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The Papanicolaou Society of Cytopathology has developed a set
of guidelines for respiratory cytology including indications for
sputum examination, bronchial washings and brushings, CT-
guided FNA and endobronchial ultrasound guided fine needle
aspiration (EBUS-FNA), as well as recommendations for classi-
fication and criteria, ancillary testing and post-cytologic diagno-
sis management and follow-up. All recommendation documents
are based on the expertise of committee members, an extensive
literature review, and feedback from presentations at national
and international conferences. The guideline documents selec-
tively present the results of these discussions.
The present document summarizes recommendations for ancil-
lary testing of cytologic samples. Ancillary testing including
microbiologic, immunocytochemical, flow cytometric, and molec-
ular testing, including next-generation sequencing are discussed.
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Committee IV

Ancillary Testing for Respiratory Cytology

With the advent of targeted therapy for lung cancer,

ancillary testing of specimens derived from the lower

respiratory tract has obtained greater importance. Tradi-

tionally, ancillary testing was confined to culture
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techniques for microbiologic organisms, flow cytometry

for lymphoid proliferations, and immunohistochemical

and histochemical stains to aid in classification of pulmo-

nary neoplasms. Targeted therapeutic options have

expanded the need for ancillary testing and in particular

molecular testing, to document the presence or absence of

clinically relevant genetic alterations that include: single

nucleotide variants, insertion/deletions, copy number var-

iations, and structural variants that indicate a carcinoma’s

susceptibility to specific drug therapies (personalized

medicine).

Some of the ancillary testing methods require dedicated

transfer media or special preparation methods for optimal

test performance. Rapid on-site evaluation (ROSE) allows

intraprocedural cytologic evaluation with identification of

the pathologic process and appropriate triage of material

for specialized testing including microbiologic culture,

flow cytometric evaluation, and molecular testing. Trans-

port media requirements for microbiologic culture have

been published.1 Direct placement of aspirated material

into RPMI (Roswell Park Memorial Institute) medium is

a standard approach for the submission of a cytologic

sample for flow cytometry testing.2 While smears, liquid-

based preparations, and cell block preparations can all be

used for immunohistochemistry and most molecular test-

ing, formalin fixed and paraffin embedded (FFPE) cell

block material is preferred by some laboratories.3–8 FFPE

cell block material is conventionally most convenient

from a molecular pathology validation standpoint because

this specimen type most closely approximates how small

biopsies are processed and hence does not need its own

validation process which can be cumbersome. The best

preparation for immunocytochemistry (ICC) appears to be

formalin-fixed, paraffin-embedded tissue (FFPE). A recent

study demonstrated problems with validation in nearly

one half of antibodies tested using the Cellient cell block

system (fixed in PreservCyt).9 The antibodies had been

previously validated for formalin-fixed, paraffin-embed-

ded specimens. These findings bring into question the

utility of methanol-fixed material for ICC and the proba-

ble need for revalidation of antibodies when methanol-

fixed material is used. Other types of specimens should

be individually validated and require libraries of controls

for optimum validation.

Microbiologic Culture

The lung is a favored site for localization of a number of

infectious processes. These infectious agents can produce

diffuse changes (lobar pneumonia) or more localized

changes including abscesses and granuloma. A large num-

ber of infectious agents including viruses, fungi, bacteria,

and mycobacteria may be responsible for pulmonary dis-

ease. Viral infections often have characteristic cytopathic

effects facilitating their recognition. While viruses are

rarely investigated by culture methods, other infectious

agents are best definitively identified by a variety of cul-

ture techniques.

Culture of pulmonary specimens represents an impor-

tant component of examination for many sputum, bron-

choalveolar lavage and fine needle aspiration (FNA)

specimens. Culture for acid fast bacilli, fungi and bacteria

is often the most sensitive technique for establishing a

specific diagnosis. Successful culture of a number of

organisms requires specialized techniques and media.

Optimal transport media have been identified for lymph

node aspirates1 and similar techniques and media can be

used for pulmonary FNA specimens. ROSE examination

may be helpful in selecting if and in what media material

should be sent for culture.

Recommendation 1

Cytologic specimens from lesions suspected to be of

infectious etiology should be sent for culture in appropri-

ate transport media. Rapid on-site evaluation may be

helpful in selecting the appropriate culture techniques.

Immunocytochemistry

Immunocytochemistry is an important diagnostic tech-

nique for the identification and classification of metastatic

disease. The separation of primary adenocarcinoma from

squamous cell carcinomas and the identification of small

and large cell neuroendocrine carcinomas and carcinoid

tumors may be facilitated by immunocytochemistry.

With the development of targeted therapy for pulmo-

nary adenocarcinomas, the separation of adenocarcinomas

from squamous cell carcinoma has become critically

important.10 Panels of antibodies have been found useful

for this distinction. Immunohistochemistry is also of aid

in determining the primary site of origin for metastatic

disease. The use of differential cytokeratin staining and

direction of differentiation markers can be particularly

helpful in establishing the site of origin for a metastatic

neoplasm. Finally, immunocytochemistry can be used for

prediction of response to tyrosine kinase inhibitors and to

identify targets for immunotherapy such as PD-L1.

Immunochemistry is important in the evaluation of

neuroendocrine tumors. The World Health Organization

guidelines require evaluation of Ki-67 index for classifi-

cation of these neoplasms.11 Enumeration of Ki-67 stain-

ing can be performed on cell block material.12,13

Antibodies Useful in Separating Pulmonary
Adenocarcinomas from Squamous Cell Carcinomas

CK5/6, TTF-1, napsin A, p63, and p40 have been identi-

fied as helpful for separating pulmonary adenocarcinoma

from squamous cell carcinoma.10,14–24 These antibodies

can be used on smears, liquid based preparations, and

formalin-fixed paraffin embedded cell block material. A
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recent study has questioned the reliability of the use of

immunocytochemistry on methanol-fixed cell block

material.9

TTF-1 reacts with cells differentiating towards follicu-

lar thyroid epithelium,25 some gastric adenocarcinomas,26

and some pulmonary adenocarcinomas and small cell car-

cinomas.27,28 The sensitivity and specificity of TTF-1 for

the separation of pulmonary adenocarcinoma from squa-

mous cell carcinomas are �85%17,29 and 97%,29

respectively.

Napsin A has been shown to be reactive with pulmo-

nary epithelium20 and some neoplasms arising primarily

within the ovary and other sites.30 The sensitivity and

specificity for napsin A in separating pulmonary adeno-

carcinomas from squamous cell carcinomas are 85% and

94% respectively.17p63 is a marker helpful in distinguish-

ing squamous cell carcinomas from adenocarcinoma.29,31

While p63 is reactive in up to one third of pulmonary

adenocarcinomas,10 it remains useful for separating squa-

mous carcinomas with a sensitivity and specificity of 100

and 85%, respectively for the recognition of squamous

cell carincoma.31p40 appears more specific for squamous

cell carcinomas than p63 and some authors have advocat-

ed its replacing p63.10 p40 has a sensitivity of 94% and a

specificity of 96% for squamous cell carincoma.29 Other

authors have also found p40 to be superior to p63 for the

identification of squamous cell carcinomas of the lung.21,
32,33

A number of authors have recommended panels of two

to four immunohistochemical markers for the distinction

of pulmonary adenocarcinoma from squamous cell carci-

noma of the lung.21,29,31–35 Potential panels include, (i)

TTF-1, napsin A, p63, CK 5/6; (ii)TTF-1 and p40; (iii)

napsin A and p40; or (iv)TTF-1 and p63. When perform-

ing immunohistochemistry for distinction of adenocarci-

noma from squamous cell carcinoma it should be kept in

mind that adequate material must be preserved for molec-

ular testing. Core biopsy should be encouraged for back-

up, especially when ROSE shows that the sample cellu-

larity might be too low for analysis.21 Kimbrell et al.36

addressed the issues concerning the utilization of immu-

nocytochemistry in the sub-classification of non-small cell

lung carcinomas.

Because diagnostic material must be saved for molecu-

lar testing, the use of double staining techniques should

be considered when using immunocytochemistry for dis-

tinguishing squamous from adenocarcinomas. Johnson

et al.37 has described a double staining method for TTF-1

and Napsin A.

Recommendation 2

Pulmonary adenocarcinomas should be distinguished from

squamous cell carcinomas. Use of immunohistochemical

panels including some combination of TTF-1, napsin A,

p63, p40 and CK 5/6 is recommended when significant

cellular differentiation such as distinct keratinization is

not seen. To preserve tissue for subsequent molecular

testing, preferably one marker of adenocarcinoma and one

of squamous cell carcinoma should be selected. Excessive

immunostaining should be avoided to ensure preservation

of cellular material for requested or anticipated molecular

testing. The combination of TTF-1 and p40 appears opti-

mal for separation of adenocarcinomas form squamous

cell carcinoma.

Immunocytochemistry for Molecular Predictive
Markers

While predictive testing for susceptibility to tyrosine

kinase inhibitors is generally performed by molecular

methods (FISH or PCR-based techniques), immunocyto-

chemical methods exist for testing of some predictive

markers. Immunocytochemical techniques have been used

as initial tests which when positive, the specimen can be

reflexed to a molecular laboratory for confirmatory test-

ing. Antibodies directed against rearranged ALK,38–40

ROS1, and mutated EGFR41,42 are three such markers.

However, the utility of this approach may be limited.

Antibodies directed against mutated EGFR are limited to

detecting specific mutations (15 base pair deletions in

exon 19 and p.L858R mutation in exon 21) and fail to

detect other EGFR mutations; while the ALK antibody

may have false positive and false negative results.42–45

Immunohistochemistry appears to be a useful screening

technique for ALK rearrangements with subsequent reflex

of positive results to FISH analysis. This approach using

reflex testing reduces overall cost as the percentage of

pulmonary adenocarcinomas with ALK alterations is low.

Currently, the Food and Drug Administration (FDA)

approved immunohistochemical method assessing ALK
status uses the D5F3 antibody (Cell Signaling) with test-

ing performed on the BenchMark XT instrument. This

antibody detects expressed endogenous levels of total

ALK protein (when present). Other antibody clones have

been developed and are in clinical use.

Currently, immunohistochemistry may be a cost reduc-

tion technique for identification of molecular aberrations

that occur at low frequency such as ROS1. A number of

antibodies have been developed against ROS1 and detect

the inappropriately expressed endogenous protein. Such

inappropriate expression of the endogenous protein has

been shown to occur in �1.6% of nonsmall cell carcino-

mas of the lung.46 Antibodies raised against ROS1 protein

may represent a useful screening technique for ROS1
rearrangements with subsequent reflex of positive results

for FISH testing.47
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Recommendation 3

Immunocytochemical testing for mutated EGFR is not the

preferred testing method for determination of tumor sus-

ceptibility to the associated tyrosine kinase inhibitors, but

may be utilized in the setting of a limited volume sample

when molecular testing cannot be performed.

Immunocytochemical testing for rearranged ALK may

be used in place of FISH testing.

PD-L1 Immunocytochemical Testing

Expression of programmed death ligand-1 (PD-L1) is a

predictive marker for anti-PD-1/PD-L1 therapies. PD-L1

is sometimes expressed in large amounts on cancer cells

and allows their escape from immune surveillance and

immune destruction.48,49 A new class of drugs target PD-

1 or PD-L1 and are reported to have activity against

some malignancies including non-small cell lung can-

cers.50,51 These drugs are useful for treatment of patients

when standard chemotherapy has become ineffective.

Nivolumab and pembrolizumab have been approved for

treatment of non-small cell lung cancer, including both

squamous cell carcinoma and adenocarcinoma. Selection

of the appropriate antibody clone for prediction of

response to therapy depends on the drug selected. Testing

protocols have been published.51

Recommendation 4

Immunohistochemical testing for anti PD-1/PD-L1 thera-

py appears appropriate for some patients who have

become refractory to standard chemotherapy regiments.

Selection of the antibody used for testing depends on the

specific anti PD-1/PD-L1 drug used. Immunocytochemical

testing for PD-L1 in non-squamous, non-small cell pul-

monary carcinomas may aid in the selection of targeted

therapy. Detection of PD-L1 expressing carcinoma cells

may indicate improved survival when patients are treated

with Nivolumab therapy.52 PD-L1 testing of cytology

specimens has not undergone extensive validation in the

published literature and specific recommendations for its

use for cytology material cannot be made at this time.

PD-1/PD-L1 testing is performed at the discretion of

the local oncology team and may be especially useful for

patients nonresponsive to tyrosine kinase inhibitor thera-

pies. Treatment of squamous cell carcinoma with Nivolu-

mab can be done without PD-L1 testing.

Immunocytochemical Testing for c-MET

Mesenchymal-epidermal transition (MET) receptor tyro-

sine kinase has been identified as a potential target for

the treatment of non-small cell53,54 and some drug resis-

tant small cell lung cancers.55 c-MET overexpression may

be important in the development of resistance to EGFR-

tyrosine kinase inhibitors53 and some chemotherapeutic

agents used for treatment of small cell lung cancer.55

MET amplification occurs in up to 20% of non-small cell

carcinomas refractory to EGFR-tyrosine kinase therapy

and some studies have suggested utility for the combined

use of drugs resulting in MET and EGFR coinhibition.53

The role of immunohistochemistry for the prediction of

response of c-MET inhibitors has not yet been elucidated,

but c-MET therapy based on immunohistochemical stain-

ing has shown promise.56 MET testing may have potential

value for predicting progression on targeted therapy

(EGFR) but such testing is for MET amplification and is

performed by FISH.

Recommendation 5

Currently, MET testing cannot be recommended for rou-

tine use, but such testing can be performed at the discre-

tion of the local oncology team.

Immunocytochemistry for the Identification and
Classification of Metastatic Malignancies to the
Lung

Metastatic disease is responsible for a significant percent-

age of lung nodules. While negative results of markers

such as napsin A and TTF-1 may suggest a nonprimary

pulmonary adenocarcinoma, lack of staining for these

markers does not exclude a lung origin, particularly in

mucinous adenocarcinoma. A combination of cytomor-

phologic features and immunohistochemical reaction pat-

terns is used to diagnose metastatic neoplasms.

Differential cytokeratin staining patterns (CK7, CK20,

and CK5/6) and specific lineage markers such as melan-

A, HMB-45, prostatic specific antigen (PSA), leukocyte

common antigen (LCA), p40, CDX-2, GATA-3, PAX-8,

desmin, muscle specific actin (MSA), smooth muscle

actin (SMA) and CD117 among others can be extremely

helpful in the specific diagnosis of a metastatic neoplasm.

Table I lists a selection of immunocytochemical markers

helpful in the evaluation of metastatic neoplasms. Immu-

nocytochemical testing of samples to determine tumor

type or site of origin for metastases is a complex process

with overlapping patterns of staining between pulmonary

primaries and metastatic disease. For instance, some pul-

monary adenocarcinomas may be CK20 positive (a find-

ing often considered supporting a non-pulmonary origin).

Similarly, CDX-2 a marker considered to support a gas-

trointestinal origin may be positive in some mucinous

carcinomas of the lung. GATA-3, which usually supports

an urothelial origin, may be expressed by some pulmo-

nary squamous cell carcinomas. Thus, no single immuno-

cytochemical staining result is definitively diagnostic for

a specific type of neoplasm, but patterns of staining are

helpful in assessing the organ of origin for metastatic

disease.
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Recommendation 6

Selected panels of antibodies should be used to establish

the origin and direction of differentiation in suspected

metastatic disease to the lung. The precise panel of anti-

bodies should be determined by morphologic analysis of

cytologic specimens and review of the patient’s medical

history and imaging findings.

Molecular Techniques for Predictive Testing
Associated with Targeted Therapy

The advent of a number of targeted therapies for lung

cancer has placed new responsibilities on pathologists to

perform molecular studies used to identify patients likely

to respond to such therapies. Not only is the pathologist

responsible for identifying which carcinomas should

undergo testing, but he/she is responsible to ensure that

adequate and representative material is present for ancil-

lary testing. Presently, the majority of such targeted thera-

pies are directed at adenocarcinomas (EGFR, ALK, and

ROS1), but new therapies targeting squamous cell carci-

nomas are under development. The pathologist must

make every attempt possible to obtain adequate tissue for

molecular testing.57,58 Proper tissue acquisition and man-

agement requires good communication between pulmo-

nologist, radiologist and pathologist.10 ROSE can be very

helpful in assuring adequate tissue is collected when sam-

pling is performed under endobronchial ultrasound

(EBUS) or computerized tomography (CT) guidance.

Because EGFR, KRAS, ROS1, and ALK testing can be

reliably performed on formalin fixed paraffin embedded

cell block material,10,59–62 ROSE can be very useful in

triaging material for processing to cell block.62 The

choice of the appropriate specimen type for molecular

testing remains controversial. Studies have demonstrated

that formalin fixed paraffin embedded cell block (CB)

material is a satisfactory substrate for molecular testing6

but cellularity of CBs remains a problem with up to 57%

of CBs being acellular or of borderline cellularity for

molecular testing.63 Most studies have reported on the

utility of formalin-sixed, paraffin-embedded surgical

resection specimens or small biopsy specimens, but a

number of studies have addressed the use of cytologic

preparations.64,65 These studies reviewed the use of CBs,

direct smears, and liquid based preparations. Current data

indicate that a variety of cytologic preparations yield

molecular testing results similar to those achieved with

histologic samples.65–68 In some cases, cytologic samples

have been associated with detection rates for mutations

higher than those obtained by histologic sampling meth-

ods.68 Cell blocks have been shown to be comparable to

core biopsies in some studies for detection of clinically

important mutations.3,69 A significant number of studies

have shown that smears and CBs are equivalent for

molecular testing.66,70–72 In an analysis of 181 articles

focusing on EGFR analysis in lung cancer, da Cunha San-

tos et al.64 showed that cytologic techniques using an

array of fixation and processing techniques yielded muta-

tion detection rates similar if not superior to histologic

Table I. Useful Immunohistochemical Markers for Identification of Unknown Primaries

Organ Immunohistochemical marker

Adrenocortical Inhibin, MelanA, Ad4BP
Adrenomedullary NSE, synaptophysin, chromogranin, PGP9.5
Biliary CK7, CDX-2, CK19, CEA, MOC-31
Breast ER, PR, GATA-3, CK7, CEA
Cervix (adenocarcinoma) CEA, CK7, p16
Cervix (squamous cell) CK7, p16
Colon CK20, villin
Esophagus (adenocarcinoma) MUC5AC, MUC4, CA19-9, CEA, EMA
Esophagus (squamous cell) AE1/3, CK5/6, p63, CK19
Endometirum CK7, vimentin, ER, p53, inhibin, EMA
Gastric (adenocarcinoma) EMA, MUC5AC, MUC4, BerEP4, CA19-9, CEA
Germ cell tumor CD30, hCG, Oct4, CK, AFP, Glypican 3, CD117, PLAP, WT-1, CD10, EMA
Hepatocellular EMA, Hep Par-1, CEA
Kidney EMA, CD10, vimentin, RCC
Lung (adenocarcinoma) CK7, TTF-1, Napsin, villin
Lung (squamous cell) p63, p40
Lung (small cell) CK7, chromogranin, synaptophysin
Ovary (mucinous) CK7, CK20
Ovary (serous) CK7, WT-1
Pancreas (ductal) CK7, CK20
Pancreas (neuroendocrine) CK7, CK20, chromogranin, synaptophysin
Prostate PSA, PAP
Salivary gland GFAP, s-100 protein, c-kit, Bcl-2, CK7
Thymus CD5 (Thymic carcinoma)
Thyroid TTF-1, Thyroglobulin, CK19 (papillary), HBME-1 (papillary), galectin-3 (papillary), calcitonin (medullary)
Urothelium (bladder) CK7, CK20, p63, Thrombomodulin, GATA-3
Mesothelioma Mesothelin, CK7, WT-1, calretinin, CK5/6, D2-40
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material. Moreover, cell blocks, smears, and liquid based

techniques were all useful for detection of clinically

important mutations in nonsmall cell lung cancer.64

The majority of organizations and authors recommend

molecular testing of pulmonary adenocarcinoma for

EGFR and ALK.72,73 In general, when tissue is limited,

EGFR testing is prioritized and performed before

ALK.62,72 Additional markers that may be tested in pul-

monary adenocarcinomas include KRAS, ROS1, BRAF,
RET, MET, neurotrophic tyrosine kinase receptor type 1

(NTRK1) and v-erb-b2 erythroblastic leukemia viral onco-

gene homolog2 (ERBB2).73,74 While no recommendations

for prioritization of these markers have yet been pub-

lished, some authorities recommend early performance of

KRAS analysis. KRAS mutations appear to exclude muta-

tions in EGFR and EML4-ALK and the KRAS gene prod-

uct is present in the control pathway before EGFR and

EML4-ALK, thus negating the impact of these latter two

genes. With the recent FDA approval of crizotinib for

treatment of ROS1 rearranged tumors, immunocytochemi-

cal or FISH testing for ROS1 rearrangements should now

be performed following negative results for EGFR and

ALK testing.

Molecular testing for pulmonary squamous cell carci-

noma remains in its infancy with few markers yet having

clinical utility. Potential target genes include: fibroblast

growth factor receptor 1 (FGFR1) and the related amplifi-

cation in FGFR2, FGFR3, and FGFR4.75 Other potential

targets are phosphatase and tensin homolog (PTEN),

platelet-derived growth factor receptor alpha (PDGFRA)

and discoidin domain-containing receptor 2 (DDR2).73,75

EGFR Testing for Pulmonary Adenocarcinoma

EGFR mutation testing should be performed at time of

diagnosis for patients presenting with high stage disease

(stage III and higher).72 Patients should not be excluded

from such testing based solely on clinical features. Lower

stage patients may be tested at time of recurrence or pro-

gression. Retesting of EGFR should be considered when

new recurrences or metastases are detected to look for

new mutations. Patients stage I, II, or III may be tested at

the discretion of the local oncology team. Results of test-

ing should be available within 10 working days.72

EGFR testing can be performed on formalin-fixed par-

affin-embedded (FFPE) material (cell block/core biopsy),

fresh, frozen, air dried smears, or alcohol fixed specimens

for polymerase chain reaction (PCR) based testing.3,65–69

While FFPE material is one of the most common sources

of material for molecular analysis in many laboratories,67,
72 recent studies have shown that material obtained from

air-dried and alcohol-fixed cytologic smears can be reli-

ably used.61,62,73,74 Sample adequacy for analysis should

be confirmed by a pathologist. While specimens with

20% or greater cancer cells are prefered,62 many

laboratories have reported successful results using signifi-

cantly lower concentration of cancer cells, provided the

sample meets the analytic sensitivity of the platform used

and with appropriate validation studies. The testing meth-

od should be able to detect mutations in EGFR exons 18,

19, 20, and 2172 as the two most commonly observed

EGFR mutations in pulmonary adenocarcinomas are the

p.L858R substitutions and small frame deletions in

exon19.73 Currently immunohistochemistry is not recom-

mended for selection of EGFR based therapy.

KRAS Testing for Pulmonary Adenocarcinoma

KRAS mutational analysis may be helpful in therapy

selection, but it should not be the sole method for EGFR
therapy selection. KRAS codon 12, 13, 61, and 146 muta-

tions can be tested for by PCR-based techniques and

when present are thought to exclude mutations in EGFR
and ALK rearrangements. Moreover, patients with KRAS
mutations may have poor responses to both EGFR based

therapy and more traditional chemotherapy justifying to

some oncologists, the need for early KRAS testing. The

predictive value of KRAS testing for response to anti-

EGFR based therapy remains controversial. Some recent

data indicates that up to 3% of patients with KRAS muta-

tions will respond to anti-EGFR therapy.76 This finding

brings into question KRAS testing as a guide for response

to anti-EGFR therapy.

ALK Rearrangement Testing for Pulmonary
Adenocarcinoma

ALK rearrangement testing should be performed on all

high stage lung adenocarcinomas at time of diagnosis and

on lower stage patients at time of recurrence or progres-

sion. Testing may be performed on FFPE material, but

can also be performed on smears. In general, the slide

should contain 50 cancer cells suitable for evaluation.

When material is insufficient for both EGFR and ALK
rearrangement testing EGFR testing has priority. The

FISH method appears optimal for ALK rearrangement

testing.40 Screening for ALK rearrangements may be per-

formed by immunocytochemistry with reflex to FISH for

positive results.

Recommendation 7

EGFR mutation testing should be performed at time of

diagnosis for patients presenting with high stage disease.

Testing of stage I, II, and III patients may be performed

at the discretion of the local oncology team. Reflex test-

ing to ALK should be performed when EGFR mutational

analysis is negative. Cell block and smears can be used

for testing following appropriate validation of this speci-

men type.
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Recommendation 8

KRAS testing remains controversial and may be per-

formed on pulmonary non-small-cell carcinomas at the

discretion of the local oncology team.

ROS1 Testing for Primary Pulmonary
Adenocarcinoma

ROS1 is a receptor tyrosine kinase phylogenetically relat-

ed to ALK.77,78 ROS1 rearrangements are seen in 1–2.5%

of non-small cell carincoma79,80 and are mutually exclu-

sive with other tyrosine kinase genetic abnormalities.

Patients with ROS1 rearrangements appear to benefit from

crizotinib therapy.81 Because ROS1 rearranged pulmonary

adenocarcinomas are rare, only patients lacking changes

in EGFR, KRAS, and ALK should be tested for ROS1.73

Recommendation 9

FISH testing for ROS1 rearrangements may be performed

at the discretion of the local oncology team in high stage

pulmonary adenocarcinomas who have been shown to

lack molecular/genetic changes in EGFR, ALK, and

KRAS. Immunocytochemical testing for ROS1 can be an

acceptable alternative to FISH.

Next-Generation Sequencing and Molecular Analysis
of Pulmonary Carcinoma

In an era of precision medicine with new emerging bio-

markers guiding therapeutic decisions in lung cancer,

there is an increasing need for a more comprehensive

approach to generate a complete molecular profile for

cytologic specimens. Clinical next-generation sequencing

(NGS) has allowed for simultaneous screening of multiple

genes in a massively parallel manner from cytologic sam-

ples using very small amounts of DNA. Several recent

studies have described the utility of NGS mutational anal-

ysis in pulmonary cytopathology utilizing both aspiration

cytology (CT-guided FNA and EBUS-guided FNA)82–86

as well as exfoliative cytology (body cavity fluids and

bronchoalveolar lavage) specimens.85,87,88 The high ana-

lytical sensitivity of NGS platforms (approximately 5-

10%) permits evaluation of samples with relatively low

tumor fraction.83,87,89,90 One of the earlier studies utiliz-

ing NGS on cytologic specimens demonstrated the high

sensitivity of NGS compared to conventional testing

methods by using cells extracted from Papanicolaou

stained smears of low tumor volume samples of bron-

choalveolar lavage and pleural fluids.87 NGS success rates

do not vary significantly between aspiration and exfolia-

tive cytology samples and NGS success rates of lung

FNAs are similar to that of other sites.85

The most common causes of NGS failure in lung cyto-

logic specimens are related to insufficient DNA yield, due

to overall low cellularity, or insufficient tumor cellularity,

in cases with high numbers of non-tumor background

cells and/or where the tumor cells are heterogeneously

distributed, frequently seen in EBUS FNA, samples

obtained by brushing, or body cavity fluid samples.84

Although aspiration cytology specimens usually provide

inherently high tumor fraction due to lower numbers of

background stromal components, they are frequently lim-

ited by the volume of tissue aspirated (overall cellularity)

that dictates the quantitative DNA yield.85,89 Implement-

ing measures such as ROSE for adequacy assessment and

additional needle passes may improve the overall cellular-

ity to meet the input DNA requirement for the NGS

assay.91 Also, tumor enrichment techniques by demarcat-

ing on the H&E stained cell block section or directly on

the smear slides for macro/microdissection can improve

the tumor fraction by eliminating background non-tumor

cells, thereby reducing the chances of a false negative

result.92

Cell block preparations as well as direct smears and

liquid-based cytology (LBC) have been successfully

employed for NGS.82–86,88 The input DNA requirement

for NGS analysis varies by testing platform but ranges

between 10 ng for Ion Torrent PGM (Life Technologies,

Carlsbad, CA) and 250 ng for Illumina (Illumina, San

Diego, CA) platforms.93 Depending on the target capture

method and the platform type, this roughly translates to

�100–1,000 cells for Ion Torrent and 5,000–15,000 cells

for Illumina NGS.94 There is no significant difference in

NGS success rates between specimen preparations or

cytological stains/fixatives.84 The NGS sequencing perfor-

mance metric (coverage depth, total number of reads,

number of mapped reads and on-target reads, and variant

calls) of cytologic smears and cell block preparations are

comparable to that of FFPE histologic specimens.84,86 In

addition, NGS has been successfully performed using

DNA extracted from residual LBC samples of FNA and

body fluid samples with significantly higher DNA yield

from the LBC rinse than the matched cell block

sections.88

Molecular diagnostics in lung cytopathology has under-

gone a paradigm shift with the advent of NGS which

allows for evaluation of multiple biomarkers in a single

assay using minimal amounts of DNA.93–95 In this chang-

ing landscape of precision medicine, the cytopathologist

plays a critical role in triaging and selecting suitable

material for successful implementation of NGS on lung

cytologic specimens. However, one needs to keep in

mind that NGS not only detects known driver mutations

for specific targeted therapy, but will likely also identify

passenger mutations and/or low level mutations in small

subclonal populations, and variants of unknown signifi-

cance (VUS), all of which need to be interpreted in the

proper clinical context for subsequent clinical manage-

ment. In the absence of “actionable” oncogenic mutations,
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these may have some relevance in the prospective enroll-

ment of patients in pre-clinical or clinical trials for tar-

geted therapy.96,97
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