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We investigated the feasibility of using multiresolution texture analysis for differentiation of masses
from normal breast tissue on mammograms. The wavelet transform was used to decompose regions
of interest (ROIs) on digitized mammograms into several scales. Multiresolution texture features
were calculated from the spatial gray level dependence matrices of (1) the original images at
variable distances between the pixel pairs, (2) the wavelet coefficients at different scales, and (3)
the wavelet coefficients up to certain scale and then at variable distances between the pixel pairs. In
this study, 168 ROIs containing biopsy-proven masses and 504 ROIs containing normal paren-
chyma were used as the data set. The mass ROIs were randomly and equally divided into training
and test groups along with corresponding normal ROIs from the same film. Stepwise linear dis-
criminant analysis was used to select optimal features from the multiresolution texture feature space
to maximize the separation of mass and normal tissue for all ROIs. We found that texture features
at large pixel distances are important for the classification task. The wavelet transform can effec-
tively condense the image information into its coefficients. With texture features based on the
wavelet coefficients and variable distances, the area A, under the receiver operating characteristic
curve reached 0.89 and 0.86 for the training and test groups, respectively. The results demonstrate
that a linear discriminant classifier using the multiresolution texture features can effectively classify
masses from normal tissue on mammograms.
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I. INTRODUCTION

Mammography is considered the most reliable method for
the early detection of breast cancers.! However, it has been
reported that radiologists do not detect all breast cancers that
are visible on mammograms in retrospective studies.?”> Pre-
vious studies indicate that computer-aided diagnosis (CAD)
can provide a second opinion to the radiologists and poten-
tially decrease the missed detection rate.%’ Computerized
classification of the malignant or benign features of an ab-
normality may also be expected to reduce the number of
negative biopsies. Improvement in the accuracy of mammog-
raphy will increase its efficacy for screening and diagnosis of
breast cancer.

Computer vision and artificial intelligence techniques
have been developed to detect or characterize abnormalities
on digital mammograms.® Image processing is usually a first
step in computer vision to enhance the signal-to-noise char-
acteristics of the objects being detected. Features are then
extracted for classification between the signal and the back-
ground. Microcalcifications are ideal targets for computer de-
tection due to their clinical relevance, their potential subtlety,
and the lack of coexisting normal structures that have the
same appearance.® The detection and classification of micro-
calcifications have received a lot of attention and demon-
strated significant progress. Breast masses are more difficult
to detect and classify than microcalcifications because
masses can be simulated or obscured by normal breast
parenchyma.>!® Fourier analysis of the masses does not
show consistent and distinctive high-frequency components.
Most of the signal (mass) energy is in the low-frequency
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region and overlaps with the frequency components of the
normal tissue. The gray level changes at the mass boundary
are usually gradual and not as abrupt as those at the bound-
ary of microcalcifications. Moreover, the shape, size, and the
gray level profile of the masses vary from case to case. These
cause difficulties in the application of conventional image
processing methods to the detection and feature characteriza-
tion of masses.

Morphological features have been used to decrease the
number of false-positive detections.! Spiculated masses
were the focus of detection in the analysis of edge orienta-
tion in Kegelmeyer’s work.”!? Breast cancers can also mani-
fest as circumscribed masses.!>!* Selective median filtering
and template matching techniques were proposed to detect
suspicious circumscribed masses.'* For both types of masses,
texture features were extracted from regions of interest
(ROIs) in digital mammograms and were used in a decision
tree to classify the masses from normal tissue with some
success.'”

The discovery of cortical neurons which respond specifi-
cally to stimuli within certain orientations and spatial fre-
quencies suggests that multiorientation and multiresolution
are part of the biological mechanism of the human visual
system.'®!? Interest in multiresolution image analysis has
been growing rapidly in the field of computer vision. A mul-
tiresolution representation provides a simple hierarchical
framework for analyzing image information. The compres-
sion of images by wavelet transforms can achieve a high
compression ratio without significant loss of image details, '®
indicating that important image features are condensed in the
wavelet coefficients. Texture analysis in the wavelet trans-
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form domain was used to distinguish different texture pat-
terns (e.g., French canvas, beach sand, and oriental straw
cloth) with some success.'” Wavelet transform has been ap-
plied to mammographic image processing, especially to the
enhancement and detection of microcalcifications. Laine
et al.'"™ proposed adaptive multiscale processing with
wavelet decomposition and reconstruction for feature analy-
sis and contrast enhancement. Richardson®! discussed the use
of wavelet packets that can be superior to-wavelets for cer-
tain classes of mammographic signals. Qian et al. 22 proposed
a tree-structured nonlinear adaptive filter and the wavelet
transform for the detection and segmentation of microcalci-
fications on mammograms.

In this paper, we discuss the application of multiresolution
texture analysis to digitized mammograms to distinguish
mass from normal tissue. Multiresolution texture features
were extracted from the spatial gray level dependence
(SGLD) matrices (1) of the original image at variable dis-
tances, (2) of the wavelet coefficients at different scales, and
(3) of the wavelet coefficients up to certain scales and then at
variable distances, forming three feature vectors for each
ROI. We used stepwise linear discriminant analysis to select
features from each of these three texture spaces to maximize
the separation of masses and normal tissue. The ability of the
three feature vectors for classifying mammographic masses
and normal tissue was compared. Receiver operating charac-
teristic analysis was used to evaluate the classification accu-
racy of the texture features from the different feature spaces.

Il. METHODS
A. Database selection

The mammograms used in this study were randomly se-
lected from the files of patients who had undergone biopsies
in the Department of Radiology at the University of Michi-
gan. The mammograms were acquired with dedicated mam-
mographic systems with a 0.3-mm focal spot, a molybdenum
anode, 0.03-mm-thick molybdenum filter, and a 5:1 recipro-
cating grid or a stationary grid. The image receptor was a
Kodak MinR/MRE screen/film system with extended cycle
processing. Our selection criterion was that a biopsy-proven
mass could be seen on the mammogram. Initially, more than
300 mammograms were acquired. To avoid the effect of the
repetitive grid pattern on the texture feature calculation and
the classification, all mammograms with grid lines were ex-
cluded. Our final data set was composed of 168 mammo-
grams.

The mammograms were digitized with a laser film scan-
ner (LUMISYS DIS-1000) at a pixel size of 0.1 mmX0.1
mm and 4096 gray levels. The light transmitted through the
mammographic films was amplified logarithmically before
digitization. After the calibration, the pixel values were lin-
early proportional to the optical density in the range of 0.1~
2.8 optical density units. The slope of the calibration curve
decreases gradually outside this range.

Before an automated computer segmentation procedure
was developed, we used manual ROI extraction to study the
feasibility of using texture features for the classification of
mass and normal tissue in all types of breast parenchyma.
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Four different ROIs, each with 256X256 pixels, were se-
lected manually from each mammogram. One ROI contained
a true mass which was identified by an experienced mam-
mographer. A second contained normal parenchyma includ-
ing the densest tissue on that mammogram, a third, mixed
dense/fatty tissue, and a fourth, fatty tissue. Figure 1 shows
the 672 ROIs from the 168 mammograms in reduced spatial
resolution. The 168 case samples in the data set contained a
mixture of benign (n=83) and malignant (n=85) masses.
Forty-five of the malignant masses and six of the benign
masses were spiculated. The visibility of the masses was
ranked by experienced radiologists on a scale of 1-10 (1
=most obvious, 10=most subtle), which corresponded to the
range of masses seen on clinical mammograms. The length
of the long axis (size) of the masses was also measured by
the radiologists. The distributions of the visibility scores and
the sizes are shown in Fig. 2. It can be seen from Figs. 1 and
2 that the masses with different shapes and visibility found in
clinical practice were fairly well represented in the data set.

B. Texture features

The input images were digitized to 12 bits of resolution.
The average gray level of each ROI of the images was re-
moved and replaced by a constant for all the ROIs before the
texture analysis and wavelet transform were performed in
order to reduce the variability of the texture features caused
by exposure conditions. The texture features were calculated
based on the SGLD matrix, also known as the concurrence or
co-occurrence matrix.>>?* The (i,7)-th element of the SGLD
matrix, py ¢(i,j), is the joint probability that the gray levels
i and j occur in a direction 8 at a distance of d pixels apart
(d is the distance in terms of number of pixels and is referred
to as pixel distance in the following discussion) over the
entire ROI The joint probability describes the frequency that
a pair of gray level values occurs between pixel pairs with a
defined, relative spatial relationship. The SGLD matrix is a
two-dimensional histogram. The matrix size depends on the
gray level resolution (i.e., the bit depth) of the digitized im-
age and the bin width used in determining the histogram. If
the gray level resolution is » bits and the bin width is b gray
levels, then the size of the SGLD matrix will be a X a, where
a=2"/b. For example, for a 12-bit image, the matrix size of
an SGLD matrix constructed with a bin width of 1 gray level
is 4096xX4096. The matrix size is reduced to 256X256 if a
bin width of 16 gray levels is used. The increased bin width
is equivalent to reducing the gray level resolution of the
12-bit image to 8 bits by eliminating the 4 least significant
bits and using a bin width of 1 gray level in determining the
SGLD matrix. Based on the findings of our previous study,?
8-bit gray level resolution provided the best classification
accuracy when texture features calculated at a fixed pixel
distance d were used. Therefore, 8-bit gray level resolution
was chosen for the formulation of the SGLD matrices in this
study.

Eight texture features were examined: correlation, energy,
entropy, inertia, inverse difference moment, sum average,
sum entropy, and difference entropy. Some of the texture
features can be used to describe some visual properties of the
images while others may be more abstract. For example, cor-
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(b)

Fi. 1. The 168 case samples used in this study with ROIs containing (a) biopsy-proven masses, (b) dense breast tissue, (¢) mixed dense/fatty breast tissue.
and (d) fatty breast tissue. The upper halves are the G, cases and the lower halves the G, cases.
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(d)

FIG. 1 (Continued.)

Medical Physics, Vol. 22, No. 9, September 1995



1505 Wei et al.: Computerized classification of mass and normal tissue 1505

50

40 +
30 +

NO. OF MASSES

1 2 3 4 5 6 7 8 9 10
VISIBILITY

(a)

NO. OF MASSES

4 6 8 10 12 14 16 18 20 22 24 26 28
SIZE (mm)

]

FIG. 2. The distribution of (a) the visibility score and (b) the size of the 168
masses.

relation is a measure of gray level dependency. Energy (or
angular second moment) and entropy are measures of pixel
homogeneity. Inertia (or contrast) represents the amount of
intensity variation. It is difficult, however, to relate specific
image characteristics to each of these features. The math-
ematical definitions of the features can be found in the
literature'**** and are given in Appendix B.

Each texture feature was calculated at =0°, 45°, 90°, and
135° for specified distances and/or scales. Since it is ex-
pected that the shape and the texture of masses in the ROIs
do not have angular preferences. we averaged the features at
6=0°, 90°, and at #=45°, 135°, and referred to these aver-
aged features as features at 0° and 45°, respectively, in the
following discussion. For a given pixel distance, the actual
distance between the pixels on the image at 45° was equal to
v2 times the actual distance at 0°. When the pixel distance
increased, the differences in the actual distances between
these angles become more significant. Because the texture
features depended on the actual distance between the pixel
pairs, the features at the two angles were treated separately in
our multiresolution texture analysis.

C. Wavelet transform

The wavelet transform produces a multiscale representa-
tion of an image in which the geometric structures of the
image are preserved within each sub-band or level. In Ap-
pendix A, we present a brief introduction to the wavelet
transform. More details of the theory and applications can be
found in the literature.*®~%

Mallat presented a multiresolution framework with the
discrete wavelet transform inherently embedded.?” In this
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FiG. 3. Wavelet decomposition from level 0 (L0 or scale 1) to level 4 (L4 or
scale 16) of (a) an ROI with a mass and (b) an ROI with normal breast
tissue.

framework, the original image (Y) that has the highest reso-
lution is referred to as level 0 (i=0) or scale 1 (s=2",_).
At scale 2, the original image is decomposed in the wavelet
transform domain (similar to the spatial frequency domain in
Fourier transform) into a low-pass sub-band image Y%,L i1
(referred to as approximation image at level 1 or scale 2.
low-pass low-pass quadrant) and three bandpass sub-band
images Y5, Y'ZIL. Y (referred to as detail images in the
low-pass high-pass. high-pass low-pass, and high-pass high-
pass quadrants). At the next scale (scale 4). the approxima-
tion image at scale 2, Y5 is decomposed further into a
low-pass sub-band approximation image Y4 and three more
bandpass sub-band images Y vy v The decomposi-
tion can be stopped at some desired (lower) resolution or
(larger) scale. Figures 3(a) and 3(b) illustrate the wavelet
decomposition to level 4 or scale 16 of the ROIs containing
a mass and normal parenchyma, respectively. The recon-
struction of an image from the wavelet coefficients in the
transform domain starts from the lowest resolution (largest
scale) sub-band images.

In this study, Daubechies’ filter with four coefficients™’
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was used as the wavelet filter for image decomposition (see
Appendix A). A filter with a small number of wavelet coef-
ficients was chosen because the width of the uncertainty
band at the image boundary caused by convolution would be
narrower. This allowed the decomposition to be performed to
larger scales while still providing a sufficient number of us-
able pixels in the approximation image for the construction
of an SGLD matrix. The chosen filter was also separable so
that the fast wavelet transform algorithm could be employed
in two-dimensional image analysis.

D. Muiltiresolution texture feature space

We used the original image Y (scale 1) and the low-pass
sub-band approximation image Y IZ‘,L (scale 2/, i=1,..,4) to
formulate SGLD matrices at multiple scales. The distance of
the pixel pairs used at each scale was one pixel. The decom-
position stopped at scale 16 so that the approximation image
in the transform domain had 16X16 pixels. Effectively, the
pixel distances of SGLD matrices formulated in this way at
scales of 1, 2, 4, 8, and 16 corresponded to pixel distances of
1,2, 4, 8, and 16 in the original image. A total of 80 features
were calculated from each ROI (8 features X2 angles X5 lev-
els) in this feature space. These 80-dimensional feature vec-
tors based on the wavelet transform were denoted as Fyr.

As the scale in the wavelet transform increased, the sta-
tistical fluctuations in the SGLD matrices based on the
smaller and smaller images could not be neglected due to the
random sample errors. To reduce the statistical error in the
SGLD matrices, we decomposed the original ROIs by wave-
let transform to scale 4 so that the smallest image size was
6464 pixels. Then the wavelet filter was applied once more
without downward sampling. The resulting wavelet coeffi-
cients were obtained at scale 8 and were overcomplete and
redundant.”®>® However, this allowed the number of pixels
used to construct the SGLD matrices to be kept at 64X64.
The SGLD matrices at scale 8 were then constructed with
distances of 2, 3, 4, 5, 6, 7, § 9, 10, 11, and 12. These
distances between pixel pairs were equivalent to the dis-
tances of 8, 12, 16, 20, 24, 28, 32, 36, 40, 44, and 48 in the
original image. Therefore, a total of 224 features were cal-
culated from each ROI [8 featuresX2 anglesX (1 pixel dis-
tance at scales 1, 2, 4+11 pixel distances at scale 8)] in this
feature space. The feature vectors in this 224-dimensional
feature space were based on wavelet transform and variable
distances, and were denoted as Fy, .

To evaluate the effect of the wavelet transform on the
classification results, we compared the features described
above to those extracted from the SGLD matrices of the
original image. The SGLD matrices were constructed with
pixel distances of 1, 2, 4, 8, 12, 16, 20, 24, 28, 32, 36, 40, 44,
and 48. These distances corresponded to those used in the
calculation of Fyy when the latter were converted to equiva-
lent pixel distances in the original image. Therefore, a total
of 224 features were calculated from each ROI (8 features X2
angles X 14 pixel distances) in this feature space. These fea-
ture vectors based on SGLD matrices from the original im-
ages with variable distances were denoted as Fyp . From the
224 features, we could also select a subset of 80 features at
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d=1, 2, 4, 8, and 16. The pixel distances in this subset cor-
responded to the pixel distances used for the calculation of
the features in Fy,y. The 80-dimensional feature vectors ob-
tained from this subset of features with variable distances
were denoted as Fypg. The impact of the wavelet transform
on the discriminant power of the texture features was studied
by comparing the classification results obtained with Fyp
and Fypg to those obtained with Fyy and Fyy, respectively.

E. Linear discriminant analysis

Linear discriminant analysis’' is a systematic statistical
technique to classify individuals or cases into one of the
mutually exclusive classes based on certain indices or pre-
dictor variables. These indices or predictor variables may
have certain correlations with one another. In a two-class
classification problem, for example, a linear combination of
these variables is formed and the coefficients are determined
based on certain optimization criteria. One of such criteria,
proposed by Fisher, is that the ratio of the difference of the
means of the linear combination in the two classes to its
variance is maximized.*"*?

The discriminant analysis in the SPSS software package
[M. J. Norusis, SPSS for Windows Professional Statistics,
Release 6.0 (SPSS Inc., Chicago, IL, 1993)] was used in this
study. The extended feature spaces as explained above were
each used as a pool of predictor variable candidates for a
two-class discriminant analysis that contained a mass class
and a normal tissue class. Similar to the situation of multiple
linear regression, including a large number of possible pre-
dictor variables in the linear model of the discriminant func-
tion is not a good strategy. Inclusion of irrelevant variables
will not improve the classification accuracy and will de-
crease the generalization capability of the classifier. Because
of the large number of features in the pools, it is a formidable
task to test all different feature combinations at different
numbers of feature variables to find the best combination.
Therefore, we utilized a stepwise feature selection procedure
to select predictor variables in each feature space. Five se-
lection criteria are provided in the SPSS package, including
(1) the minimization of Wilks’ lambda, (2) the minimization
of unexplained variance, (3) the maximization of the
between-class F statistic, (4) the maximization of Mahalano-
bis distance, and (5) the maximization of Lawley—Hotelling
trace (Rao’s V). For each feature space, we tested all avail-
able selection criteria. With each criterion, we performed
stepwise feature selection on all the 168 cases using the pro-
gram default values for the inclusion and exclusion threshold
parameters and the termination criterion. The selection crite-
rion that provided the best classification result would be cho-
sen. Since the program default values of the parameters
might not be the optimal choices for our application, we
varied the parameter values of the chosen criterion in an
attempt to further improve the classification results. For our
data sets, when the thresholds were set higher than the de-
fault values, fewer feature variables would be included and
the classification accuracy decreased. When the thresholds
were set lower than the default values, more features would
be included and the classification results might improve.
However, when the thresholds were lowered further and too
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many features were included, the classification would dete-
riorate. The set of feature variables that provided the best
classification in this selection process were used for the for-
mulation of the discriminant function in the given feature
space. For simplicity, we will refer to this stepwise selection
procedure with different thresholds as a stepwise or auto-
matic selection process. Our feature selection process was by
no means exhaustive. However, it would represent the best
selection achievable within reasonable computational re-
quirements.

To evaluate the capability of generalization of a trained
classifier, we randomly divided the 168 cases into two
groups (G; and G,) of equal size. We used the features se-
lected with the procedure described above as discriminant
variables. If a given group was used for training, the feature
values of each case from that group were used to optimize
the coefficients of the linear discriminant function. The train-
ing cases were then classified with the linear discriminant
function as a verification of consistency. The other group was
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used as test cases of which the feature values were input to
the classifier and the discriminant score of each case was
calculated from the linear discriminant function. One of the
two groups was alternately used as the training group so that
the variability of the classifier with different training groups
could be observed.

Receiver operating characteristic (ROC) analysis™" was
used to evaluate the overall performance of the linear dis-
criminant functions, in addition to the classification results
reported by the SPSS program under certain prior probability
assumptions. For a two-class problem, the ROC curve could
be obtained using the Bayes’ rule by changing the prior prob-
ability. Alternatively, the discriminant score from the canoni-
cal discriminant function could be used as the decision vari-
able in the ROC analysis. Figure 4 demonstrates such a
distribution of discriminant scores based on the linear com-
bination of features calculated from wavelet coefficients at
variable distances. The distribution of the discriminant scores
of the ROIs in the training or the test group was input into

33,34

TaBLE 1. Texture features selected by stepwise discriminant analysis.

(a) From Fyr and Fyps

scale 1 2 4 8 16
pixel distance 1 2 4 8 16
:} 0° 145°; 0° :45°: 0° :45°: 0° {45°; 0° 45°
correlation A . .
difference entropy . .
energy .
entropy
inertia . . e .
inv. dif. moment .
sum average A A . A . A
sum entropy .
(b) From Fyp, and Fyy
scale 112 4 8
Distance 112 4 8 1216 20 24 28 32 36 :40; 44 48
] 0° §45°] 0° [45°} 0° 145°145°{45°) 0° {45°: 0° [45°; 0° ; 0° 145°; 0° (45°; 0° { 0° (45°; 0° | 45°
correlation oA DA OA 0O:a L a] A D imOi A
dif. entropy a aA ] a [u] _Iw] o mAl O
energy o o a
entropy AlA o oo m:0 D moa
inertia L
inv. dif. moment S0 A E A [m] "o
sum average A LIV =} A » Oimai®
sumentropy | O ] u] [ ] CA

(a) @ 13 features (automatic)selected from Fyy. V 5 features (automatic) selected from Fypg. Note: 0° represents the average of features at 0° and 90°; 45°

represents the average at 45° and 135°.

(b) M 19 features (automatic) from Fyy. [1 29 features (semiautomatic) from Fyy. A 20 features (automatic) from Fyp. Note: Some distances/angles are not
shown if no feature was selected. 0° represents the average of features at 0° and 90°; 45° represents the average at 45° and 135°.
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all 672 ROIs with 19 features selected from multiresolution texture feature
space Fyy . ’

the LABROC1 program,”> which provided a maximum-

likelihood estimation of a binormal ROC curve for training
or testing, respectively. The area under the fitted ROC curve,
A, was used as a performance index for evaluating the dif-
ferent sets of features selected from different multiresolution
feature pools. The standard deviation (SD) of A, estimated
by LABROC1 was also reported. The CLABROC program was
employed to test the statistical significance of the difference
between A, values of different sets of selected features.*®
The two-tailed p values were reported in the following com-
parisons.

. RESULTS
A. Texture features based on wavelet coefficients

Stepwise feature selection was performed with the multi-
resolution texture features extracted from the feature space
Fy. Thirteen features were selected as shown in Table I(a).
The A, and the estimated SD of the ROC curves are summa-

FALSE POSITIVE FRACTION

F16. 5. ROC curves for classifying masses from normal tissue with discrimi-
nant function based on 13 features selected from texture feature space Fyr.

rized in Table II. Figure 5 shows the ROC curves for the
classification using the features derived from the wavelet co-
efficients. The A, values of 0.858 and 0.854 for testing of G;
and G,, respectively, are higher than those of 0.817+0.027
(p=0.02) and 0.829*0.026 (p=0.10) obtained with texture
features calculated from the SGLD matrix at a single dis-
tance of 20 pixels.?

B. Texture features based on original images with
variable distances

To evaluate whether the improvement of classification
over the results using features based on a single distance® is
caused by the low-pass filtering in the wavelet transform or
by the changes in the pixel distances, we used the same 13
features variables selected from Fyry but the feature values
were calculated from the SGLD matrices based on the origi-

TaBLE II. Comparison of the area under the ROC curves, A,, obtained from different feature spaces.

Number | Feature | Features extracted | Training on Training on G, Training on G,
of Features | Space from scales G; and G; Testing on G, Testing on G
Az (Train) | Az (Train) | Az (Test) | Az (Train) Az (Test)
13* Fut 1,2,4,8,16 (0.86410.016|0.869+0.02110.85410.023{0.868+0.022 | 0.8581+0.022
13* Fyps 1 0.79610.01910.80810.026 10.78110.027{0.79840.027 | 0.787+0.027
5* Fups i 0.758+0.021 |0.76610.028 |0.747+0.029{ 0.754+0.029 | 0.760+0.028
20% Fun | 0.88510.014{0.834+0.024 [0.837+0.024| 0.90510.018 | 0.85710.022
19¥ Fvp 1 0.87110.015]0.88310.019(0.83610.025] 0.87810.021 | 0.85910.022
19* Fwv 1,2,4,8 0.88410.014 [0.899140.018/0.85310.025]0.887+0.021 (0.85910.022
294 Fwv 1,2,4,8 0.88740.014 0.90410.018 0.84010.026{ 0.90310.018 { 0.85510.022

* Automatic feature selection.

@ Features corresponding to those automatically selected from Fyr.
AFeatures corresponding to those automatically selected from Fy,y.

V¥V Semiautomatic feature selection.
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FIG. 6. ROC curves for classifying masses from normal tissue with discrimi-
nant function based on 19 features selected from texture feature space Fyy .

nal images at equivalent distances, Fypg. The A, values of
the ROC curves with the same training and test groups
(Table II) are significantly lower than the corresponding A,
values (p<<0.006) with features extracted from the wavelet
coefficients.

Stepwise feature selection was also performed on the en-
tire data set of 168 cases from the feature space Fypg. The
five features selected are listed in Table I(a). When this set of
features was used to formulate the discriminant function,
there was no improvement in A, (Table II), compared with
the results using the 13 features with feature values from the
same Fypg space. The differences between the A, values
obtained with 13 features from Fy and the corresponding
A, values obtained with 5 features from Fypg were statisti-
cally significant (p<<0.0002). When the entire feature space
of Fyp was used in the stepwise feature selection, 20 features
were selected as listed in Table I(b). The A, values for clas-
sification in both the training and test groups are significantly
higher than those obtained with 5 features from Fypg (p
<0.025). As can be seen from Table I(b), 12 out of the 20
features were selected from distances greater than 16 pixels.
This indicates that the information at larger distances which
is not present in Fypg is important in the classification of
mass and normal tissue. Some of the A, values obtained with
these 20 features from Fyp are higher than those with 13
features from Fyr, while the others are lower than those
obtained from Fy,1, with p values ranging from 0.06 to 0.77.
This is an indication that the discriminant power of the fea-
tures from Fyp is comparable to that of the features from

Fyr.

C. Texture features based on wavelet coefficients at
variable distances

Figure 6 illustrates the ROC curves for training and test-
ing when stepwise feature selection was performed on the
texture features extracted from the feature space Fy~ . The
19 features selected are listed in Table I(b). As shown by the
A, values in Table II, when the selected features were used to
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formulate the discriminant function, the classification results
for the training sets improved in general, with p values rang-
ing from 0.08 to 0.40, whereas the test results were almost
the same as those obtained with the 13 features from Fyr,
with p values of 0.93 and 0.88. As can be seen from the same
table, if these 19 variables were used on the feature values
from Fyp, the A, values were similar to or slightly lower
than those obtained with Fy . The differences are statisti-
cally significant for A, (training on G, and G,) and for A,
(testing on G,) at p<0.03, and are insignificant for the other
A, values with p values ranging from 0.23 to 0.60.

We also selected the features in two steps, referred to as
semiautomatic selection. First, we input texture features of
the same type, e.g., correlation, calculated at all scales and
distances into the discriminant analysis program. By using
the stepwise selection method with reduced thresholds for
the F values for variable entry and removal, we found the
scales and distances that are important for classification for
each texture feature. Then we applied the stepwise procedure
again to all features at their selected scales and distances to
further reduce the number of features. In this way, 29 fea-
tures were selected as shown in Table I(b). Although most of
them were different from the 19 features selected automati-
cally, the overall classification results did not show much
difference, indicating that some of the features used in one
discriminant function might be linearly correlated with some
of the features in the other discriminant function. The clas-
sification results (Table II) improved slightly in the training
groups (with p values ranging from 0.08 to 0.74) but dete-
riorated in the testing groups (with p values of 0.24 and
0.54), probably because the increased number of features
used in the discriminant function limited its capability for
generalization.

IV. DISCUSSION
A. Multiresolution texture analysis

Textures are generally recognized as being fundamental to
perception, although there is no precise definition or charac-
terization of textures available in practice. Intuitively, texture
descriptors provide measures of properties such as smooth-
ness, coarseness, and regularity. When an image is composed
of elements of texture primitives, the description of the im-
age by texture features can be very effective. One of the
advantages is that the texture features are shift invariant and
can be made orientation invariant by averaging over various
angles. This is very important since the location and orienta-
tion of the mass in the ROI can be arbitrary.

The masses found in clinical mammograms have very dif-
ferent shapes and sizes. It is a challenge to find a universal
feature or a set of features that can differentiate the masses
from the normal tissue and parenchymal structures in the
breast. It is also difficult to define a priori an optimal reso-
lution for the ROIs. A multiresolution approach could pro-
vide a scale-invariant interpretation of an image.

The wavelet transform is closely related to the well-
known Fourier transform through the short-time Fourier
transform or Gabor transform. It is considered a natural way
of decomposing the image energy into different frequency
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bands through convolution with the translated and dilated
version of a function called the “mother wavelet.””?® Unlike
the Fourier transform where the coefficients in the transform
domain do not reflect the local spatial variations, the wavelet
coefficients retain the spatial variations of the original image.

In the multiresolution framework using wavelet decompo-
sition proposed by Mallat,” the transform domain contains a
minimum set of coefficients from which the reconstruction
of the decomposed image is perfect or lossless. In the suc-
cessive image decomposition, the approximation image in
the current scale is decomposed into an approximation image
and three detail images in the larger scale. Once the mother
wavelet is chosen, the coefficients, which contain one ap-
proximation image and a series of detail images at different
scales, are nonredundant and the transform is one-to-one.
The extraction and condensation of image information
through Mallat’s framework are very efficient. Thus the
wavelet transform is often used for image compression. '8
In the classification and pattern recognition problem, how-
ever, the focus is on the extraction of those features that can
provide maximum distinction among different classes rather
than on the minimal representation of the original image. In
our current texture analysis, we used the approximation im-
ages at different scales, which are redundant representations
of the original image. Such representations may be helpful in
classification and pattern recognition applications, as demon-
strated by the improvement in classification accuracy in
comparison to the results obtained with features at a single
distance,? or to the results obtained with features at variable
distances without wavelet transform.

The discrete wavelet transform can be described as a cas-
caded process with two basic operations: filtering and down
sampling. There are certain requirements for a filter to be
wavelet filter.® Although it is possible to find optimal wave-
let filters for certain types of images, our focus in this work
is on the feasibility of muitiresolution features for classifica-
tion of masses from normal tissue rather than the optimiza-
tion of this procedure. Therefore, an orthonormal four-weight
Daubechies’ filter with compact support®’ was used for our
image decomposition. When the down-sampling process ef-
fectively reduces the image size by a factor of 2 in each
direction as the scale increases, the reduced size of the dis-
tortion at the boundary will help keep as much useful image
information as possible for texture calculation.

B. Comparison of classification accuracy with
features from different feature spaces

To compare the discriminant power of texture features
calculated from the wavelet coefficients to those from the
original images, we used the feature variables with equiva-
lent distances (Fypg). Using the features selected by the step-
wise procedure, the classification results based on the fea-
tures from Fy, were significantly better than those based on
the features from Fypg. If we used the 13 features automati-
cally selected from Fyr but formulated the discriminant
functions based on the texture feature values from Fypg, the
classification results demonstrated similar differences. This
indicates that the texture features at equivalent distances
from the wavelet transform domain have better discriminant
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power than those from the original images. However, when
texture features up to distances of 48 (Fyp, corresponding to
4.8 mm for 0° features and 6.79 mm for 45° features) are
available for feature selection, the discriminant power of the
texture features from the original images can reach as high as
that of the features from Fyp or Fyy. As can be seen from
the features selected from each space shown in Tables I(a)
and I(b), the texture information at large distances is impor-
tant for the classification task. The feature space Fypg does
not provide such important information, resulting in poor
classification. On the other hand, although the features in
Fyr were calculated at distances equivalent to those of
Fyps, the low-pass filtering effectively increases the correla-
tion distances of the features. The structural information and
energy of the original image obtainable at larger distances
than the maximum equivalent distance of 16 pixels are con-
densed into the wavelet coefficients used for the calculation
of Fy. The fact that the features from Fy,y, do not provide
significant improvement (at least for the test groups) in the
classification results indicates that the compression of image
information is efficiently accomplished by the wavelet trans-
form so that the additional information in Fyy is redundant
as expected.

The overall operations of the discrete wavelet transform
can be summarized as bandpass filtering (including low-pass
and high-pass filtering) and downward sampling (decima-
tion). The approximation images with the wavelet coeffi-
cients are the result of the low-pass filtering from convolu-
tion with the orthogonal scaling function.?” The detail images
obtained through convolution with the orthogonal wavelet
function contain the edge (or high-frequency) information of
the images. The texture features based on the multiresolution
approximation images demonstrate improvement compared
with those based on the original images for the classification
of masses from normal tissue. This seems logical since, un-
like microcalcifications that contain high-frequency compo-
nents, the masses usually have relatively lower frequency
contents. The frequency components of the background nor-
mal tissue are also in the low-frequency region, which makes
the differentiation much more difficult. As the scale increases
(by downward sampling or by increasing the distances in
SGLD matrix formulation), the spatial resolution becomes
lower while the low-frequency bands becomes narrower. The
texture features based on the wavelet coefficients with de-
creasing low-frequency bandwidth demonstrate statistical
difference between masses and normal tissue. At the same
time, the effect of the noise with relatively high frequency is
eliminated. The subtle differences between the masses and
the normal tissue in the low-frequency range are therefore
revealed when the difference in the changes of the low-
frequency bands between them is utilized through multireso-
lution analysis. This may explain our finding that classifica-
tion results with the multiresolution textures are better than
those with single distance textures,” except for the results
obtained with features selected from Fypg. It may be noted
that the maximum distance of 16 pixels used in Fypg is lower
than the selected distances of 20 pixels in the single resolu-
tion texture analysis.

It is expected that the detail images in the wavelet trans-
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form domain contain valuable information about the differ-
ence between masses and normal tissue. When radiologists
observe some large, suspicious structure, they will usually
inspect it in more detail to determine whether it is a mass.
However, we found that using the texture features based on
the detail images in the wavelet transform domain to formu-
late the discriminant function did not result in proper classi-
fication. It seems that the statistical summary of the textures
used here is not effective for the detail images. We will ex-
plore the use of other statistical features to extract the infor-
mation contained in the detail images in future studies.

The reason that the features from the wavelet transform
improve the classification results can also be explained as the
result of the low-pass filtering operation. In this sense, other
low-pass filters can also be used. This provides the possibil-
ity of designing optimal filters for the masses so that the
classification results can be further improved. An advantage
of the wavelet transform over other low-pass filters is that it
provides an integral multiresolution framework with great
computational efficiency. »

The down-sampling process in the wavelet transform ef-
fectively reduces the number of pixels in the approximation
image at each scale. The reduced size of the approximation
images at larger scales will cause more variability in SGLD
matrix formulation, thereby affecting the accuracy of the tex-
tures estimated at lower image resolution. As the scale in-
creases, the statistical fluctuations of the SGLD matrix based
on the smaller and smaller images cannot be neglected due to
the random sample errors. In fact, when the approximation
images at scale 32 with 8X8 pixels (equivalent to a pixel
distance of 32) were used, the texture features did not show
any differences between ROIs containing mass and ROIs
containing normal tissue due to the small number of pixel
pairs for the SGLD matrix formulation. To improve the sta-
tistical accuracy of the SGLD matrices, we used the infor-
mation contained in the decimated coefficients in the wavelet
transform and increased the number of discrete distances at
which the SGLD matrices, thereby texture features in Fyy,,
could be calculated. Equivalently, this implies that features
based on the information in the low-frequency bands with
different bandwidths are used for classification. Although
this did not significantly improve the classification results for
the current data set, the features from Fy may be statisti-
cally superior to those from Fyy because of the reduced
uncertainties in the SGLD matrices.

C. Linear discriminant analysis

The classification accuracy is dependent on the feature
variables in the linear discriminant function. We observed
that when more features were used for the discriminant func-
tions, there was a trend that the training results would im-
prove at the expense of the test results. This is probably
because the classifier has too many unknown parameters and
is tuned toward the training group when it contains a small
number of cases. The resulting discriminant function may
not be representative for the general population. Therefore,
the generalization capability of the classifier may deteriorate
as the number of features used in the linear discriminant
function increases. A similar situation arises when other clas-
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sifiers, e.g., neural network, are used. We also observed that
the feature variables selected by the stepwise discriminant
analysis was dependent on the case samples in the training
set. If we used the training subgroups to select feature vari-
ables, the feature variables selected from G, were not iden-
tical to those from G,. Therefore, we used the whole data set
(G, and G,) to select the feature variables. As the number of
case samples increased in the data set for feature selection,
the statistical uncertainty of the distributions of the vectors in
the feature space was reduced. This is expected to improve
the robustness of the selected feature variables.

D. CAD application

One of our goals in the development of CAD methods in
mammography is to assist radiologists in detection of suspi-
cious masses on mammograms using computer vision tech-
niques. Before the automated ROI detection method is fully
developed, we used manually extracted ROIs to study the
feasibility of using texture features for the classification of
mass and normal tissue in different types of breast paren-
chyma. The results of this study demonstrated the potential
of using multiresolution texture features for the classification
task. The accuracy at an average A, of 0.86 for the test sets
represents a significant improvement over a single resolution
approach.? Although further improvement in the accuracy is
needed before clinical implementation, the algorithm can be
incorporated into an automated mass detection program as a
step to reduce false-positive ROIs. For example, we can set a
decision threshold on the ROC curves (Fig. 6) at a true-
positive fraction of 95% and a false-positive fraction (FPF)
of 55%, thereby reducing 45% of the FPs while most of the
true masses are retained. Alternatively, an accurate classifi-
cation algorithm, once developed, can also be used indepen-
dently from an automated detection algorithm. For example,
it can be implemented in a CAD workstation and used by
radiologists interactively to help differentiate ROIs indicated
by the radiologists. The texture information used by the com-
puter analysis may complement the human visual perception.
The classification accuracy required, the best operating point
on the ROC curve, and the appropriate approach of CAD
implementation that can be most useful to radiologists are
important topics of investigation in the future.

It is well known that the accuracy of a classifier for FP
reduction depends on the specific types of FPs generated in
the detection process, which may vary with different auto-
mated detection schemes or human observers. The accuracy
may also depend to some extent on the properties of the
image acquisition system used, such as the amplification
mode, dynamic range, or spatial resolution. The coefficients
in the linear discriminant function and the selected feature
variables are expected to be different wh:en the classifier is
used in conjunction with different detection programs. The
usefulness of this study lies in the fact that we developed a
general approach to the extraction of multiresolution texture
features and demonstrated their effectiveness in classification
of masses and normal tissue. When this method is applied to
a specific task, the classifier must be trained with ROIs rep-
resentative of the population detected in that process, using
the procedures developed in our study as a guide. It is also
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important that a much larger number of training samples than
that used in this feasibility study is used in order to ensure
the generalization capability of the trained classifier.

V. CONCLUSION

In this study, we examined the application of multiresolu-
tion texture features in the classification of masses and nor-
mal breast parenchyma. With linear discriminant analysis,
we demonstrated that multiresolution texture features from
the approximation images in the wavelet coefficients at dif-
ferent scales, Fy, provide significant improvement in the
classification accuracy over the features from the original
images at equivalent distances, Fypg. The featurés from the
combination of wavelet coefficients and variable distances,
Fywy. can further improve the classification accuracy, al-
though the improvement falls short of statistical significance.
The A, under the ROC curve using 19 features from the Fy,y
feature space reached an average of 0.89 for training and
0.86 for testing. The approach developed here can be incor-
porated into a CAD procedure which may assist radiologists
in the detection of suspicious lesions on mammograms.
While improvement in the classification accuracy is still nec-
essary for clinical applications, our results demonstrate the
feasibility of using multiresolution textures for the classifi-
cation of masses from normal tissue on digital mammo-
grams.
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APPENDIX A: WAVELET TRANSFORM

In the following, we will briefly describe the basic ap-
proach of the wavelet transform that is related to this paper.
For simplicity, one-dimensional wavelet transform is dis-
cussed. Generalization to two-dimensional space is straight-
forward.

In the wavelet transform, a signal f(x) is decomposed
with a family of real orthonormal bases ¢; ,(x) obtained
through translation and dilation of a kernel function known
as the mother wavelet:

Ya(0)=27"29(27x—n),

where j and n are integers. The wavelet coefficients of the
signal f(x) can be obtained through the decomposition

(A1)

o= | 10w a0, (a2
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The signal can be reconstructed from the wavelet coefficients
¢; , and the wavelet bases ¢; ,(x) through the synthesis for-
mula

FO)=2 ¢jnthjn(x). (A3)
j,n

The mother wavelet (x) can be constructed from a scal-
ing function ¢(x), which satisfies the two-scale difference

equation?®?’

¢(x)=v2; h(k) p(2x—k). (A4)
The wavelet kernel y(x) is related to the scaling function via

W) =V22 (k) $(2x k), (AS)
where

g(k)=(~1)*n(1-k). (A6)

Several conditions have to be met in order for the set of
wavelet functions in Eq. (A1) to be unique, orthonormal, and
have a certain degree of regularity.?S Different sets of coef-
ficients satisfying those conditions can be found in the wave-
let literature.?’~%

In the discrete wavelet transform, fast recursive algo-
rithms for wavelet decomposition have been developed. The
pyramid wavelet algorithm, which we used for the multireso-
lution image analysis in this study, decomposes the signal
into two parts in the next, larger scale: an approximation
signal with the scaling function that has low-pass filter char-
acteristics, and the detail signal with the wavelet function
that has the bandpass filter characteristics. In our two-
dimensional wavelet transform, we retained the coefficients
that corresponded to the scaling function ¢(x) at each scale
for texture analysis.

APPENDIX B: TEXTURE FEATURES

An SGLD matrix element p 4 4(i,/) is the joint probability
of the gray level pairs i and j in a given direction @ separated
by a distance of d pixels. For each ROI eight features were
derived from its SGLD matrix of a given 6 and d:

n—1 n—1

energy= 2, >, p*(i.j).:
i=0 j=0
where n is the number of gray levels of the image;

tione 2120 2)20 (1= ) U= )P (i)
correlation= 0.0, s

where

n—1 n—1 n—1 n—1
#x=2 12 p(lv])’ 0)%:2 (i_/'l‘x)zz p(ls.])’
i=0 j=0 i=0 j=0
n—1

n—1
o2= 2, (i-u,)2 2 p(ij)
j=0 i=0

n—1 n—1
py=2 J 2 pi.),
j=0 =0

are the mean and variance of the marginal distributions p (i)
and p (j), respectively;



1513 Wei et al.: Computerized classification of mass and normal tissue 1513

n—1 n—1

inertia= », >, (i—j)p(i.j),
=0 j=0

n—1n—1

entropy = — 2) 20 pi,j)log, p(i.j),
i=0 j=

n—1n—1 1 .
inverse difference moment= E 2 ————= p(i.j),
=0 =0 1+(i—))

2n-2
sum average= 2 kpyt,(k),
k=0

where
n—1 n—1

P y(k) = 20 20 pli,j),i+j=kk=0,...,.2n—2;
i=0 j=

2n—2
sum entropy= - kZO px+y(k)10g2 Px+y(k)’

n—1

difference entropy= — E Px—y(k)logy p,_,(k),
=0

where
n—1n—1

Pey(k)= 2 2 i),
i=0 j=0

i—jl=k,k=0,...,n—1.
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