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We are developing computer vision techniques for the characterization of breast masses as malig-
nant or benign on radiologic examinations. In this study, we investigated the computerized charac-
terization of breast masses on three-dimensi@8dD) ultrasound(US) volumetric images. We
developed 2-D and 3-D active contour models for automated segmentation of the mass volumes.
The effect of the initialization method of the active contour on the robustness of the iterative
segmentation method was studied by varying the contour used for its initialization. For a given
segmentation, texture and morphological features were automatically extracted from the segmented
masses and their margins. Stepwise discriminant analysis with the leave-one-out method was used
to select effective features for the classification task and to combine these features into a malig-
nancy score. The classification accuracy was evaluated using thé avealer the receiver oper-

ating characteristitROC) curve, as well as the partial area ind@§9'9), defined as the relative area
under the ROC curve above a sensitivity threshold of 0.9. For the purpose of comparison with the
computer classifier, four experienced breast radiologists provided malignancy ratings for the 3-D
US masses. Our dataset consisted of 3-D US volumes of 102 biopsied nié8sksnign, 56
malignant). The classifiers based on 2-D and 3-D segmentation methods achievedvadses of
0.87£0.03 and 0.92*0.03, respectively. The difference in Ahevalues of the two computer
classifiers did not achieve statistical significance. Mjevalues of the four radiologists ranged
between 0.84 and 0.92. The difference between the computgralue and that of any of the four
radiologists did not achieve statistical significance either. However, the compeli%?’walue was
significantly higher than that of three of the four radiologists. Our results indicate that an automated
and effective computer classifier can be designed for differentiating malignant and benign breast
masses on 3-D US volumes. The accuracy of the classifier designed in this study was similar to that
of experienced breast radiologists. ZD04 American Association of Physicists in Medicine.
[DOI: 10.1118/1.1649531]
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[. INTRODUCTION ible second opinion from a computer classifier for the clas-

sification of breast masses based on US image features may

The importance of early breast cancer detection requires Be an important addition to CAD tools being developed for
vigorous approach to the characterization of breast leSion?ﬁammographic image analysis

At present, the positive biopsy rate for nonpalpable breast Breast US is widely accepted as a highly accurate modal-

lesions as well as for nonpalpable breast masses is between . . . .
15%—30%-% This means that 70%—85% of breast biopsiesﬁy for the dlfferentlatlgn of cystic and noncystic masses..As'
result of technological improvements and more sophisti-

are performed for benign lesions. In order to reduce patien?1 o . . e
anxiety and morbidity, as well as to decrease health cargated utilization by radiologists, US has been gaining popu-

costs, it is desirable to reduce the number of benign biopsig@ity for the characterization of noncystic, or solid, breast
without missing malignancies. Computer-aided diagnosignasses. By combining several ultrasonic characteristics,
(CAD) can provide a consistent and reproducible secondptavroset al® achieved a specificity of 98.4% and a sensi-
opinion to the radiologists, and has a potential to assist therfVity of 68.7% on a dataset of 750 solid breast masses. Us-
in reducing benign biopsies. Recent studies on the computdd Strict criteria for a benign diagnosis, Skaaseal’
erized classification of breast masses based on mammachieved a positive predictive value of 66% and a negative
graphic image features suggest that the radiologists’ perfoiPredictive value of 98% for the differentiation of fibroad-
mance may be significantly improved if they are aided by a&noma and invasive ductal carcinoma on sonograms. Re-
well-trained CAD system:’ Breast ultrasoundUS) is an  cently, Tayloret al. investigated whether the complementary
important imaging modality for the characterization of breastuse of US imaging could decrease the biopsy of benign, non-
masses as malignant and benign. An objective and reproducystic masses. On a dataset of 761 biopsied masses, they
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found that the addition of US evaluation to mammographyentirely imaged in the 3-D dataset, our data should be at least
alone could increase the specificity from 51.4% to 63.8%comparable to that obtained by using the first method de-
while slightly increasing the sensitivity from 97.1% to scribed above.
97.9%1° In our study we aim at developing techniques for  In this study, we investigated the computerized character-
the computerized characterization of solid breast masseggation of noncystic breast masses as malignant and benign
which may eventually improve the radiologists’ accuracy inin 3-D US images. We developed a 3-D segmentation
this difficult and important task. method to delineate the masses. Morphological and texture
A number of researchers have recently investigated théeatures were extracted from the mass and its margins for
application of CAD to breast US imag&s:}*Chenet al!?  classification. A linear classifier was used to merge the fea-
extracted autocorrelation features from rectangular regions dfires into a malignancy score. The classification accuracy
interest(ROIs) containing solid breast masses. Using a neuwas evaluated by ROC methodology. The ROC curves of the
ral network classifier, they obtained an ar&a under the computer and four experienced breast radiologists were com-
receiver operating characteristiOC) curve of 0.956 for pared. To our knowledge, this is the first study on 3-D US
classification of a dataset of 140 biopsy-proven masses aglages that investigates a computer segmentation method
malignant or benign. Horsoét al*® developed an automated followed by a computer classifier for breast cancer charac-
segmentation method for delineating the mass boundarietgrization.
and compared its characterization accuracy on different sub-
sets with that obtained from manual segmentation. Using
manual and automated segmentation methods, they obtaindid METHODS
A, values of 0.91 and 0.87, respectively, in the task of dif-A Dataset
ferentiating all malignant and benign lesions in their dataset, ™
and 0.88 and 0.82, respectively, in the task of differentiating Institutional review board approval was obtained prior to
the subset of malignant and benign solid lesions. Cherthe commencement of this investigation. The images used in
et al* used morphological features extracted from manuallythis study were acquired between 1998 and 2002. Our study
segmented mass boundaries for classification. Using a neurgioup was 102 womefaverage age: 51 yearsho had a
network classifier, they obtained @q of 0.959 for classifi- solid mass deemed suspicious or highly suggestive of malig-
cation of a dataset of 271 biopsy-proven masses as malignanancy. All patients underwent biopsy or fine needle aspira-
or benign. tion. Fifty-six masses were malignant and 46 were benign.
A 3-D US is rapidly gaining popularity as it moves out of Forty-three of the malignancies were invasive ductal carci-
the research environment and into the clinical setthd. noma, five were invasive lobular carcinoma, one was med-
computerized analysis of 3-D US images may be useful foullary carcinoma, three were ductal carcinoimasitu, and
two reasons. First, 3-D or volumetric US data may be mordour were other invasive carcinoma. Of the benign masses,
time consuming for a radiologist to interpret, thus makingthe majority were fiboroadenom&l& 18) and fibrocystic dis-
CAD more desirable. Second, 3-D or volumetric US pro-ease N=11). The mean equivalent lesion diameter was 1.28
vides more data and better statistics, which should improvem (standard deviation=0.78 cm).
statistical image analysis. The 3-D US data were acquired using an experimental
In clinical practice, breast US may be performed in dif- system that was previously developed and tested at our
ferent ways. In many breast imaging clinics, the US examiinstitution®1’ The 3-D system consisted of a commercially
nation is performed by a US technologist. Once the technoloavailable US scannefGE Logig 700 with an M12 linear
gist locates the mass, and determines the appropriate settingsay transducer), a mechanical transducer guiding system,
for optimal image quality, representative static US images ofind a computer workstation. The linear array transducer was
the mass are printed on hardcopy film. The radiologist onlyoperated at 11 MHz. The technologist was free to set the
reads the images chosen by the technologist. A second pofocal distance and the overall gain adjustment to obtain the
sibility is that the US scan is videotaped by the technologisbest possible image. Before 3-D image acquisition, the tech-
and the radiologist reads the examination on a video displayologist used clinical US and mammogram images to iden-
In a third method, a radiologist will perform the US exami- tify the suspicious mass. During 3-D image acquisition, the
nation interactively and optimize the image quality by technologist manually translated the transducer linearly in
changing the probe angle, direction, and US machine sethe cross-plane, or thedirection, while the image acquisi-
tings. Since the US image quality is operator dependent, thiéon system recorded 2-D B-mode images in the image scan
way in which the examination is performed may have anplane -y plane). The 2-D images were obtained at approxi-
impact on the diagnostic accuracy. At our institution, themately 0.5 mm incremental translations, which were mea-
third method is employed. As described in Sec. Il, the datasured and recorded using a translation sensor. The number of
acquisition system in this study did not permit interactive2-D slices was typically around 90, and varied depending on
modification during 3-D image acquisition. As a result, thethe lesion size. The maximum distance between two 2-D
data that was used by the computer and the radiologists falices was 0.5 mm, and some of the distances were slightly
mass characterization in this study may not be as informativéess than 0.5 mm. The scanned breast region measured typi-
as the data that the radiologists could have obtained by exzally 4.5 cm long by 4.0 cm wide by 4.0 cm deep. The
amining the patient interactively. However, since the mass isypical pixel size in a slice was approximately 0.11 mm.
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In a 2-D segmentation problem, the contour of the object
can be represented Wvertices, {,,j,), v=1,...,V, wherei
andj represent the two dimensions of the image. In the dis-
crete formulation of the active contour model, the total en-
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Fic. 1. The distribution of the malignancy rating of the masses in our dataset h E is th th t t " d .
based on the appearance on US images, by an experienced radiologist.vi’. ere m(y) IS the mih énergy term at vertex andwp, 1S

Very likely benign; 100: very likely malignant. the weight of thanth energy term. In our 2-D active contour
model, we used four internal and external energy terms (
=4). The energy term&,, E,, E;, and E, were deter-

The B-mode images were recorded into a buffer in the ugnined by the gradient magnitude of the image and the con-
scanner. After data acquisition, the images and the positioHUity, Smoothness, and balloon energy of the contour, re-
data were transferred digitally to a workstation, where indi-SPECtivVely. _ , , o
vidual planes were cropped and stacked to form a 3-D vol- 10 Obtain the image gradient magnitude, the image;)
ume. The biopsied mass in each volume was identified by /@S first filtered using a Gaussian smoothing filter,

MQSA (Mammography Quality Standards Aajualified ra- H(i j):e—(i2+j2)/2u2 &)
diologist (RAD1) using clinical US and mammographic im- ' '

ages to confirm that the 3-D images contained the suspiciousheres?= 6. The resulting filtered imag@(i,j) was further
mass. The likelihood of malignancy for each mass, based oprocessed using Sobel filte®(i,j) andS(i,]), defined as
the 3-D US image alone, was rated by the same radiologist

on a scale of 1 to 100, where a higher number corresponded -1 01 -1 -2 -1
to a higher likelihood of malignancy. The distribution of the S,=| =2 0 2| andS=| 0 0 01, 4
ratings for the malignant and benign masses is shown in Fig. -1 0 1 1 2 1

1. The radiologist was also asked to fit a 3-D ellipsoid to the

mass. The 3-D ellipsoid was used to initialize the computerwhich calculated thex- and y-direction gradientsG,(i,j)
ized mass segmentation described in the next section. TRNAGy(i,]), respectively. The image gradient magnitude at
best fit was obtained by scaling, rotating, and translating aiertexv=(i,,j,) was computed as

ellipsoid superimposed on the 3-D dataset using a dynamic Ey(v)= \/Gx(i,,,jv)+Gy(i,,,jV). )

object manipulation tool developed for this purpose.
The weight of the gradient energy was defined to be a
negative number; thus, minimizing,E, attracted the con-
B. Mass segmentation tour to image edges.
We investigated the use of 2-D and 3-D active contour To find the continuity energy term, we first computed the

models for the segmentation of mass bounddfiés active ~ average line segment lengthas
contour model is a high-level segmentation method that uses sV d(v)

energy terms derived from the image gray-level information d= L,

as well as thea-priori knowledge about the object to be v
segmented for accurate segmentation. The segmentation
problem is defined as an energy minimization problem. Invhere
orde_r for the model to lock onto the contours in the image, Ji =1 0% %G v=12,..V-1,
the image-based energy terms, also referred to as the externald(y) = I -
energy terms, are usually defined in terms of the image gray Vi, —ig)*+(j,—j0)% v=V.

levels and the image gradient magnitude. Taepriori (@)
knowledge of the object shape is used to define internal en- The continuity energy term was defined as

ergy terms related to features such as the continuity and the _

smoothness of the contour to constrain the segmentation E,(v)=|d(v)—d|. (8)
problem. These terms can compensate for noise or apparent

gaps in the image gradients, which often mislead segmentéinimizing the continuity energy helped the vertices main-
tion methods that do not usepriori information. tain regular spacing along the contour.

(6)
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The curvature termi;(v), was approximated by the sec- wherea was the weight of the out-of-plane component of the
ond derivative of the contour, curvature relative to the in-plane component. The out-of-
plane component forced the contour to be smooth inzthe
Es(v)=V(i,_1—2i,+i,+1)%+(j,—1—2j,+i,+1)% (9 direction. Our implementation of the 3-D active contour
model started by optimizing the contour in the first slice of
When the vertices were spaced regularly along the conthe 3-D dataset=1). Since slicek=0 did not exist, we
tour, this term would be large when the angle at vestexas  assumed thati(,j,,0)=(i,,j,,1) for all v. The contour op-
small!® By discouraging small angles at vertices, this termtimization in slicek=1 followed the steps described above
attempted to smooth the contour. for 2-D active contours, except that the curvature energy was
The balloon energ¥,(») pushed the contour outward or replaced by Eq(10). After the contour was optimized for
pulled it inward, depending on whether, was positive or  slice k=1, the optimization was performed for sliée=2,
negative, respectively, along a path normal to the contourand so on, until the contours were optimized for all slices.
This energy term helped the active contour traverse spurioughis constituted one 3-D iteration. The 3-D model repeated
isolated, or weak image edges, and countered its tendency the 3-D iterations until there was no movement of the verti-
shrink. The resulting model was reported to be more robustes for the 3-D contour, or when a predetermined percentage
to the initial position and image noig®. of vertices stopped moving. Similar to our 2-D active con-
To solve the energy minimization problem, we have chotour, the 3-D active contour was initialized using the
sen the iterative method proposed by Williams and Sfiah. radiologist-defined ellipsoid.
The contour is first initialized by defining vertices (,,j,), We did not employ an optimization method for determin-
v=1,...,V. At a given iteration, the method visits each vertexing the active contour weights because automatic optimiza-
(i,.j,). Let D(v) represent the set of pixeld’(j’) in a tion required the comparison of the automated contour with a
(2M+1)x(2M +1) neighborhood centered around,j,).  gold standard such as the radiologist's manual segmentation
For each pixel inD(v), the sumZ,,wE, is computed, and for training. The “true” borders of many masses on US im-
the vertex {,,j,) is moved to the i(*,j’*) location that ages were not well defined, even to experienced radiologists.
minimizes this sum. The definitions of the energy tef®3s  Furthermore, the features that we designed did not require a
E,, and E; are given above. The balloon ener§y was border that followed the detailed boundary of an ill-defined
defined asE,=cos6d, where § represents the angle between or a spiculated mass. We therefore used more subjective
the normal vector to the curve at vertexand the vector judgment on the “goodness of segmentation” for the mass
(i"=i,,j"—],). After the minimization is performed locally boundary based on our experience with the need of the fea-
at vertex (,,j,), the algorithm moves to the vertex tures. To determine the weights for the 2-D model, we started
(iy+1,J»+1). The method converges when no vertex changesvith weights we had previously used for the segmentation of
location at a given iteration. In practical implementation, it- masses on mammograriswWe experimentally modified the
erations may be stopped when a large, predetermined pefireights and observed the effect on the segmentation quality
centage of vertices stop moving. The cross section of théor the first 15 volumes in our dataset. We found that the
radiologist-defined ellipsoid with each image slice was use¢ombinationw, = —1.5, w,=1, w3=2.6, andw,=0.2 pro-
for initializing the contour. vided a good balance between the smoothness of the contour
When the 2-D active contour model described above isand its the attraction to the mass borders. These weights were
applied to a 3-D dataset, segmentation is performed indepetthen used for the 2-D segmentation of the entire dataset. For
dently on each slice of the 3-D volume. However, this kindthe 3-D active contour model, we maintained the weights at
of segmentation ignores the continuity of the object acrosshe values that we determined for the 2-D active contour
slices. When the slice spacing is small compared to the ratgodel, and selected=0.5. The choice o was again based
of change of the object shape, it is expected that the shape oh a qualitative assessment of segmentation on the first 15
the object is unlikely to change drastically from one slice tocases.
the next. Our 3-D active contour model is aimed at using the
shape information across the 3-D slices to improve upon th€. Feature extraction
2-D active contour queI: Our 3-D active contour model We have evaluated a number of morphological and tex-
was defined by including in the curvature energy term, an

» e features for characterization of the masses as malignant
additional component related to the smoothness of the mass . )
) T . . or benign. Each of the features described below was ex-
in the z direction. Let {,,j,x) denote therth vertex in

image slicek. The curvature energy in our 3-D active contourFraCtefd from every slice where the mass was segmented us-

model was defined as ing either the 2-D or the 3-D automate_d segmentatmn algo-
rithm. The features extracted from different slices of the

Ea(v) same mass were then combined to define the feature mea-

sures(such as mean or maximurfgr that mass.

=iy 1,20y, i 10 o1k 2f kT i 102 1. Extraction of morphological features

Ja o - P T > The taller-than-wide shape of a sonographic mass is a
Ty -1= 20kt g )" o172kt i) good indication of malignandy/This characteristic was de-
(10) fined by the ratio of the widest cross sectiW) of the
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7'y SGLD matrices of US images have been shown to be useful
in the classification of malignant and benign breast masses
on mammograms in previous studfédn this study, six tex-
> ture feature measures that are invariant under linear, invert-
Segmented mass — Width ible gray scale transformations were extracted. These fea-
tures were information measures of correlations 1 and 2
v (IMC1 and IMC2), difference entropy(DFE), entropy
(ENT), energy(ENE), and sum entropySME). The math-
ematical definitions of these features can be found in the
literature?® Although many gray scale transformations may
not be invertible due to pixel saturation or roundoff, these
features are largely independent of the gray-level gain adjust-
ments.
It is known that the margin characteristics of a mass are
Fic. 2. The definition of the width-to-height and PSF features. The width-VErY important for its characterization, and previous studies
to-height feature was defined as the ratio of the widest cross section of thBave indicated that texture features extracted from the mass
segmented mass shape in the image plane to the tallest cross section. Tiffargins are effective for classificatiéhFor this reason, the
PSF feature was defined by first finding the average gray value in the posgy iy re features in this study were extracted from two disk-
terior stripsR(i), i=1,...,n then finding the minimum oR(i) among then . .
strips, and finally by normalizing this value by the average gray value withinShaped regions containing the boundary of each mass, as
the segmented mass. well as presumably mass and normal tissue adjacent to the
boundary of the mass. These regions followed the contour
. . determined by the active contour model, as shown in Fig. 3.
a'lutomatl.cally sggmepted lesion shape to the tallest cross S€ffe areas for the upper and lower disk-shaped regions were
tion (T) in a slice (Fig. 2). Another feature that has been chosen to be equal, and their sum was equal to the area of the

rep(_)rted to be l.JserI fo_r dlﬁerentlgtlon of malignant fmdsegmented mass. The pixel pair distances used for SGLD
benign masses is posterior shadowing. In order to define a

posterior shadowing featurd®SF), we first calculated the ”?at”x C.OmPUtatIOE "Zere ch_ose? to e-2, 4, and 6. Two
. — . : A pixel pair anglesf=0° and #=90°, were evaluated for each
mean pixel valuer(i) in overlapping vertical strip&(i), i

. A . ... d in both regions. The number of SGLD matrices computed
=1,...,nposterior to the mass, as shown in Fig. 2. The width . .
. . for a disk-shaped region was therefore 6, and the number of
Wg of a strip was equal to one-fourth of the width of the : .
. . features extracted from an image containing the segmented
mass W/4), and the height of the strip was equal to themass was 726 features, extracted from 6 SGLD matrices in
height of the maséT). The left and right edges of striji) '

andR(i +1) differed by one pixel. In other words, the strip the upper disk-shaped region and the lower disk-shaped re-

R(i+1) was obtained by moving the striR(i) to the right gion).

by one pixel, while, of course, the strip remained posterior taD. Classification
the mass and its height remainedTasn order to exclude the

bilateral posterior shadowing artifacts that are sometimes as-
sociated with fiboroadenomas, the strips were defined onlﬂ

osterior to the central\®/4 portion of the massFig. 2). . - .
P P > massFig. 2) puted the mean, variance, minimum, and maximum of the

The minimum value of these averages, {R(),i=1,...,n}, . S
ges, {R() t extracted value from each slice containing the mass. There-

was the darkest posterior strip. The PSF was defined as ﬂ}gre eight morphological feature measures were defined for
normalized average gray-level difference between the inte- 9 P 9

rior of the segmented mass and the darkest posterior strip,eaCh mass. For texture features, we only compu_ted the mean,
_ _ hence 72 texture feature measures were defined for each
M—min{R(i),i=1,...,n} mass.
= M ' (11) Fisher's linear discriminant analysié DA)?® was used
for combining the features into a discriminant score. Since

whereM denotes the mean gray level value inside the segthe number of available features in the feature space was

Height

A
A

R(1) =4 R(2)

Posterior Strips

The features extracted from different slices of the same
ass were combined to define the feature measures for that
ass. For the width-to-height feature and the PSF, we com-

PSF

mented mass. relatively high compared with the number of available cases,
_ stepwise feature selectitfwas used in order to reduce the
2. Extraction of texture features number of the features and to obtain the best feature subset

The features used in this study were extracted from spatidp design an effective classifier. For partitioning the dataset
gray-level dependencéSGLD) matrices, or co-occurrence into trainers and testers, we used the leave-one-case-out re-
matrices, derived from 2-D slices of the 3-D dataset. Thesampling method. Feature selection is performed as part of
(i,j)th element of the co-occurrence matrix is the relativethe classifier design such that both the feature selection and
frequency with which two pixels: one with gray levieand the classifier coefficient estimation procedures were repeated
the other with gray level separated by a pixel pair distance 102 times, as each case was left out once as the test sample.
din a directiond occur in the image. Features extracted fromThe test discriminant scores were analyzed using ROC
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Fic. 3. Left column: The segmented object for a malig-
nant masgupper row)and a benign massower row).
Middle and right columns: The lower and upper disk-
shaped regions from which texture features were ex-
tracted.

methodology?’ The classification accuracy was evaluated us-Sec. Il B, one radiologistRAD1) who was familiar with the

ing the area under the ROC curvg,, as well as the partial clinically obtained images had initially provided a malig-
area indexA>?. A9 s defined as the area under the ROCnancy rating. To compare with the computer’s accuracy, we
curve above a sensitivity threshold of 0.9 (GRf0.9) nor-  are interested in measuring the accuracy of other radiolo-
malized to the total area above TRFRwhich is equal to (1 gists, who would not be biased by memory or familiarity

28
—TPR). with the cases. For this purpose, we have developed an in-
teractive graphical user interface with which the radiologists
E. Malignancy ranking by radiologists could navigate through 3-D volumes, adjust the window and

Although all the cases in our dataset were suspicious€Vel of the displayed images, and enter a malignancy rating
enough to warrant biopsy or fine needle aspiration, the debetween 1 and 10(a higher rating indicating a higher like-
gree of difficulty of our cases can best be measured by inlihood of malignancy)when they finish examining a case.
vestigating the accuracy of the radiologists in classifying theThree additional radiologistRAD2—-RAD4) participated in
cases in our dataset as malignant or benign. As described the malignancy rating study. The radiologists RAD1-RAD4

Fic. 4. Row 1: Five original slices of a
breast mass that was visible on a total
of ten US slices; row 2: The cross sec-
tion of the initial 3-D ellipsoid at each
slice; row 3: The result of the 2-D ac-
tive contour segmentation method;
row 4: The result of the 3-D active
contour segmentation method. Note
that the 2-D segmentation method
missed part of the mass on slice 46.
The 3-D segmentation method, appar-
ently using the information from slices
45 and 47, was able to provide better
segmentation on slice 46.

Slice Number 45 Slice Number 46 Slice Number 47 Slice Number 48 Slice Number 49
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TasLE |. The range ofA, values for different texture features extracted from
the lower and upper disk-shaped regions using the 3-D and 2-D segmenta-
tion methods. For each particular texture feat(eeg., IMC1 feature at
pixel-pair distancel= 2, and directiord=0°), the feature values from all the
slices containing the segmented mass were averaged before computing the
A, value. The range indicates the minimum-maximégrvalues for a par-
ticular feature among the parametelrs 2, 4, 6 and6=0°, 90°.

3-D segmentation 2-D segmentation

Texture feature Upper Lower Upper Lower
IMC1 0.66-0.76  0.58-0.67 0.65-0.72  0.59-0.66
IMC2 0.65-0.75 0.58-0.65 0.65-0.73 0.61-0.67
DFE 0.58-0.68 0.61-0.67 0.56-0.68 0.62-0.70
Fic. 5. 3-D rendering of the segmented object for the mass shown in Fig. 4.  ENT 0.59-0.64  0.55-0.60 0.62-0.69  0.58-0.62
(a) 2-D active contour segmentatiotly) 3-D active contour segmentation. ENE 0.57-0.63 0.53-0.60 0.53-0.60 0.50-0.54
SME 0.52-0.58 0.51-0.56 0.57-0.64 0.52-0.57

were either fellowship trained in breast imaging or had over

25 years of experience in breast imaging. All four radiolo-

gists were MQSA qualified and their experience in mammo-A; values provided by each texture feature alone, extracted
graphic and US interpretation ranged from 2 to 25 yeardrom the upper and lower disk-shaped regions determined by
(mean, 11.3 years). The location of the mass center, as detdhe 2-D and 3-D active contour models. The ranges in this
mined by RAD1, was displayed on each slice, so that all théable are for different pixel pair distances and directions used
radiologists would rank the same mass if more than one mad8 extracting the same featufe.g., IMC1). Table Il shows
existed in the volume. There was no time limitation for thethe range ofA, values provided by each morphological fea-
radiologists to read a case. The case reading order was rafre alone, using the 2-D and 3-D active contour models. The
domized for each radiologist. The malignancy rating was entanges in Table Il are for different methods of combining the
tered by means of a slide bar. Before participating in thefeatures extracted from individual slices, i.e., mean, variance,
study, the radiologists were trained on five cases that werginimum, and maximum. The most discriminatory feature in
not part of the test dataset described in Sec. Il A. The maligthis study was the IMC1 featurel & 6, 6=0°, extracted from
nancy rating study was intended to measure the difficulty othe upper disk-shaped region segmented by the 3-D mgthod
the dataset, and was not intended to measure how the raduith an A, value of 0.76.

ologists’ interpretation would be affected by CAD. There- When stepwise LDA was used to combine the features
fore, the computer classification results were not displayed tinto a discriminant score in the 102 leave-one-case-out train-

the radiologists in this study. ing subsets, an average of 6.09 and 7.98 features were se-
lected with the 2-D and 3-D segmentation methods, respec-
. RESULTS tively. For the 2-D segmentation method, the most frequently

o selected features were two IMC1 features, two IMC2 fea-

We evaluated the accuracy of characterization based Ofyres one DFE feature, and one width-to-height feature. For
both 2-D and 3-D active contour segmentation methodsy,e 3.p segmentation method, the most frequently selected
Rows 1 to 4 of Fig. 4 show the original images, radiologist-tetres were two IMC1 features, two IMC2 features, one

defined ellipsoid, 2-D active contour results, and 3-D activeprg feature. one ENT feature. one PSF feature. and one
contour results for five consecutive slices of a mass that was ' ' '

visible on a total of 10 slices. Figure 5 shows a 3-D render-
ing of the segmented object using the 2-D and 3-D active 1.0 1

contour models. It is seen from Fig. 5 that the shape of the c
. . . o
object segmented by the 3-D active contour model is £ 081
smoother in the direction. S
Table | shows the rang@ninimum and maximumpf the o 0.6 1
2 0.4
TasLE Il. The range ofA, values for the width-to-height feature and poste- 3‘
rior shadowing featuréPSF)extracted using the 3-D and 2-D segmentation 3 0.2 # == 3D Segmentation, A =0.92
methods. The range indicates the minimum-maxinymalues among the = —e— 2D Segmentation, A =0.87
mean, variance, minimum, and maximum of each feature extracted from 0.0 ¢ . . . .
each slice containing the segmented mass. 00 02 04 06 08 1.0
Morphological False-positive fraction
feature 3-D segmentation 2-D segmentation
9 9 Fic. 6. The test ROC curves obtained by the classifiers that were based on
Width-to-height 0.58-0.73 0.54-0.69 features extracted from the 2-IA{=0.87) and 3-D A,=0.92) active con-
PSF 0.53-0.66 0.53-0.59 tour models. The difference between the tg values did not achieve

statistical significancep=0.07).
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TasLE Ill. The dependence of the computer classification accuracy on the variation of the initial contour. The
effects of three transformation parameters, namely, scaling, translation, and rotation of the initial ellipsoid, was
investigated by moving the initial ellipsoid using one of these three parameters at a time. A translatiaf by
pixels in the image plane corresponded to approximatelymm.

Scale Rotatior{degrees) x-translation(pixels) y-translation(pixels) A,
1 0 0 0 0.92*+0.03
1.3 0 0 0 0.89+0.03
0.8 0 0 0 0.89+0.03
1 0 10 10 0.90+0.03
1 0 10 —-10 0.87+0.04
1 0 -10 10 0.87*+0.04
1 0 -10 -10 0.88+0.03
1 15 0 0 0.93*+0.02

width-to-height feature. Figure 6 shows the test ROC curve8-D methods) did not reach statistical significancep (
obtained by the LDA using leave-one-case-out resampling>0.05). TheA®? values of the computer classifiers based
for the 2-D and 3-D segmentation methods. The #ggstal-  on 2-D and 3-D segmentation were consistently higher than
ues for the 2-D and 3-D methods were 0:8¥03 and 0.92 those of all four radiologists. The difference between the
+0.03, respectively, and tha{®? values were 0.51=0.08 A’ values of only one of the radiologistRAD4) and the
and 0.67+0.08, respectively. The difference between the twolassifier based on 2-D segmentation achieved statistical sig-
test A, values did not achieve statistical significange ( nificance p=0.05). The differences between tA&"? val-
=0.07). Figure 7 shows the distribution of the discriminantues of three of the four radiologists and that of the classifier
scores obtained from the 3-D method for the malignant andbased on 3-D segmentation were statistically significgnt (
benign cases. =0.03, 0.02, and 0.001 for RAD1, RAD2, and RAD4, re-
In order to investigate the dependence of the classificatiogpectively).
accuracy on the initialization of the 3-D active contour
modgl, we scaled, rotated, and translgted the initial 3-D e'iV. DISCUSSION
lipsoid and repeated the steps of active contour segmenta-
tion, feature extraction, and classification for these modified The computer classifier designed in this study to charac-
initial ellipsoids. The classification accuracies for these exierize breast masses on US volumes was able to discriminate
periments are presented in Table 1l. None of the difference§etween malignant and benign masses that were suspicious
between theA, values on Table Il achieved statistical sig- enough to warrant a biopsy. From Fig. 7, it is observed that if
nificance. an appropriate decision threshold was chosen for the dis-
The ROC curves for the radiologists’ malignancy ratingsCriminant scores of the classifier based on 3-D segmentation,
are shown in Fig. 8. The computer and radiologistvalues ~ more than 43%20/46) of biopsied benign masses could be
and A9 values are compared in Table IV. The arda  correctly identified while no malignant masses were misclas-
under the ROC curve for radiologists RAD1-RAD4 varied sified (at 100% sensitivity). Based on 2-D segmentation, the
between 0.84+0.04 and 0.92+0.03, which are lower than ogorresponding percentage of correctly identified benign
equal to that of the 3-D computer classifier. The average Masses was 35%46/46).
value, obtained by averaging the slope and intercept param-
eters(a and b in a ROC analysispf the individual ROC
curves was 0.87. The difference betweenAbhealues of the
individual radiologists and the computer classifi€t<D and

16 {1 mem Benign

7)) 3 Malignant
S -
8 g
TasLE IV. The area under the ROC curvAy), and the area under the ROC k]
curve above a sensitivity threshold of O,Qg('g)) for the computer classifier E
using the 2-D and 3-D active contour segmentation results, and the four [
radiologists. The radiologists’ results that are significanfly<(0.05) differ- 2
ent from the 3-D computer results are noted with an asterisk.
A, AL9 :
-0.2 0.0 0.2 04 06 038 1.0 1.2
Computer classifier, 2-D segmentation a8r03 0.51+0.09 Linear discriminant scores
Computer classifier, 3-D segmentation Qtqp03 0.67+0.08
RAD1 0.85=0.04 0.47+0.10 Fic. 7. The distribution of the test discriminant scores for the classifier that
RAD2 0.87+0.03 0.38+0.71 was based on 3-D active contour segmentation. By choosing an appropriate
RAD3 0.92+0.03 0.45+0.15 decision threshold on these scofesy., decision threshoteD.3) more than
RAD4 0.84+0.04 0.28+0.71 43% (20/46) of biopsied benign masses could be correctly identified while

no malignant masses would be misclassified.
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1.0 disk-shaped regions at the upper and lower margins of the
_§ mass on each slice. The total area of the two disk-shaped
‘g 0.8 regions was equal to the area of the segmented mass. From
= Table |, it is observed that a texture feature extracted from
o 0.6 . . . .
2 e RADI, A085 the upper disk-shaped region tended to be more discrimina-
'g 0.4 —— RAD2, A:=0_37 tory than the same feature extracted from the lower disk-
= —— RAD3, A,=0.92 shaped region. The maximum of the rangeAgfvalues(the
S 02 —— RAD4, A,=0.84 second number in each ceWas larger for the upper region
— — Computer, A,=0.92 . .
= in 11 of the 12 comparisons that can be md@etexture

0.0

features and 2 segmentation method$e lower boundaries
of many masses were difficult to perceive and hence difficult
to automatically segment because of posterior shadowing.
Fic. 8. ROC curves for the computer and for the four radiologists WhoTh.IS. may have contributed to the difference of discrimination
participated in the malignancy rating experiment. The difference betweer@Dility between the features extracted from the upper and
the computer'sA, value and that of any of the four radiologists did not lower regions. Another possible factor may be the changes in
achieve statistical significance. However, the computer classifier had signifithe spatial and gray level resolutions in different regions of
cantly higher <0.05) partial area index{’?, than three of the four  {he S image as the distance from the US probe increases.
radiologists at high sensitivitfTPF>0.9). . . .
Further work is underway to investigate the reasons for the
apparent lower discrimination ability of the features ex-
tracted from the lower disk-shaped regions.

Lesion segmentation is an important task in computerized Although the disk-shaped region depends on mass seg-
lesion characterization. The segmentation of US images camentation, there can be a large overlap between the regions
be challenging because boundaries are not always conspicftem the 2-D and 3-D segmentation results if the objects
ous, due to the noise and contrast characteristics, and tlsegmented by the two methods are not very different. From
speckled nature of US images. For breast US, an additiondlable |, it can be observed that the rangesAgfvalues for
source of difficulty is the presence of posterior shadowing2-D and 3-D segmentation for each texture measure have a
artifacts, a major source of which is the US attenuation dudarge overlap. As mentioned in Sec. Ill, when the stepwise
to the fibrous stroma caused by the turfloPrevious re- feature selection method was used for classifier design from
search on the segmentation of breast masses on US imaga® segmentation results, an average of 6.09 features were
includes work by Horsclet al.>° Xiao et al.3! and Madab- selected, where the average was computed over the 102
hushi et al3? Their segmentation methods were applied tocycles of the leave-one-out partitioning of the dataset. Out of
2-D US images. In our study, we compared the classificatiothe six most frequently selected features, five were texture
accuracy when 2-D and 3-D active contour models werdeatures and one was a morphological feature. The IMC1
used for segmentation. The 2-D model provided reasonablieature was selected twi¢atd=2, 6=0° andd=6, #=90°),
segmentation results for many of the masses. However, thihe IMC2 feature was selected twi¢at d=2, #=0° andd
2-D model does not take advantage of the image informatior=6, 6=0°), and the DFE feature was selected oifaed
in adjacent slices when a particular slice is being segmented: 6, 6=0°). For 3-D segmentation, out of the eight most
If the 2-D active contour is misled on one slice, there is nofrequently selected features, six were texture features, and
interaction from adjacent slices to improve the segmentatiortwo were morphological features. The IMC1 feature was se-
This is illustrated in Fig. 4, row 3. It can be observed that thelected twice(at d=2, #/=90° andd=4, §=0°), the IMC2
2-D segmentation results on slices #45 and #47 are reasofeature was selected twid¢at d=2, §=0° andd=6, §=0°),
able; however, part of the lesion is missed by the 2-D activeand the DFE feature was selected ore¢ d=6, 6=0°).
contour model on slice #46. Our 3-D active contour modelThus, out of 11 most frequently selected texture feat(es
uses the smoothness of the segmented shape in the out-ér 2-D and 6 for 3-D segmentation), 10 were IMC1, IMC2,
plane direction as an interaction term between adjacentr DFE features. The classification accuracy with the step-
slices. The 3-D segmentation results, shown in row 4, argvise LDA for the 3-D segmentationA,=0.92) was better
more consistent across slices. Figure 5 compares the setiran that for 2-D segmentatiorA{=0.87). However, the
mented object using the 2-D and 3-D methods for the entirelifference did not achieve statistical significan@ two-
lesion, which was visible on a total of ten slices. It is againtailed p value=0.07).
observed that the lesion shape in the out-of-plane direction is The active contour method requires an initial boundary to
smoother for the 3-D method. Although our classificationstart iterating toward the optimal contour. In this study, the
accuracy using the 3-D method was satisfactory, further iminitial boundary was defined by a 3-D ellipsoid that approxi-
provement may be required for applications such as accurateated the mass shape. The ellipsoid was placed in the vol-
lesion volume measurement. More sophisticated and inhesme by one of the radiologistRAD1) using an interactive
ently 3-D methods, such as deformable surfitasd level graphical user interfacéGUI). The radiologist thus had to
set methods, may be good candidates for further improveshift and scale a single object to define the initial contour.
ment. Although the error between the true and approximated

The texture features in this study were extracted fromshapes can be large when a single object is used for approxi-

00 02 04 06 08 1.0
False-positive fraction
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mating the mass, this method was faster than other possibfatient information. A study is currently underway in our
methods that would require initialization on each slice sepalaboratory to design a classifier that combines computer-
rately, and was therefore preferred. The robustness of the 3-Bxtracted features or scores from these two imaging modali-
segmentation method to active contour initialization wasties.

studied by translating, rotating, and scaling the 3-D ellipsoid.

There are many possibilities as to how these three operations

(moving, rotating, and scalingcan be combined to modify V. CONCLUSION

the initial ellipsoid. In Table I, the classification results are

p_resented when these three operations are p(_arform(_ad one Féen developed for the task of the characterization of breast
time. Row 1 shows thé, value when the original ellipsoid masses on 3-D US images. On a dataset of 102 biopsy-

is used. The ellipsoid was scaled in rows 2-3, translated 'Broven masses the classifier achievedAgnvalue of 0.92

rows 4-6, qnd rotated in row /. F_or the magnitudes of S(.:alThe averagd\, value of four experienced radiologists on the
ing, translation, and rotation studied in Table IlI, the varia- . o data set was 0.87. The computer classifier was more
:'r?n A? f thleAZ valu_;: v(;/as th'n two standardzglewanotns of accurate than three and equal to one of the four radiologists
i € zdva L:e prf[)_w eth Y.t. QFAB?OC p;otaram. tn a step participated in the study. However, the difference between
oward automating the initialization of thé contour, we a_retheAZ values of the computer and the individual radiologists
purrent!y_mvesngatmg methods for automatically d.efcermm-did not achieve statistical significance for this dataset. At
ing an initial contour from a rectangular box containing thehigh sensitivity, the computer classifier was consistently

ma_l‘f'ﬁ' . f the ROC by th dioloqist more accurate than all four radiologists and achieved statis-
€ comparison ot (he curves by the radiologists;q) significance p<0.05) for the difference im®? from

andl the computer _|nd|c'ated. tha.t the cgmputer can be as ¢ hree of the four radiologists. The robustness of the iterative
fective as the radiologists in differentiating malignant and

. o segmentation algorithm in terms of the initial contour pro-
benign breast masses in this dataset. In fact, the accuracy 9‘?9 g P

h ter classifi ing 3-D o : ided to the algorithm was studied. The classification accu-
€ computer classiller using s-- segmentation was grea erﬁcy was found to depend on the initialization; however, the
than three and equal to one of the radiologists, although th

R, value did not significantly deteriorate when the initial
difference between the computer and the individual radiolo-_* g y

S . . - o contour was scaled, rotated, or translated by a moderate
gists in terms ofA, did not achieve statistical significance.

Furth f Fia. 8. it is ob d that th i amount. Future work includes verifying the results of this
hur etrmc()jre, rotmb Igt; tt’ ! ":‘r?. Eerve i ? T(heicompu Frstudy by applying it to a larger and independent dataset,
cgiffrlmeer:j g;%eostaetist?caelzyasiglr?ificsa?nqséi?f/géncésbvé?v?/e?ai&(panding the feature space by designing truly 3-D features,
the computer classifig8-D segmentation methpdnd three and combining the developed US characterization method

with mammographic characterization methods. The observer

out of the four radiologists when the comparison was baseBerformance study will also be performed to evaluate the
on the A" values. It should be noted that the purpose of

>~ ~effects of CAD on the characterization of breast masses by
our study was not to evaluate our US mass charactenzatlolr}i : :
. - . . diologists.

method in a clinical setting. As noted in Secs. | and Il, the
semiautomated 3-D data acquisition system used in this
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