancer at an earlier and potentially more curable
stage.11,12 A 30-site randomized controlled study �National
Lung Screening Trial �NLST��, sponsored by the National
Cancer Institute �NCI�, has enrolled about 50 000 partici-
pants to compare the effect of screening using helical CT or
chest x rays on the mortality rate of lung cancer patients. If
CT screening is recommended, however, it would also exac-
erbate already mounting challenges for detection and diag-

nosis of lung nodules with CT, namely, interpretation of an
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ever increasing number of slices and management of a large
number of nodules. Despite the increasing spatial resolution
of CT, the assessment of the likelihood of malignancy of
nodules by visual inspection is difficult. It has been reported
that as many as 50% of nodules resected at surgery are
benign,10 emphasizing the need to provide radiologists with
additional information to improve the accuracy for character-
ization of nodules and to handle large data sets.

Much work has been reported for the development of au-
tomated nodule detection methods in CT for computer-aided
detection. In this study, we focus on the classification be-
tween malignant and benign nodules using features automati-
cally extracted from the image data. Gurney and Swensen13

conducted a characterization study with a data set of 318
nodules �153 benign and 163 malignant� with features that
were subjectively assessed by radiologists. They trained and
tested a neural network in a feature space containing mor-
phological features of the nodule, such as diameter �mm� and
appearance of the edge, and demographic features such as
age in years and smoking history in pack years provided by
radiologists. They found that the neural network achieved an
area under the receiver operator characteristic �ROC� curve,
Az, of 0.871 but concluded that Bayesian analysis was a bet-
ter predictor of malignancy with an Az of 0.894 �p�0.05�.

Although data sets were smaller for other preliminary
studies, the results were encouraging. The features were ex-
tracted from the image data, with the goal of quantifying the
visual features radiologists typically use to discriminate ma-
lignant from benign nodules. Kawata et al.14 used surface
curvatures and ridge lines as features for characterization of
62 nodules �47 malignant and 15 benign� and showed good
evidence of separation between malignant and benign classes
in feature maps; no Az value was reported. McNitt-Gray et
al.15 obtained 90.3% correct classification accuracy between
17 malignant and 14 benign cases. Shah et al.16 achieved Az

values between 0.68 and 0.92 with 48 malignant and 33 be-
nign nodules using four different types of classifiers in a
leave-one-out method. The features were extracted from con-
tours manually drawn on a single representative slice of each
nodule. Way et al.17 developed an automated 3D active con-
tour �AC� segmentation method and extracted morphological
and texture features from the segmented nodule. A leave-one-
out test Az of 0.83�0.04 was achieved in a data set of 44
malignant and 52 benign nodules.

Several classification studies were performed with a larger
data set, although the number of malignant nodules was still
below 100. Armato et al.18 used an automated detection
scheme then manually separated nodules from non-nodules
before the classification step. They achieved an Az value of
0.79 for 59 malignant and 276 benign nodules using features
such as the radius of a sphere of equivalent volume, mini-
mum and maximum compactness, gray-level threshold, ef-
fective diameter, and location in the lungs. Li et al.19 re-
ported an Az of 0.937 for differentiation between 61
malignant and 183 benign nodules in a leave-one-out method
and an Az of 0.831 for a randomly selected subset consisting

of 28 primary lung cancers and 28 benign nodules. The fea-
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tures used included the diameter and contrast of the seg-
mented nodule and those extracted from the gray-level his-
tograms of pixels inside and outside the segmented nodule.
Aoyama et al.20 reported an Az of 0.846 for classifying 76
primary lung cancers and 413 benign nodules using multiple
thick slices �10 mm collimation and 10 mm reconstruction
interval�, which was a statistically significant improvement
over an Az of 0.828 when using only single slices. Suzuki et
al.21 obtained an Az of 0.882 by use of a massive training
artificial neural network �MTANN� on a data set of 76 ma-
lignant and 413 benign nodules.

We are developing a computer-aided diagnosis �CAD�
system to assist radiologists in the classification task. Our
CAD system automatically segments a nodule from a vol-
ume of interest �VOI� on CT images and provides a malig-
nancy rating based on features extracted from the images.
Our preliminary results have been reported previously.17 In
this study, we have designed new image features that char-
acterize the nodule boundary and improved the classifier
training with an enlarged data set. In addition we investi-
gated the effect of age at the time of the CT exam and gender
as demographic features. Finally, we compared the perfor-
mance between the linear discriminant analysis �LDA� and
support vector machine �SVM� classifiers.

II. METHODS AND MATERIALS

II.A. CT scan collection

We retrospectively collected CT scans from the patient
files in the Department of Radiology at the University of
Michigan with the Institutional Review Board �IRB� ap-
proval. The CT scans were acquired with a variety of GE
�GE, Waukesha, WI� Genesis HiSpeed and the GE Light-
Speed series scanners, including Plus, Power, Pro 16, QX/i,
Ultra, and LightSpeed16. Each CT slice was 512
�512 pixels, with pixel sizes ranging from 0.448 to 0.859
mm and corresponding fields of view of 25–44 cm. The slice
thickness averaged 2.3�1.44 mm �range: 1–7.5 mm�, and
the slice interval averaged 2.0�1.6 mm �range: 0.6–7.5
mm�. All but two scans were reconstructed with a GE stan-
dard kernel. The remaining two were reconstructed with a
bone kernel. The average values for the scanning parameters
were 120 kVp for tube voltage �range: 120–140 kVp� and
214�141 mA s �range: 40–570 mA s� for tube current-time
product. In terms of the extremes, there were 13 cases
scanned at 40–45 mA s and reconstructed at 1.25 mm slice
thickness and interval. There was one case scanned at 570
mA s, but it was also reconstructed at 1.25 mm slice thick-
ness and interval. The thicker-sliced scans �5–7 mm� were
scanned at an average of 240�71 mA s.

II.B. Lung nodule data set

For this study, 256 lung nodules �124 malignant and 132
benign� were identified by radiologists from 152 patients. A
nodule was included in the data set only if it could be seen in
at least three consecutive slices. Because of the invasiveness

of the lung biopsy procedure, clinicians generally do not per-
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form biopsy for every lung nodule in clinical practice. The
cases were determined to be benign, primary cancer, or meta-
static cancer by clinicians using all available diagnostic in-
formation during the patients’ clinical care. The original di-
agnosis in the clinical reports and any additional follow-up
information available by the time of our data collection were
used as reference to determine whether a nonbiopsied nodule
in our data set should be labeled as benign, primary, or meta-
static cancer. Of the 124 malignant nodules, 64 were biopsy
proven and 60 were determined to be malignant as described
above. Seventy-two were primary and 52 were metastatic
cancers. Of the 132 benign nodules, 15 were biopsy proven
and 117 were determined to be benign with at least 2 year
follow-up stability on CT.

Four experienced chest radiologists with 35, 13, 3, and 3
years of post-fellowship experience in interpreting chest CT
scans read mutually exclusive subsets of the data set. They
indicated the location, measured their longest diameters, and
assessed their characteristics such as malignancy, margin,
calcification, and cavitation using a graphic-user interface
�GUI�. No clinical information about the case was provided
to these radiologists during the assessments. These nodule
characteristics from the radiologists’ subjective assessment
were obtained only for the purpose of characterizing the data
set used in this study. All the image features input to the
CAD system were automatically extracted by the computer
from the CT images, as discussed in Sec. II D. Of the 256
nodules, 53 were juxtapleural and 19 were juxtavascular. A
distribution of the longest diameters of the nodules is shown
in Fig. 1. The nodules had an average longest diameter of
11.7�7.7 mm �range: 3.0–37.5 mm�.

An experienced radiologist, different from the radiologists
who helped collect the data set, provided malignancy ratings
for each nodule on a scale of 1 to 10, with 10 indicating most
likely malignant. This radiologist read the nodules separately
without providing the other nodule characteristics. His ma-
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FIG. 1. Histograms of the longest diameters of the benign and malignant
nodules as measured by experienced chest radiologists.
lignancy ratings depended solely on the image information,
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just as what the computer classifier did. The area Az under
the ROC curve fitted to this radiologist’s malignancy ratings
was 0.827�0.027 �Fig. 2�.

II.C. CAD system overview

A detailed description of our CAD system can be found in
the literature.17 A short summary is provided here, and the
flowchart is shown in Fig. 3. First, the radiologist-identified
VOI containing nodule was extracted from the CT scan. We
obtained isotropic voxels for each scan by performing linear
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FIG. 2. Malignancy ratings, provided by a radiologist who did not help
collect the data set, on a scale of 1 to 10, with 10 being most likely malig-
nant. The radiologist estimated the malignancy of a nodule solely based on
the image information. The radiologist’s classification performance was
evaluated relative to the clinically determined diagnosis of the nodules by
ROC analysis. The area Az under the ROC curve fitted to the radiologists
malignancy ratings is 0.827�0.027.
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FIG. 3. A schematic showing the major image processing steps of the CAD

system. The two-loop resampling scheme is described in Fig. 4.
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interpolation in the z direction if the slice interval was
greater than the pixel size or bilinear interpolation in the
axial plane otherwise. The purpose of interpolation is to fa-
cilitate initial contour generation and segmentation. The in-
terpolation would not improve spatial resolution. To generate
the initial contour, k-means clustering assigned voxels that
were not part of the mediastinum or chest wall in the VOI to
either the object or the background class. The mediastinal or
pleural voxels were excluded from this and subsequent fea-
ture extraction processing by using a lung mask as described
previously.17 Morphological opening was performed with a
spherical structuring element that had an automatically cal-
culated size based on the size of the clustered object. The
morphological opening may remove attachments such as
blood vessels from the object. A 3D AC model was then used
to segment the nodule in the VOI. We estimated the weights
for the 3D AC based on the optimization method with clas-
sification performance as the figure of merit described in our
previous study.17 The segmentation was optimized separately
using the feature space with and without the new image fea-
tures for the performance comparison described below. After
optimization, the same set of weights was used to segment
all the nodules for the given feature space.

We have conducted fairly extensive work in evaluating
the segmentation performance of our 3D AC algorithm. In
our previous study, we compared the segmentation results
with experienced radiologists’ segmentation on the 23 nod-
ules from the LIDC first data set.17 In addition to lung nod-
ules, we also evaluated segmentation performance on spheri-
cal phantom nodules of three different known sizes and
varying CT scanning parameters.22

From the nodule contour, 2D and 3D morphological fea-
tures were extracted. A few examples and descriptions of
morphological features are given here, and the rest are de-
scribed in the literature.17 The volume was found by multi-
plying the number of voxels within the contours by the size
of one voxel. The longest diameter was the longest distance
between two points on a contour. Statistics such as the aver-
age, standard deviation, skewness, minimum, and maximum
of the CT values �Hounsfeld units� of the nodule voxels were
calculated.

To quantify texture around the nodule, texture features
were extracted first from the individual 2D image slices that
intersect the nodule, and then the corresponding features
were averaged over the nodule slices. For a given slice, the
rubber band straightening transform23 converted the 15-
pixel-wide band of pixels surrounding the nodule into a rect-
angular image. The nodule boundary was mapped to the
horizontal dimension of the rectangle while the spiculations
emanating radially from the nodule became mapped to an
approximately vertical direction. The transformed image was
enhanced with Sobel filtering in the vertical and horizontal
directions, from which the run-length statistics �RLS�
features24,25 were calculated.

In this study, we included new features in the feature
space, as described in Sec. II D. A feature selection method
was then applied to the multidimensional feature space to

select the most effective features for the classification task. A
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feature classifier was trained with the selected features. The
performance of the trained classifier was evaluated with test
cases and the classification accuracy was quantified by ROC
analysis.

II.D. Gradient field and radius features

In addition to the morphological and texture features, we
designed three sets of new features to characterize the nodule
surface smoothness and shape irregularity. The first two sets
were gradient magnitude and profile features, which were
based on the gradient field, and the last set contained statis-
tics of the nodule radii. The gradient vector and its magni-
tude Mv were computed at each voxel v using a filter-based
method as described by Ge et al.,26 which was a generaliza-
tion of the 2D isotropic kernel proposed by Jain.27

II.D.1. Gradient magnitude features

The gradient magnitude features described the sharpness
of the nodule boundary. Let F be the set of gradient magni-
tude values for all voxels on the surface of the nodule seg-
mented by the 3D AC method. We found the mean, standard
deviation, variance, minimum, maximum, skewness, kurto-
sis, and coefficient of variation �standard deviation/mean� for
all values in set F. A nodule with well-defined boundary
would have a higher mean than a nodule with less distinct
boundary.

II.D.2. Profile features

Profile features described the smoothness of the gradient
magnitudes in a shell of voxels just inside and outside the
nodule surface. The weighted centroid C of the segmented
nodule was calculated with the weights based on voxel in-
tensity. The vector from the centroid to a surface voxel v is
referred to as the radius rv, where v=1, . . . ,n and n denotes
the number of surface voxels. The length of the radius �rv� for
each surface voxel was stored. The average radius radav of
the nodule was defined as the average of all �rv�, v
=1, . . . ,n. Along this radial vector and centered at surface
voxel v, gradient magnitude values were sampled at one
pixel intervals to a distance of � 1

2 radav� on the two sides of
the surface voxel. Let Pv be the set of sampled gradient
magnitude values along rv, Mv,i be the ith sample, and �Pv�
be the cardinality of Pv. Then the average gradient magni-
tude along one vector is

Aav,v = � 1

�Pv��i=1

�Pv�

Mv,i� . �1�

The features we calculated are listed below, and mathemati-
cal formulas for some of the features are given.

• PF1 �profile feature 1�: Mean of the average gradient
magnitudes over all surface voxels,

PF1 =
1

n
�
n

�Aav,v� . �2�

v=1
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• PF2: Standard deviation of the average gradient magni-
tudes over all surface voxels,

PF2 =	 1

n − 1�
v=1

n

�Aav,v − PF1�2. �3�

• PF3: Variance of average gradient magnitudes over all
surface voxels.

• PF4: Mean of maxima,

PF4 =
1

n
�
v=1

n

�max
Pv�� . �4�

• PF5: standard deviation of maxima.
• PF6: Variance of maxima.
• PF7: Mean of minima,

PF7 =
1

n
�
v=1

n

�min
Pv�� . �5�

• PF8: Standard deviation of minima.
• PF9: Variance of minima.

It can be expected that high contrast nodules would have
high values of PF1 and PF4. Nodules with mixed ground
glass opacity �GGO� might have high values of PF2. How-
ever, if the nodule is attached to blood vessels, that would
have an effect on these features compared to a solitary nod-
ule surrounded by lung parenchyma voxels with lower CT
numbers.

II.D.3. Radius features

The radius features were calculated based on �rv�, the
magnitude of the radial vector from the weighted centroid C
to surface voxel v:

• RA1: The average of all radii,

RA1 =
1

n
�
v=1

n

�rv� . �6�

• RA2: The standard deviation of all radii.
• RA3: The variance of all radii.
• RA4: The skewness of all radii.
• RA5: The kurtosis of all radii.
It can be expected that a spherical nodule with a smooth

surface would have very low values of RA2, RA3, and RA4
and high values of RA5 since all the radii would be similar.
The radius segments of an irregularly shaped nodule would
have varying lengths, with expected high values of RA2 and
RA3. These features may therefore be useful in quantifying a
nodule’s surface smoothness. RA1 is another feature that de-
scribed the size of the nodule.

II.E. Demographic features

We investigated the effect of patient characteristics in-
cluding age at the time of the scan and gender as adjunct
information for the CAD system. The age was an integer

value and gender was represented as 1 for male and 0 for
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female. Although most CAD systems only utilize image fea-
tures, the use of demographic information has been found
beneficial.13,28 For our data set, we did not obtain smoking
history consistently in the patient files so that this potentially
useful information cannot be included.

II.F. Two-loop leave-one-case-out resampling

A feature classifier was trained to differentiate the malig-
nant and benign nodules in the multidimensional feature
space described above. We designed a “two-loop” leave-one-
case-out resampling scheme to estimate the test performance
of the CAD system. In comparison to the commonly used
one-loop leave-one-case-out resampling, this method intro-
duces another level of independence and reduces the bias in
test Az. In our data set, the 256 nodules were extracted from
152 patients so that the number of independent cases, N, was
equal to 152. When a case was left out as a test case in the
leave-one-case-out scheme, all nodules from that case are
taken out and reserved for testing.

In the two-loop leave-one-case-out resampling scheme
�Fig. 4�, an inner leave-one-case-out loop was nested within
the outer leave-one-case-out loop. For a data set with N
available cases, there were N cycles in the outer loop. In each
cycle, one case was excluded as the independent test case.
The remaining �N−1� training cases were used to build the
classifier in an inner leave-one-case-out loop that included
feature selection and classifier weight determination. Step-
wise feature selection �SFS� with LDA was used to select a
subset of effective features. In each cycle of this inner loop
for feature selection, �N−2� cases were used for training
while one case was left out as the test case. The best param-
eters for SFS, namely, the Fin and Fout for determining
whether a feature should be included or removed from the

Outer leave-one-case-
out loop: N cases

(N�1) training cases

Inner leave-one-case-out
loop:

Stepwise feature selection
with simplex optimization

Selected feature set

LDA trained with
(N-1) cases

1 test case

Classifier test score

FIG. 4. In the outer leave-one-case-out loop, the data set is divided into
�N−1� training cases and 1 test case. For each �N−1� case cycle, an LDA
classifier is designed from a set of selected features as a result of an inner
leave-one-case-out training and testing scheme. After each case is left out in
turn, the two-loop test Az is calculated from the malignancy scores of N test
cases.
feature space, respectively, and the tol threshold for the tol-



3091 Way et al.: Lung nodule CAD with nodule surface features 3091
erance on how correlated the selected features can be, were
searched by simplex optimization using the test Az from the
�N−1� left-out cases in the inner loop as a guide. After the
best SFS parameters were determined, they were applied to
the �N−1� training cases of the outer loop to select a subset
of features from the available feature space, and an LDA
classifier using the selected features as the input predictor
variables was formulated using the �N−1� training cases.
This classifier was then applied to the independent left-out
case in the outer loop and a test score for each nodule in that
case was obtained. The procedure was cycled through the N
cases of the entire data set, so that each case was left out in
turn, resulting in independent test scores for all the nodules
in the data set. These 256 test scores were then evaluated by
ROC analysis to obtain the two-loop test Az. Since the test
case was kept out of the SFS parameter estimation, feature
selection, and classifier weight training processes, the esti-
mated performance using the two-loop resampling scheme
was less optimistically biased than the one-loop scheme.

II.G. Evaluation of CAD System on the entire data set
and on primary and metastatic nodules

The CAD system without and with the newly developed
features described in Sec. II D in addition to the demo-
graphic information was evaluated on the entire data set.
Furthermore, nodules from primary cancers and metastases
have distinctive characteristics. The former are more likely
to be irregularly shaped or spiculated whereas the latter are
often round and smooth. We therefore also evaluated the per-
formance of the CAD system using two subsets of the data
set, one containing primary cancers and benign nodules and
the other metastatic cancers and benign nodules. For each of
the two subsets, a new set of weights for the 3D AC segmen-
tation was determined using the procedure described
previously.17 The two-loop test Az and features selected were
compared.

II.H. Comparison between LDA and SVM

We compared the classification performance of LDA with
that of SVMs. Since the SFS method described above used
the LDA classification result as a guide, the selected feature
set may be biased toward LDA. We therefore used principal
component analysis �PCA�, which is a well-known method
for dimensionality reduction and is independent of the choice
of the classifier, to obtain a reduced set of features as input to
both classifiers for this comparison. PCA transforms a num-
ber of correlated variables into a number of uncorrelated
variables, i.e., the principal components. It performs eigen-
value decomposition of the covariance matrix of the features,
projecting the multivariate feature vectors onto the space
spanned by the eigenvectors. The order of a principal com-
ponent represents its importance in accounting for the vari-
ance in the data set. The dimensionality of the feature space
is reduced by retaining the lower-order �higher-magnitude�
principal components that are most important while ignoring

the higher-order ones. Retaining only the lower-order princi-
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pal components is essentially equivalent to approximating
the data by a linear subspace using the mean squared error
criterion.29

The SVM works similarly to the LDA by constructing a
decision hyperplane to separate classes using training data. A
brief overview of the SVM is given below, with more details
in the literature.30 Geometrically, the SVM maps the original
data to a higher-dimensional Euclidean space H, via a kernel
K. A decision hyperplane is constructed in this higher-
dimensional space such that the distance between the train-
ing samples of both classes and the hyperplane is maxi-
mized. This distance between a training sample and the
hyperplane is called the margin, and the SVM calculates the
hyperplane with the largest margin.

Suppose we have labeled training data 
xi ,yi�, i=1, . . . , t,
yi� 
−1,1�, and xi�Ru, where t is the number of samples, u
is the dimensionality �number of features�, and yi is the class
label of the ith sample that can assume a value of �1 �class
1� or +1 �class 2�. The design of the SVM can be shown to
consist of a quadratic programming optimization problem. In
the dual of the quadratic program, the data appear in the
form of dot products, xi ·x j. The SVM algorithm uses a map-
ping � to a higher-dimensional Euclidean space H,
� :Ru�H. Because of the mapping, the algorithm depends
only on data through the dot products in H of the form
��xi� ·��x j�. There exist kernel functions K so that
K�xi ,x j�=��xi� ·��x j�, and the training algorithm uses only
the kernel K and operations in the lower-dimensional space
Ru instead of computationally expensive operations in H. A
number of different kernels have been proposed in the litera-
ture, and we chose commonly used ones for this study. The
dot kernel is the inner product: K�xi ,x j�=xi ·x j. The polyno-
mial kernel has the parameter degree z: K�xi ,x j�= �xi ·x j

+1�z. The neural kernel has parameters a and b: K�xi ,x j�
=tanh�axi ·x j+b�. The radial kernel is defined as

K�xi,x j� = exp�− ��xi − x j�2� , �7�

with parameter �. A capacity parameter cap is common to all
kernels. We implemented the SVM with the freely available
software mySVM.31

From the PCA, we selected the r largest eigenvalues and
transformed the data with their corresponding eigenvectors.
Since it was not known how many principal components
were optimal for this classification task, we varied r from 1
to 15. For the LDA and SVM, we performed leave-one-case-
out training and testing for each r to arrive at the test Az.
Because we varied r from 1 to 15 and did not have to choose
features, a one-loop leave-one-case-out resampling process
was used for classification. In addition, we varied the four
kernels and their associated parameters of the SVM to inves-
tigate the effect of the kernel and parameters on test perfor-
mance. A total of 120 �16 polynomial kernels of various
degrees, 4 dot kernels of various parameters, 36 radial ker-
nels of various �, and 64 neural kernels of various coeffi-
cients� separate leave-one-case-out training and testing pro-

cesses were performed for each r.
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III. RESULTS

There were four groups of features used in this study:
Morphological features �M�, texture features extracted from
the RBST images �T�, newly developed image features based
on the gradient field and radius features �G�, and demo-
graphic features �D�. In the following results, the subscript
denotes which groups of features were included in the fea-
ture space, e.g., featMTG is the feature space containing the
morphological, texture, and newly developed image features.

III.A. Effect of gradient field and demographic
features on classification

The training and test Az were calculated from the two-
loop procedure described in Sec. II.F. When featMT was used
as the feature space, the CAD system achieved an average
training Az of 0.858�0.023 and two-loop test Az of
0.821�0.026. An average of 5.80 features was selected. The
six most consistently selected features were surface area,
maximum CT value, variance of nodule gray-level values,
and three RLS texture features. When the newly developed
image features were combined with the previous features,
i.e., the featMTG feature space, the average training Az was
0.881�0.021, and the two-loop test Az increased signifi-
cantly �p�0.05� to 0.857�0.023. An average of 6.62 fea-
tures was selected. The most consistently selected features
were the perimeter, a profile feature �PF2�, the skewness of
the gradient magnitude values of the surface voxels, two ra-
dius features �RA3 and RA4�, and two RLS texture features.
Four of these features were from the new space. These re-
sults are summarized in Table I, and the features that were
selected the most times are listed with the total number of
times they were selected in the inner leave-one-case-out
loop.

When the featMTGD space that included the demographic
information was used, the average training Az was
0.892�0.020, and the two-loop test Az was 0.863�0.022,
with an average of 7.50 features selected. The consistently
selected features were the same as those when the feature
space was featMTG, with the addition of the patient age. How-
ever, the improvement compared to the featMTG feature space
did not achieve statistical significance �p=0.585�. The ROC
curves are compared in Fig. 5.

Figure 6 shows examples of nodules in which the CAD
system performed poorly. The benign nodules that obtained
higher malignancy scores were generally larger and not
spherical in shape. Some of the nodules were juxtavascular,
emphasizing the need for a more effective vessel-removal
method than that used in this study. The malignant nodules
that had low malignancy scores were mostly metastatic, with
round shapes and smooth, distinct edges. The texture around

these nodules was also more homogeneous.
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III.B. Classification performance on primary and
metastatic nodules

III.B.1. Primary cancers

For classification of primary cancers and benign nodules,
the CAD system achieved an average training Az of
0.895�0.022 and a two-loop test Az of 0.857�0.026 in the
featMT feature space. An average of 5.92 features was se-
lected. The six most consistently selected features were mini-
mum CT number and five RLS texture features. When fea-
ture selection was performed in the featMTG feature space, the
average training Az was 0.902�0.021, and the two-loop test
Az increased to 0.892�0.022, although the improvement fell
short of statistical significance �p=0.07�. An average of 4.04
features was selected. The most consistently selected features
included one gradient profile feature �PF4�, one radius fea-
ture �RA4�, and two RLS texture features. Of the most con-
sistently selected features, two were from the new space.
When the demographic information was added, the average
training Az was 0.921�0.019, and the two-loop test Az was
0.900�0.022 for featMTGD. The improvement compared to
featMTG feature space again did not achieve statistical signifi-
cance �p=0.7�. An average of 5.01 features was selected.
The most consistently selected features were the same as
those when the feature space was featMTG, with the addition
of the patient age. These results are summarized in Table I.

III.B.2. Metastatic cancers

On the subset containing metastatic cancers and benign
nodules, the CAD system achieved an average training Az of
0.855�0.027 and two-loop test Az of 0.822�0.031 when
featMT was used as the feature space. An average of 2.96
features was selected, with the largest perimeter and two
RLS texture features as the three most consistently selected
features. When featMTG was used as the feature space, the
average training Az was 0.890�0.024, and the two-loop test
Az decreased to 0.803�0.034, though the decrease was not
significant �p=0.45�. An average of 6.69 features was se-
lected. Among the features most consistently selected were
two texture features and five from the new feature space
including three radius features �RA1, RA3, and RA5�, the
average gradient magnitude of surface voxels, and one gra-
dient profile feature �PF2�. In the featMTGD feature space, no
demographic features were selected, and the performance
was the same as that in the featMTG feature space. These
results are summarized in Table I.

III.C. LDA and SVM comparison

The performance comparison between the test Az values
of the LDA and the SVM classifiers is shown in Fig. 7. PCA
was applied to the featMTG feature space, and the same num-
ber of features from PCA was input into each classifier. For a
given number of chosen features, a set of 120 different com-
binations of kernels and parameters for the SVM was stud-
ied. The highest test Az for the SVM for a given number of
selected features is shown. The SVM performance using the

radial kernel with �=0.02 �Eq. �7�� and cap=1 is also shown
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TABLE I. Two-loop test Az for �a� entire data set, �b� primary and benign subset, and �c� metastatic and benign subset. The average number of features selected
over all inner loop leave-one-case-out cycles and most frequently selected features and their frequency being selected are also shown for the different data
subsets and feature spaces. The features that were consistently selected can be considered the effective features for this classification task. For the RLS texture
features, SR is for short range, LR is for range, GL is for gray level, horiz is for the axial plane, obl is for the oblique plane, x and y specify which direction
Sobel filtering was performed, and 0 or 90 indicates the direction the run-length statistics features were acquired. More details on these features were described
in our previous study �Ref. 17�.

�a� Entire data set

featMT featMTG featMTGD

Two-loop training Az 0.858�0.023 0.881�0.021 0.892�0.020
Two-loop test Az 0.821�0.026 0.857�0.023 0.863�0.022
Av. No. of features selected 5.80 6.62 7.50

Feature name No. of times feature was selected

Surface area 122
Max CT 51
Variance of gray levels 100
LR low GL, obl, x, 90 151
LR high GL, obl, x, 90 138 86 73
LR high GL, obl, y, 90 144 152 152
Perimeter 152 152
PF2 151 152
Skewness of gradient magnitude 152 152
RA3 150 152
RA4 152 152
Age 152

�b� Primary cancers and benign nodules
featMT featMTG featMTGD

Two-loop training Az 0.895�0.022 0.902�0.021 0.921�0.019
Two-loop test Az 0.857�0.026 0.892�0.022 0.900�0.022
Av. No. of features selected 5.92 4.04 5.01

Feature name No. of times feature was selected

LR low GL, y, 0 118
LR low GL, y, 90 112
LR, horiz, y, 0 126
SR, obl, y, 90 105 126 123
GL nonuniformity, x, 0 124
Min. CT 125
Run-length nonuniformity 126 124
RA4 126 126
PF4 125 125
Age 126

�c� Metastatic cancers and benign nodules
featMT featMTG featMTGD

Two-loop training Az 0.855�0.027 0.890�0.024 0.890�0.024
Two-loop test Az 0.822�0.031 0.803�0.034 0.803�0.034
Av. No. of features selected 2.96 6.69 6.69

Feature name No. of times feature was selected

Perimeter 100
LR high GL, horiz, x, 90 104 67 67
LR high GL, obl, x, 90 99 83 83
RA1 104 104
RA5 104 104
RA3 103 103
Mean of all surface voxel gradients 96 96
PF2 58 58
Medical Physics, Vol. 36, No. 7, July 2009
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in Fig. 7 to demonstrate SVM performance with a fixed ker-
nel and fixed parameters. This SVM was chosen as an ex-
ample because it provided the best performance among the
SVMs the most times for the values of r investigated. The
classification performance of this SVM was slightly higher
or lower than that of the LDA when the number of PCA
features was less than 10 and was consistently lower when
the number of PCA features increased to greater than 10. The
highest test Az among all SVMs studied was generally higher
than the test Az from LDA except at r=1, but it was still
within one standard deviation of the test Az from LDA. None
of the SVM architectures used in our study provided a con-
sistently better performance than the LDA over the range of
the number of PCA features investigated �r=1–15�.

IV. DISCUSSION

The newly designed features utilized the gradient field to
determine whether the nodule edge is distinct or fuzzy. We
also designed features that analyzed statistics of the radius
segments of a nodule to quantify surface irregularities and
size. The profile features examine a shell of voxels on either
side of the segmented boundary, and these features are robust
to contours that may be close to but not on the nodule bound-
ary. Nevertheless, the segmented boundaries using the 3D
AC are reasonable, as evaluated in our previous study.17

Previous simulation studies using LDA with SFS per-
formed by our group found that increasing the dimensional-
ity of the feature space resulted in more pessimistic holdout
performance estimate.32 Based on these results, we would
expect that adding features that have only small incremental
discriminatory power would degrade the classification per-
formance. However, a few of the new gradient field and ra-
dius features were selected, and their inclusion significantly
�p�0.05� improved the test Az for the entire data set. This
demonstrates that the newly designed features are beneficial
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FIG. 5. ROC curves for the performance of the CAD system based on the
two-loop test scores. The two-loop test Az using features selected from the
featMTG space was 0.857�0.023, which was significantly higher �p
�0.05� than the two-loop test Az of 0.821�0.026 when features were se-
lected only from the featMT space. The addition of demographic information
improved the two-loop test Az to 0.863�0.022, but the difference did not

achieve statistical significance �p=0.585�.
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in discriminating between malignant and benign nodules
when used in conjunction with the other types of features
used in this study.

Effective features are important due to the inherent vari-
ability in lung nodule appearance. Previous studies that in-
vestigated the performance of CAD systems in classifying
nodules show that no single feature can perfectly distinguish
malignant from benign nodules.14–18,20,21 Nodule shape, size,
margin, and presence of calcifications or fat are major fea-
tures that are useful but far from being perfectly accurate in
lung nodule characterization. There is substantial overlap in
the appearance of malignant and benign nodules,33–35 which
may be one reason that as many as 50% of nodules resected
at surgery are benign.10

The classifier designed to distinguish primary cancers
from benign nodules had a higher performance, whereas the
one designed to distinguish metastatic cancers from benign
nodules had a lower performance compared to the classifier
designed to distinguish all cancers �primary and metastatic�
from benign nodules. This may be due to the different char-
acteristics that are unique to primary and metastatic cancers.
Primary lung cancers tend to be more spiculated and irregu-
lar whereas metastatic cancers tend to be rounder with well-
defined borders, which are more similar to benign nodules. It
is therefore difficult to design features that can distinguish
both primary and metastatic cancers from benign nodules.
These differences were also reflected in the computer-
extracted features. One example is the radius feature RA3,
which is the variance of the radial lengths from the centroid
to each surface voxel of a nodule. The histograms of the
variance values for the three groups of nodules are compared
in Fig. 8, and the means and medians are listed in Table II.
As expected, most of the benign nodules had small variance
values. A large fraction of the metastatic nodules also had
small variance values although they were less dominant than
those of the benign nodules, signifying that they tended to be
spherical. The primary nodules, however, showed relatively

(a) (b)

(c) (d)

FIG. 6. Examples of nodules for which the CAD system performed poorly.
�a� A large benign nodule that was unchanged over 2 years, �b� biopsy-
proven non-necrotizing benign granuloma, �c� adenocarcinoma that may
have been too small for the extraction of useful texture information, and �d�
metastatic adenoid cystic carcinoma with features that may overlap with

many benign nodules, e.g., round shape and distinct boundaries.
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higher variance values, indicating irregular shapes. Table II
shows that the mean and median of the benign nodules were
smaller than those of the metastatic cancers, which, in turn,
were smaller than that of the primary cancers. RA3 was se-
lected as one of the effective features for differentiation of
malignant and benign nodules in the entire data set �Table
I�a�� and for differentiation of the metastatic cancer from
benign nodules �Table I�c��.

Furthermore, it is interesting to note that the most fre-
quently selected features from the featMTGD feature space for
the two classification tasks, primary cancer vs benign �Table
I�b�� and metastatic cancer vs benign �Table I�c��, were com-
pletely different when the two classifiers were separately
trained. This confirmed that the features that could most ef-
fectively distinguish benign nodules from primary cancers
were very different from those that could distinguish the
same benign nodules from metastatic cancers. When the two
cancer groups were combined as one class, the most fre-
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FIG. 7. �a� Comparison of test Az between LDA and SVM. For a given
number of selected features, 120 combinations of parameters and kernels
were evaluated for the SVM, and the best test Az is shown. The standard
deviations of the test Az ranged from 0.024 to 0.026 for both classifiers. The
test Az using the radial kernel is also shown as an example of the perfor-
mance when the kernel and parameters are fixed. �b� The sorted eigenvalues
of the covariance matrix of the featMTG feature space obtained from PCA.
quently selected features �see Table I�a�� included two of the
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best features from the primary cancer classifier and three
from the metastatic cancer classifier, indicating a compro-
mise in the selected features to accommodate both groups.
From a screening perspective, radiologists may be more in-
terested in using CAD to detect and classify primary cancers,
since they may already be alerted to the possibility of meta-
static cancer if the patient has a history of cancer elsewhere
in the body. The performance of the CAD system on primary
lung cancers may be a more informative indicator of its po-
tential usefulness.

Radiologists use a variety of factors in arriving at a diag-
nosis, including a patient’s gender, age, and smoking history.
We investigated the effect of two demographic features, gen-
der and age, at the time of the scan. Other features such as
smoking history or presence of other diseases were either
incomplete from the patient records or difficult to quantify.
Gender was never selected as a feature, but age as a feature
improved the accuracy of the CAD system for the entire data
set and for the subset of primary cancers and benign nodules,
although the improvement did not achieve statistical signifi-
cance. Demographic and clinical information may not al-
ways be available or reported accurately, especially if large-
scale screening with CT is performed. Using the objective
image data to design a CAD system is more flexible in that
the radiologist can use the assessment by the CAD system as
a complement to the other clinical information, if available,
in the decision-making process. This study showed that al-

TABLE II. The estimated mean and median values of the three groups of
nodules for feature RA3, which is the variance of the radial lengths from the
centroid to each surface voxel. A lower mean signifies that the radial lengths
are more similar, suggesting that the nodule tended to be more spherical.

Primary Metastatic Benign

Mean 4.601 3.417 2.033
Median 2.322 1.775 0.851
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FIG. 8. Variance of radial lengths from nodule centroid to each surface voxel
�feature RA3�. Note that the percentage of nodules for each class does not
add up to 100% because a small number of nodules had variance �10 mm2.
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though some demographic information is beneficial in diag-
nosis, the CAD system would perform similarly without the
nonimage features we investigated.

Currently, researchers are not able to compare the perfor-
mance of their CAD systems because of the lack of a com-
mon test set. If a large test data set with proven diagnoses is
available, it will be a useful resource to compare the effec-
tiveness of different approaches to classification of malignant
and benign nodules. A publicly available data set would also
increase the number of training samples that CAD develop-
ers may use for design of their CAD systems.

Because of the relatively small data sets available, we
designed the two-loop leave-one-case-out scheme for feature
selection and training of the classifier weights. A one-loop
leave-one-case-out resampling method is sometimes used for
the design of an LDA classifier with SFS. In each cycle of
the one-loop leave-one-case-out, SFS and LDA classifier
weights are determined using �N−1� cases and tested on the
left-out case. The SFS parameters Fin, Fout, and tol may be
fixed based on previous experience or may be chosen based
on the test Az from the N test cases. If one attempts to opti-
mize the classifier with respect to SFS parameters, the use of
the test Az from the N test cases for this optimization will
introduce an optimistic bias because the test cases are being
used in the classifier design process. In other words, in such
an optimization scheme, the test Az is not independent of
training. In the two-loop leave-one-case-out resampling pro-
cess, optimization of the SFS parameters is performed only
within the �N−1� training cases in the inner leave-one-case-
out cycle. The left-out case in the outer loop is not used
either to design the stepwise LDA or to guide the selection of
the SFS parameters, so that the test Az may not be as opti-
mistically biased. However, since we used the same data set
to iteratively improve the CAD system, our CAD system
may still have been overtrained to suit the characteristics of
the nodule samples in this small data set. Further evaluation
of its generalizability is needed when an independent test set
is available in the future.

We compared the performance between the LDA and
SVM classifiers. Because we were only interested in the rela-
tive performance between the two, we performed PCA on the
extracted featMTG features of the entire data set first and then
varied the selected number of features as input to the classi-
fiers based on the highest eigenvalues of the covariance ma-
trix of the features. PCA was used because it is a filter fea-
ture selection method such that it does not select features
based on the performance of a specific classifier. This is op-
posed to a wrapper method such as SFS, which selects fea-
tures guided by the performance of a classifier using those
features. The SVM performed slightly better than the LDA
when the highest performance was chosen among a large
number of combinations of kernels and set of parameters for
a given set of input PCA features. This indicated that, for our
data set, if the SVM was tuned for a specific set of input
features, it could achieve better performance than the LDA.

However, none of the SVMs with a fixed kernel and fixed
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parameters performed consistently better than the LDA for
the combinations of kernels and parameters that we investi-
gated.

A CAD system will only be considered useful if radiolo-
gists show improvement in diagnostic accuracy when they
use the system as a second reader. The effect of our CAD
system on radiologists’ classification of lung nodules will be
investigated in an observer study. To that end, it is important
to continually improve the CAD system to provide radiolo-
gists with accurate diagnostic information. Future work will
also include analyzing interval change information for clas-
sification of malignant and benign nodules36,37 and building
on our previous work32,38 in investigating the effect of
sample size on feature selection and classification.

This study has several limitations. First, a heterogeneous
data set with a wide range of scan parameters including slice
thickness, slice interval, and dose was used. The scan param-
eters affected the image quality such as the resolution, noise,
and partial volume effect of the CT scans which, in turn,
would affect the quality of the extracted features. The in-
creased variance in a feature may decrease the separation of
the malignant and benign classes in the feature space, and
hence reduce its effectiveness. We did not choose a more
homogeneous data set because of the limited availability of
cases with known diagnosis and similar scan parameters. It is
also a fact that there are inter- and intrainstitution variations
in CT scan protocols. If our method and features are tailored
to suit only a data set of homogeneous imaging parameters
or thin-slice scans, the estimated performance will likely be
overly optimistic compared to what will be achieved if our
method and features are applied to data sets acquired with
different parameters. The use of a mixed data set as in our
study may provide a more realistic estimate of an average
performance when the CT scan is not ideal given the large
variability in scan parameters and image quality in a clinical
environment.

Second, there were 12 malignant and 7 benign juxtavas-
cular nodules in the data set. We used morphological filtering
to trim off potential blood vessels attached to a nodule for
extraction of morphological features. However, the voxels
that might be part of a vessel were not excluded when the
surface features were extracted because we have not devel-
oped a robust automated blood vessel tracking method to
label vascular voxels attached to nodules. Vascular voxels
surrounding the nodule may distort the gradient magnitude,
profile, and radius features calculated at the nodule surface.
Although these features might be suboptimal for juxtavascu-
lar nodules, they improved the classification accuracy when
combined with other features. This indicates that they still
provided useful information complementary to the other fea-
tures, probably because the surface voxels belonging to a
vessel were typically only a small fraction of the entire sur-
face. The effectiveness of these features may potentially be
improved when the vascular voxels can be reliably excluded.

Third, in the current study, we focused on the character-
istics of the individual nodules and did not examine the lungs
as a whole. Some potentially useful features were not in-

cluded in the feature space. For example, the presence of
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multiple benign-looking nodules in a patient may be indica-
tive of metastatic disease, and the patient’s cancer history
may play a role in differentiating benign lesions and me-
tastases. The usefulness of these features will be investigated
in future studies.

V. CONCLUSION

In this study we designed new image features by analysis
of the gradient field and the surface smoothness of the nod-
ules. We have demonstrated that the new features could im-
prove the performance of our CAD system. The test Az for
the entire data set was improved significantly �p�0.05�
when feature selection was performed in the entire feature
space that included the new features in addition to the mor-
phological and texture features. The discrimination of the
CAD system between primary lung cancers and benign nod-
ules was higher than that between metastatic cancers and
benign nodules likely because there is a larger overlap be-
tween the appearance of benign nodules and metastatic can-
cers. When the LDA and SVM classifiers used the same
feature set obtained by PCA, and the number of features was
varied between 1 and 15 by changing the number of selected
principal components, our comparison indicated that no
single SVM classifier resulted in a consistently higher per-
formance than the LDA in our classification task. Further
work is underway to evaluate the usefulness of the CAD
system in assisting radiologists in the classification of malig-
nant and benign lung nodules.
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