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An automated image analysis tool is being developed for the estimation of mammographic breast
density. This tool may be useful for risk estimation or for monitoring breast density change in
prevention or intervention programs. In this preliminary study, a data set of 4-view mammograms
from 65 patients was used to evaluate our approach. Breast density analysis was performed on the
digitized mammograms in three stages. First, the breast region was segmented from the surrounding
background by an automated breast boundary-tracking algorithm. Second, an adaptive dynamic
range compression technique was applied to the breast image to reduce the range of the gray level
distribution in the low frequency background and to enhance the differences in the characteristic
features of the gray level histogram for breasts of different densities. Third, rule-based classification
was used to classify the breast images into four classes according to the characteristic features of
their gray level histogram. For each image, a gray level threshold was automatically determined to
segment the dense tissue from the breast region. The area of segmented dense tissue as a percentage
of the breast area was then estimated. To evaluate the performance of the algorithm, the computer
segmentation results were compared to manual segmentation with interactive thresholding by five
radiologists. A “true” percent dense area for each mammogram was obtained by averaging the
manually segmented areas of the radiologists. We found that the histograms @& 6% and 8

MLO views) of the breast regions were misclassified by the computer, resulting in poor segmen-
tation of the dense region. For the images with correct classification, the correlation between the
computer-estimated percent dense area and the “truth” was 0.94 and 0.91, respectively, for CC and
MLO views, with a mean bias of less than 2%. The mean biases of the five radiologists’ visual
estimates for the same images ranged from 0.1% to 11%. The results demonstrate the feasibility of
estimating mammographic breast density using computer vision techniques and its potential to
improve the accuracy and reproducibility of breast density estimation in comparison with the
subjective visual assessment by radiologists. 2@1 American Association of Physicists in Medi-

cine. [DOI: 10.1118/1.1376640
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[. INTRODUCTION ing a CAD system for an analysis of breast density on mam-
mograms. Studies have shown that there is a strong positive

aébrrelation between breast parenchymal density on mammo-

Ity among womert.One in every eight women will develop rams and breast cancer rfSR.The relative risk is estimated

breast cancer at some point in their lives. The most succes?— : .
. . 0 be about 4 to 6 times higher for women whose mammo-
ful method for the early detection of breast cancer is screen-

it 0,
ing mammography. Currently, mammograms are analyzegrams have parenchymal densities over 60% of the breast

i 0, -
visually by radiologists. Because of the subjective nature ofi'éa as compared to women with less than 5% of parenchy

visual analysis, qualitative responses may vary from radiolofnal de_nsmes. ) _ _
An important difference between breast density as a risk

gist to radiologist. Therefore, a computerized method for : - .
analyzing mammographic features would be useful as g;acto_r and most other risk factors is th_e fact that breast tissue
supplement to the radiologist's assessment. Previous rélensity can be changed by dietary or hormonal
search efforts in computer-aided diagnd&S#\D) for breast interventiong:1%1! Although there is no direct evidence that
cancer detection mainly concentrated on detection and chaghanges in mammographic breast densities will lead to
acterization of masses and microcalcifications on mammochanges in breast cancer risk, the strong correlation between
grams by using computer vision techniques. It has been denfreast density and breast cancer risk has prompted research-
onstrated that an effective CAD algorithm can improve theers to use mammographic density as an indicator for moni-
diagnostic accuracy of breast cancer characterization otoring the effects of intervention as well as for studying
mammograms, which, in turn, may reduce unnecessary biogreast cancer etiology** ™3

sies. In this work, we are studying the feasibility of develop- Different methods have been used for the evaluation of
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mammographic breast density. Earlier studies used a subjetion by 5 radiologists using interactive thresholding in the
tive visual assessment of the breast parenchyma primarilgame data set.
based on the four patterns described by Woif¢1 is com-
prised entirely of fat; P1 has up to 25% nodular densities; P| MATERIALS AND METHODS
has over 25% nodular mammographic densities; DY contains
extensive regions of homogeneous mammographic densf: Database
ties). The subjectivity in classifying the mammographic pat- A data set consisting of 260 mammograms of 65 patients
terns introduced large variability in the risk estimation. Laterwas used for the development of the histogram analysis
studies used more quantitative estimates, such as planimetiyiethod in this study. Each case contains the craniocaudal
to measure the dense area in the breast manually outlined BZC) view and the mediolateral obligu#LO) view of both
radiologists on mammogram€. These studies indicate that breasts of the patient. The first 50 mammograms were con-
the percentagé%) of mammographic densities relative to secutive screening cases from the patient files in the Radiol-
the breast area can predict the breast cancer risk more acaagy Department at the University of Michigan. After data
rately than a qualitative assessment of mammographic pagnalysis, it was found that there were very few dense breasts
terns. Warneet al*® conducted a meta-analysis of the stud-in the initial data set. An additional 15 cases visually judged
ies published between 1976 and 1990 to investigate thby radiologists to be dense breasts were then randomly se-
effect of different methods of classification on estimates oflected and mixed with the initial set. The images were pro-
cancer risk. They found that the mammographic parenchycessed individually without knowing their BI-RADS catego-
mal pattern does correlate with the breast cancer risk. Thées. The mammograms were acquired with mammography
magnitude of the risk varies according to the method used teystems approved by the Mammography Quality Standards
evaluate the mammograms. With the quantitative estimatedct (MQSA) and were digitized with a LUMISYS 85 laser
of mammographic density, the difference in risk between thdilm scanner with a pixel size of 50m><50um and 4096
highest and the lowest risk category is substantial and i§ray levels. The gray levels are linearly proportional to op-
greater than the risks associated with most other risk factorfdcal densities(O.D.) from 0.1 to greater than 3 O.D. units.
for breast cancer. More recent studies used fractal textur€h® nominal O.D. range of the scanner is 0-4 with large
and the shape of the gray level histogfarto quantify the pixel values in the digitized mammograms correspondln_g to
parenchymal pattern or used interactive thresholding on digil®W ©O-D. The full resolution mammograms were first
tized mammograms to segment the dense Yt was  Smoothed with a 15?(6 box filter and s_ubsampled by a fz_ic-
reported that the thresholding method provided a higher risk°" ©f 16, resulting in 80gmx800.m images of approxi-
value than the texture measure or the histogram stfape. Mately 2255300 pixels in size for small films and 300
Other researchers have attempted to calculate a breast den3 /> Pixels for large films.
sity index to model the radiologists’ perceptitn.

In clinical practice, radiologists routinely estimate the B. Breast segmentation and image enhancement

breast density on mammograms by using the BI-RADS lexi-  rpq yreast image is first segmented from the surrounding

con ~as ge_commended by the American College Ofiy 56 phackground by boundary detection. The detected
Radlo_logy‘ in order to provide a reference for mammo- ,, \nqary separated the breast from other background fea-
graphic sensitivity. Because of the lack of a quantitativeyres sych as the directly exposed area, patient identification
method for breast density estimation, researchers often U$Bformation, and lead markers. The density analysis was per-
the BI-RADS rating for monitoring responses to preventiveformed only within the breast region. An automated breast
or interventional treatment and the associated changes Ebundary tracking technique developed previotfsdy was
breast cancer risk. We have found that there is a large mogified to improve its performance. Briefly, the technique
interobserver variability in the BI-RADS ratings among ex- ysed a gradient-based method to search for the breast bound-
perienced mammographef¥:* An automated and quantita- ary. The background of the image was estimated initially by
tive estimation, as investigated in this study, will provide Notsearching for the largest background peak from the gray
only an efficient means to measure mammographic densityeve| histogram of the image. After subtracting this back-
but also a reproducible estimate that will reduce the interground level from the breast region, a simple edge was found
and intraobserver variability of mammographic density meapy a line-by-line gradient analysis from the top to the bottom
surements. This image analysis tool will therefore allow re-of the image. The criterion used in detecting the edge points
searchers to study more definitively the relationship of mamwas the steepness of the gradient of four adjacent pixels
mographic density to breast cancer risk, detection, prognosigjong the horizontal direction. The steeper the gradient, the
and mammographic sensitivity, and to better monitor the regreater the likelihood that an edge existed at that correspond-
sponse of a patient to preventive or interventional treatmenig image point. The simple edge served as a starting point
of breast cancers. for a more accurate tracking algorithm that followed. The
In this paper, we will describe the image processing techtracking of the breast boundary started from approximately
niques used in our automated breast density segmentatiahe middle of the breast image and moved upward and down-
algorithm. The performance of the computer segmentatiomnvard along the boundary. The direction to search for a new
was evaluated by a comparison with the average segmentaege point was guided by the previous edge points. The edge
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Fic. 1. (a) A mammogram from our
image databasep) the image super-
imposed with the detected breast
boundary and pectoral muscle bound-
ary; (c) the binary map of the seg-
mented breast region.

location was again determined by searching for the maxi- To facilitate histogram analysis, a dynamic range com-
mum gradient along the gray level profile normal to thepression method was developed to reduce the gray level
tracking direction. Since the boundary tracking was guidedange of the histograms. With our digitization, the gray lev-
by the simple edge and the previously detected edge points)s of the dense tissue are higher than those of the adipose
it could steer around the breast boundary and was less protiesue. Because of variations in exposure condition and
to diversion by noise and artifacts. The accuracy of thebreast thickness near the periphery, the gray level distribu-
boundary tracking technique was evaluated in our previousion corresponding to the breast parenchymal pattern is su-
study?® by quantifying the root-mean-square differences beperimposed on a low frequency background that mainly rep-
tween the detected and manually identified breast boundesents the global variations in exposure. This low frequency
aries. In the current study, the performance of the boundaripackground distorts the characteristic features of the histo-
tracking technique for this data set was determined by supegram due to the density pattern. To reduce the distortion, an
imposing the detected boundary on the breast image and vadaptive dynamic range compression technique was applied
sually judged if the detected boundary coincided with theto the breast image. For a given breast imag,y), which
perceived breast boundary. The breast image and its boundentains low frequency background and higher frequency
ary were displayed by appropriately adjusting the contrasbreast tissue structures, a smoothed imdgg(x,y), was
and brightness. Incomplete, jagged and mistracked boundbtained by applying a large-scale box filter kgx,y) to
aries were considered incorrect tracking. remove the high frequency components while retaining the
The unexposed film area around the film edges was ddew frequency components. The imageg(x,y) was then
tected automatically. After the breast boundary was found, @aompressed by a scale factar
region growing algorithm was used to fill the enclosed breast _
region. The result was a binary map that distinguished the FeO6y)=kFe(x,y). @)
breast region from the background areas. An example of th&o reconstruct the high frequency componerfig(x,y),
tracked breast boundary and the breast binary map is showmas subtracted from a constant gray le@land added to

in Figs. 1(a>1(c). the original imageF(x,y):

For the MLO view mammograms, an additional step has —G-F 2
to be performed for segmentation of the pectoral muscle. The p(X.¥) c(X.y), @
initial edge in the pectoral region was found as the maximum Fg(X,y)=Fp(X,y) +F(X,y). 3

gradient point by a line-by-line gradient analysis from the

moved. Second, the remaining edge points that were CON: o xi :
. o L . aximum gray level of the compressed imd&ggx,y). The
nected were identified by an 8-connectivity criterion. An Jray P )

e . .~ "values of these parameters were chosen experimentally as a
edge segment was removed if its direction was inconsiste

; S _ : "Balance between reducing the dynamic range and preservin
with the pectoral edge direction relative to the breast image, g y g P g

Finally, a second order curve was fitted to the remaining'fhe image features in the compressed image.
edge points to separate the pectoral muscle from the breaét
region. The pixels in the pectoral muscle region were ex-""
cluded from the histogram analysis and breast area calcula- A rule-based threshold technique was developed to seg-
tion. The accuracy of the pectoral muscle detection was alsment the dense areas from the breast background. The histo-
judged visually in this study, similar to the method used forgram of the breast region on the dynamic-range-compressed
the breast boundary described above. Figure 1 shows themammogram was generated and smoothed. The histograms
pectoral muscle trimming result for an MLO view mammo- of these images in the database were analyzed to formulate

gram. an automatic thresholding routine. The histograms were

Breast density segmentation and estimation
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Fic. 2. (a) A typical mammogram from our image databa@®;the low frequency imagEg(x,y) obtained by an 3535 box filter;(c) the compressed image
Fc(x,y); (d) the inverted imag€(x,y); (e)the enhanced imade:(x,y); (f) the gray level histogram within the breast region of the original infagey);
and (g) the gray level histogram of the breast region of the enhanced ifagey).

grouped into four classes based on the characteristic shapésPeak detection and feature description

of their histograms. It was observed that the grouping corre-

sponded approximately to the four BI-RADS breast density The gray level histogram within the breast area was gen-
ratings: Class | corresponded to breasts of almost entirely fagrated and normalized, and passed through an averaging win-
Class Il corresponded to scattered fibroglandular densitieslow to smooth out the random fluctuations. We estimated
Class Ill corresponded to heterogeneously dense and Claize window size to be in the range of 30 to 50 gray levels by
IV corresponded to extremely dense breasts. Examples @fxperimentally evaluating the histogram shapes and density
typical histograms for these four classes are shown in Fig. 33egmentation at different window sizes. Too small a window
The histograms seemed to follow two basic patterns. In onsize cannot smooth out the fluctuation and too large a win-
pattern, there was only one dominant peak, which repredow size will blur the useful features. A window size of 30
sented most of the breast structures in the breast region. lwas used in this study. The second derivative of every point
the other pattern, in addition to a large peak in the histogramgn the histogram curve was computed. An example of the
there was one or two smaller peaks on the right or left side ohistogram and its second derivative curve are shown in Fig.
the large peak. In a majority of the cases, the smaller peak. The zero crossing locations were detected by scanning for
was distinguishable from the large one when the randonthe positive-to-negative and negative-to-positive changes on
fluctuation on the histogram was smoothed. the latter curve. If the second derivative was negative be-
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Fic. 3. Four typical classes of histograms and the setting of gray level infegyadj,] for the threshold calculation.
tween two zero crossing points, it indicated that a peak ex- P2
isted between these two points on the histogram. Normally, right-side energy: ER:K-E f(i)y*f(i), (6)
as shown in Fig. 4, a peak included the peak péigtand 1=Po
two valley pointsP, and P, located on the two sides of the likelihood: L=E/E’, (7)

peak point. The peak poiity, was determined by searching

for the maximum histogram value between the zero crossing’

pointsZ, andZ;, and theP; andP, points were obtained by
searching for the point with minimum histogram value be-
tween zero crossing poin, ,Z, andZ3,Z,, respectively.

The following peak features can be defined by peak poin
Py and valley points?, andP,:

P2
Energy: E=— > f(i)*f(i), 4)
Aisp,
150
left-side energy: E,=— >, f(i)*f(i), 5)
Aisp,
25
o 207 — Histogram Fa
g 15 1 2nd Derivative
=
s
3
Q2
£
=]
Z

0 500 1000 1500 2000 2500 3000 3500 4000
Gray level
Fic. 4. The gray level histograrntsolid curve)and the second derivative

(dot) curve.Py is the peak pointP; andP, are the valley points of the peak
on the two sides of the peak poiRy. PointsZ,, Z,, Z; andZ, are zero

here f(-) is the histogramA is the total energy of the
entire histogram and=3" f(i)*f(i),N is the maximum
gray level of the histogranE’ is the energy calculated by
approximating the histogram in the intenj@,,P,] using
fwo straight linesP Py, andPyP,. The energyE of the peak
Is used to compare the sizes of the peaks on the histogram,
higher energy means bigger size of the pdgkandEg split

the energyE into two parts from the peak point for calculat-
ing the ratio of the energy in these two parts. The likelihood
L describes how close the real peak is to the triangle repre-
sented by the three poini,, P, andP,.

2. Rule-based histogram classification

A rule-based histogram classifier was developed to clas-
sify the gray level histogram of the breast area into four
classes. As shown in Fig. 3, a typical Class | breast is almost
entirely fat, it has a single narrow peak on the histogram.
Class Il has scattered fibroglandular densities, it has two
peaks, other than the tail part on the left, on the histogram,
with the smaller peak on the right of the bigger one. Class llI
is heterogeneously dense, it also has two peaks, but the
smaller peak is on the left of the bigger one. Class IV is
extremely dense, which has a single dominant peak on the
histogram, but it is wider compared with the peak in the
Class | histogram, and a second small peak sometimes oc-
curs to the left of the main peak.

The classification is performed in two steps. In the first

crossing points on the second derivative curve, which are used for searchirdf€P, the computer determines whether there is only one

the pointsP,, P, andP,.
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P\ and its location are detected by comparing the energy ofmore detailed description of the DA method can be found in
the peaks on the histogram. The single peak feature is mainlippendix A.

determined by the energy under the main peak and the  For the MEP method, the optimal threshold value is de-
featuresg, and Er. If the histogram is found to have a termined by maximizing th@ posteriorientropy subject to
single-peak pattern, in general, a narrow peak corresponds teertain inequality constraints that are derived by means of
very fatty breast{Class 1), and a wider peak corresponds tospecial measures characterizing the uniformity and the shape
very dense breagClass V). However, in some cases, the of the regions in the image. As is well-knohthe maxi-
histogram of these two classes is very similar, as discussetium a posteriori probability can serve as a criterion to se-
below (Fig. 9), and it is difficult to distinguish them by their lect a priori probability distributions when very little is
gray level histogram distributions. Two additional image fea-known about the probability distribution. Compared with the
tures were analyzed to classify very fatty and very dens®A method, MEP can provide a better thresholding result if
breasts. One feature is the gray level standard devig8t)  the gray level histogram does not have a bimodal distribu-

in the entire breast area, defined as tion. A more detailed description of the MEP method can be
1 12 found in Appendix B.

Std=(— > > (f(xy)—-f(xy)?| (8) The gray level histograms of the mammograms in our

N xEWaP yEMAP study are very complex, the histogram may be unimodal,

where MAP is the breast binary map regioijs the pixel ~bimodal or multi-modal. Itis difficult to select an appropriate
numbers within MAP. Another feature is the number ofthreshold by one general threshold selection method. There-

the breast area of a segmented binary image using the bi@elect a threshold according to the characteristic features of
mammogram, the breast mainly consists of a fatty backclasses. Supposg(g) is the gray level histogram of the
ground with some fibrous structures and fibroglandular tissubreast area. LeT=Method(f(g)|g:<g<g,) represent the
scattered in the breast area. The NSH value was found to BBreshold.T, that is selected by use of Method in the interval
larger (greater than 50 pixels on averagand Std smaller [91.92] of the histogrant(g), where Method can be either
(less than 500 on averageompared with a mammogram of the DA or MEP method. The settings of the interigl ,g]

a very dense breast. for the four classes are discussed below and shown in Fig. 3.
than one peak, decision rules are used to decide if the secos§lected as

major peak is on the left side or on the rlght sungQj by T=MEP(f(g)|g;<9<0,),

the features, E|, Er andL, and the relative position of the _ _ . _ .

two peaks. If the second major peak is on the right, then th&vhere,g; is the main peak point, is the valley point on

histogram is classified to be Class II; otherwise, it is classithe right side of main peak.
fied to be Class llI. Class II: The histogram is not unimodal and the histogram

is classified as Class lII; the threshold is selected by averaging
two thresholds that are computed in two different intervals of

the histogram by the DA method:
Gray level thresholding is essentially a pixel classification
o . . . = >

problem. Its objective is to classify the pixels of a given T1=DA(f(9)lg>0y).
image into two classes: one includes pixels with gray values T,=DA(f(g)|g>g,),
that are below or equal to a certain threshold; the other in-
cludes those with gray values above the threshold. Thresh- T=(T1+T5)/2,
olding is a popular tool for image segmentation, a variety Ofyhereg, is the valley on the left of the main peads; is the
techniques have been proposed over the years. In our studyain peak point.
two threshold selection methods are used: one is the Dis- Cjass III: The histogram is not unimodal; there are two
criminant Analysis DA) method* and the other is the Maxi- possibilities in the histogram distribution: there is a valley
mum Entropy Principle(MEP) based methot The DA petween the main peak and its left side peak, as shown in

method assumes that the image gray Igvels can be classifiggy 3, or no obvious valley exists between the main peak
into two classes by a threshold. To estimate the threshold, 8n( its left side peak. In two different intervals of the histo-

discriminant criterion based on the within-class variance angyram, two thresholds are computed as
between-class variance is introduced. An optimal threshol

is selected by the discriminant criterion to maximize the T1=DA(f(9)[9:<9<0,),
separability of the resultant classes in terms of gray levels. _ /

This method is well-suited for the cases where the gray level T2=DA(f(9)|0:<9<02),
histogram is bimodal. In an ideal situation, the histogram hasvhereg; is the left valley point of the left-side peale(,)

a deep and sharp valley between the two peaks representiof the main peakg; is the peak point oP, y, andgs is right
objects and background, respectively, and the optimum cowalley point of the main peak. If there is an obvious valley,
responds to the gray level at the bottom of this valley. AT=(T,+T,)/2, otherwiseT=Tj.

3. Gray level thresholding
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Class IV: Since the histogram is considered unimodal, théreast density for that mammogram. The breast region was
threshold is computed by the MEP method]  segmented by the breast boundary tracking technique, and
=MEP(f(g)|g1<9<g,), where,g, is the left valley point the pectoral muscle was trimmed for the MLO-view mam-

of the main peakg, is the main peak point. mograms. The breast boundary was accurately tracked on
92.3% (240/260) of the mammograms, and the pectoral
D. Radiologists’ segmentation of dense breast tissue muscle was correctly trimmed on 74.6%87/130) of the

MLO views. The histograms of 6%8 CC views and 8 MLO
In order to evaluate the accuracy of the computer segmen-. . : - .
. : views) of the breast regions did not exhibit the typical char-
tation method, the computer segmentation results were com-_~ "’ ° : o

ﬁctenstlc features of the four classes and were misclassified

pared to radiologists’ manual segmentation in the data set %y the computer, resulting in poor segmentation of the dense

65 patient cases. Details of the observer study for estimationegion

of the breast density and statistical analysis of the results ' . .
) . . . Figure 6 shows a comparison of the percent breast density
were discussed elsewhéreBriefly, a graphical interface . . : s .
isually estimated by radiologists against the true standard

was developed for displaying the mammograms and record- 0 .
ing the observer’'s evaluation. The CC-view and MLO-view(%/Or the 94% of the 260 mammograms that were classified

. : : correctly by the computer. Table | summarizes the compari-
mammograms for a given breast were displayed side-by- . T . .
n of the radiologists’ visual estimates with the true stan-

S : . . S
side; a radiologist ob_server exar_nmed th? mammograms anégrd. The “difference” between the estimated % breast den-
gave a BI-RADS rating and a visual estimation of the per-

cent breast density with 10% increments. After the subjectiv sity and the true standard was calculated for each case, and

. . : : ?he mean and the standard deviation of this difference over
evaluation, each view was displayed sequentially, together ; . . .
all cases were estimated for each radiologist and shown in

with the histogram of the dynamic-range-compressed imag"?he table. Therefore, the mean difference was the average

The_radlolog|st would mteracnvgly choose a _threshold byblas of the estimated % breast density from the true standard
moving a slider along the abscissas of the histogram plot; . .
. . ; . . . gver all images in the data set. It can be seen that almost all

The segmented binary image, displayed side-by-side with the " . . o . :
: radiologists had a positive bias, on average, when they visu-

mammogram, would change instantaneously when th%” estimated mammographic density, except for Radiolo
threshold was changed. The radiologist could inspect if the y grap Y, P

segmented area corresponded to the dense area on the maq'ns-t 5 who had a small negative average bias on the CC-view

. . . ! reading. For a given radiologist, the over-estimation in-

mogram. Once the radiologist was satisfied with the segmen- LS

. creased as the breast density increased. Although the corre-
tation of the dense area, the gray level threshold and thg : . . .

] . ation coefficients were high, ranging from 0.90 to 0.95, the

percent dense area derived from this threshold were re; . . . . .

. : deviations from the diagonal line were systematic. The aver-

corded. The display then moved to the next view of the same

: X 0
breast for evaluation. The mammograms of the other brea§9¢ bias from the true standard varied from less than 1% to

X . 1%, depending on the radiologist. The root-mean-square
for the same patient would then be displayed and evaluate ! ! . :
: . MS) errors of the five radiologists relative to the true stan-
in the same way. The entire process was repeated for ea
. . . . ard ranged from 7.5% to 16.3%.
patient until all patients in the data set were evaluated. . :
Five MQSA-approved radiologists participated in the ex Figure 7 shows the comparison of the percent breast den-
PP 9 P P sity between the computer segmentation and the true stan-

periment. To familiarize the radiologists with the procedures .
. . o o gard for the 94% of mammograms whose histograms were
and to assist them in their visual estimation of the percen

breast density, we had them trained on a separate set of fgn&dered to be correctly classified. There was a trend of

. . ) ver-estimation in the very fatty breasts. In the medium
patient cases prior to the evaluation of the actual data se . .

. e : . dense range, the variances from the true standard were high.
During the training session, the computer displayed the per:

. : . .~ Spme images had a large deviation from the diagonal line,
cent breast dense area to the radiologist, which was obtaineqa’,. ~ . . .
. o . . . indicating that the threshold was incorrectly determined.
by the radiologist's interactive thresholding of the image.

The radiologist could then compare the manually se mente-(lj-alble Il summarizes the comparison between the computer
9 P y sed erformance and the true standard. For the CC views with

E)heerc%:;gee .Vrvr:ﬁz tfz(;'(;b\giia:z!Isesjef(?:l?bg?;ﬁe?;edfgjigoféc)rorrect histogram classification, the correlation between the

o ) computer-estimated percent dense area and the true percent
gists’ visual estimates of the percent dense breast area. The .
. . . . breast density was 0.94, and between the computer and the
percent dense area obtained by interactive thresholding was ~. L ! .
not displayed during the actual study radiologists’ average visual estimate was 0(B@t plotted).
' These correlation coefficients were 0.91 and 0.82, respec-
tively, for the MLO views with correct classification. Al-

. RESULTS though the correlation coefficients of the computer segmen-
An example of a typical mammogram from each of thetation with the true standard were not better than those of the
four classes and its corresponding enhanced image, its histeisual estimates, the average biases of the computer segmen-
gram, the selected threshold and the segmented image awdion from the true standard were less than 2%, which were

shown in Figs. 5(a35(d), respectively. substantially less than those of visual estimaf€able I).
The average percent breast density obtained from manudhis indicates that computerized segmentation is a good al-
segmentation by the five trained radiologists for each mamternative to manual segmentation although variances of the

mogram was used as the “true standard” of the percentutomated method will need to be further reduced. The RMS
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Fic. 5. Four classes of typical mammograms and corresponding enhanced and segmented image, histogram and threshold.

errors of the computer segmentation were also less thatween an individual radiologist's manual segmentation and
those of the radiologists’ visual estimates, at 6.1% and 7.2%he true standard varied from 2.9% to 5.9% among the five
respectively, for the CC view and MLO view, when the his- radiologists. For MLO views, the RMS difference varied
tograms were correctly classified. The biases and RMS erroifsom 2.8% to 6.2%. The average biases of the five radiolo-
for the different subsets of images are also shown in Table llgists ranged from-2.8% to 2.2% for the CC views and from
It can be seen that correct histogram classification was the 3.1% to 3.0% for the MLO views. The maximum biases of
most important factor in reducing the biases and the RMShe five radiologists varied from 4.4% to 22.6% for the CC
errors. The contributions by breast boundary detection andiews and from 5.2% to 23% for the MLO views.
pectoral muscle segmentation were minor, on average, for The five radiologists provided BI-RADS density ratings
improving the estimation of the percent dense breast area.for each breast. Although the BI-RADS ratings exhibited
Figure 8 shows the comparison of the individual radiolo-large inter-observer variatiofi8 it is interesting to compare
gists’ manual segmentation against the true standard. For Cie computer’s histogram classification with the BI-RADS
views, the RMS difference in the percent breast density beratings. Since there were 260 images, each with 5 radiolo-
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and 57.1% of Class IV classifications have density rating 4.
More detailed analysis of the variability of radiologists’ BI-
RADS ratings was discussed by Marghal?!

IV. DISCUSSION

Radiologists routinely estimate mammographic breast
density using the four BI-RADS categories. In studies that
require breast density estimation, radiologists’ visual esti-
mates of mammographic density were often used as the den-
sity measure. Our observer study indicates that interobserver
variation between the BI-RADS ratings of five experienced
radiologists ranged from1 to +1. The subjectively esti-
mated percent dense area can deviate from the true standard
by as much as 40%, as shown in Fig. 6. These results indi-
cate the need to develop an objective method for the estima-
tion of mammographic breast density in order to improve the
accuracy and reproducibility of the estimation. A computer-
ized image analysis method for mammographic breast den-
sity estimation will be a useful tool for study of breast cancer

Fic. 6. A comparison of the percent breast density between five radiologistsrisk factors and for monitoring the change of breast cancer
visual estimates and the true standard. The dashed line represents the linggsk with preventive or interventional treatments.

regression of all data points on the plot. The MLO view is shown. The trend

for the CC view is similar.

In this study, we used the average of the percent breast
area obtained with interactive thresholding by five experi-
enced radiologists as the true standard. The gray level thresh-

gists’ ratings, there were a total of 1300 rating comparisonsolding method used in this study could achieve a reasonable
The comparison of the computer and the radiologists'segmentation of the dense areas on the mammogram because
BI-RADS ratings is shown in Table IIl. It was found that the image was preprocessed with dynamic range compres-
87.4%of Class | classification have BI-RADS ratings 1 or 2,sion. The image-based analysis of breast density will not
92.0% of Class Il classifications have density ratings 2 or 3provide the actual percentage of fibroglandular tissue in the
83.4% of Class lll classifications have density ratings 3 or dreast volume. However, the previous studies that estab-

TaBLE |I. A comparison of the radiologists’ visual estimate of mammographic breast density with the true
standard. The “difference” was defined as the difference between the estimated % breast density and the true
standard for each case, and the mean and the standard deviation of this difference are tabulated.

No. of RMS Mean Std. dev. of
Image subsets  images Radiologist Correlation  error difference difference
CC view:
All 130 Rad. 1 0.942 13.3% 6.9% 11.5%
Rad. 2 0.931 14.5% 9.8% 10.7%
Rad. 3 0.923 13.3% 6.3% 11.8%
Rad. 4 0.934 7.5% 2.9% 7.0%
Rad. 5 0.901 9.6% —1.4% 9.6%
Histogram 122 Rad. 1 0.946 13.7% 7.2% 11.3%
correctly Rad. 2 0.936 14.7% 10.3% 10.8%
classified Rad. 3 0.929 14.2% 6.7% 11.6%
Rad. 4 0.929 7.7% 3.1% 7.1%
Rad. 5 0.900 9.7% -1.3% 9.4%
MLO view:
All 130 Rad. 1 0.933 14.5% 8.3% 12.0%
Rad. 2 0.914 16.1% 11.2% 11.5%
Rad. 3 0.915 14.4% 7.7% 12.2%
Rad. 4 0.919 8.8% 4.3% 7.7%
Rad. 5 0.910 9.2% 0.1% 9.2%
Histogram 122 Rad. 1 0.932 15.0% 8.3% 12.0%
correctly Rad. 2 0.914 16.3% 10.9% 11.4%
classified Rad. 3 0.919 14.7% 7.8% 12.2%
Rad. 4 0.916 9.0% 4.3% 7.7%
Rad. 5 0.909 9.4% 0.3% 9.2%
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cially when direct digital mammography becomes more
widely used in the future.

Our preliminary study indicates that breast density esti-
mation can be performed automatically and accurately.

7). Although the accuracy of our current algorithm still needs
to be improved, it can be seen that the computer segmenta-
tion can provide an estimate of the percent breast density
with a very small biagTable Il). More importantly, com-
puter segmentation will be more reproducible and consistent
than visual estimates. This will improve the sensitivity of
studies that depend on evaluation of the change in mammo-
graphic density over time or before and after a certain treat-
ment.

In this study, we reduced the spatial resolution to a pixel
size of 800umx800um for image processing. The small
matrix size of the reduced images improves the computa-
tional efficiency. The reduction in resolution has two major
effects: reducing the image noise and blurring the detalils.
Since the significant dense tissue in the breast that contrib-
utes to the parenchyma is relatively large compared to 800
pm, it is not expected that processing at this pixel size will
have a strong effect on the accuracy of the estimated percent
breast density. Differences in the segmented area may occur
mainly along the boundary of the dense tissue region, but the
effect may be averaged out statistically along boundaries of
reasonable lengths. The residual errors in the estimation of
the dense area should not be substantial in comparison with
the inter- and intra-radiologists’ variations in their manual
segmentation.

Successful segmentation of dense tissue depends strongly
on whether a mammogram can be classified correctly into a
proper class. A successful classification will likely result in
the selection of a near optimal threshold. Conversely, if a
mammogram is classified into a wrong class, the threshold
will be selected incorrectly. For the mammograms of very

©) % Breast Density (True) fatty breasts, the gray level histogram has the characteristics
Fic. 7. A comparison of the percent breast density between the compute‘?]c Class 1, which contains one large single peak. These his-
segmentation and the true standard. The dashed line represents the lind@grams can be distinguished relatively easily from most of
regression of the data on the pl@) CC view, (b) MLO view. the other classes of histograms if those histograms exhibit
the typical features. For mammograms of BI-RADS category
2 or 3, there are scattered fibroglandular or heterogeneous
densities in the breast. A small peak may be located on the
lished the correlation between breast density and breast caleft or on the right, or on both sides of the main peak on the
cer risk were all based on mammographic density. This inhistogram. The histogram could be classified into Class | if
dicated that mammographic density is a sufficiently sensitivéhe small peak is not large enough and is not detected as a
marker for breast cancer risk, although it may be less accusecond peak. Otherwise, it would be classified into Class Il
rate than volumetric density. An actual measurement of ther Class lll, depending on the location of that small peak
percentage of fibroglandular tissue volume in the breast, forelative to the main peak of the histogram. For the two-peak
example, by x-ray penetration with correction for scatter ancpattern histogram, the DA threshold selection method is ro-
beam hardening, is difficult because it requires accuratbust if there is an obvious valley between the two peaks. If
x-ray sensitometry or phantom calibration for each imagethe valley is flat or not obvious, averaging the two thresholds
These requirements will limit its use to a few laboratoriesobtained by the DA method in two different intervals, as
that have specialized equipment and expert physicists. Magiesigned for this study, can reduce the chance of calculating
netic resonance breast imaging can also provide voluman incorrect threshold that differs greatly from the optimum,
measurement of dense tissue but it is expensive and not edsdt it also reduces the chance of finding the optimal thresh-
ily accessible. It can be expected that the estimation of manmsld. Overall, the rules designed for classification of the two-
mographic breast density by a computerized image analysiseak patterns seem to perform consistently well for this data
method will be a more practical and viable approach, espeset. One of the difficult situations is to distinguish between
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TasLE Il. A comparison of computer segmentation with the true standard. The “difference” was defined as the
difference between the estimated % breast density and the true standard for each case, and the mean and the
standard deviation of this difference are tabulated.

No. of RMS Mean Std. dev. of

Image subsets images  Correlation error  difference  difference
CC view:
All 130 0.746 12.3% 1.3% 12.3%
Boundary correctly tracked 120 0.780 11.4% 1.4% 11.4%
Histogram correctly classified 122 0.943 6.1% 0.2% 6.2%
Boundary and histogram correctly done 113 0.953 5.6% 0.8% 5.6%
MLO view:
All 130 0.780 11.6% 1.9% 11.5%
Boundary correctly tracked 120 0.766 11.9% 2.1% 11.7%
Histogram correctly classified 122 0.914 7.2% 1.5% 7.1%
Pectoral muscle correctly trimmed 97 0.733 11.6% 1.6% 11.6%
Boundary and histogram correctly done 112 0.912 7.2% 1.7% 7.1%
Boundary, histogram and pectoral 83 0.891 7.1% 1.9% 6.8%

muscle correctly done

Class | and Class IV, when the histogram of a very denséiveness of background correction with a box filtered image
breast mimics that of a very fatty breast, as shown in Fig. 9depends on the box size. We found that &35-pixel filter

This image was correctly classified with the additional fea-is a good balance between computation time and the capa-
tures, Std and NSH. However, there were other cases thafjity to remove the high frequency components. The sub-
failed in spite of the additional criteria. The large differenceaction of the low-pass filtered image from the original im-
in the optimal threshold locations between these two classe§9e is a form of unsharp masking. The breast boundary is
will lead to a large error in the estimated percent breast derg]enerally enhanced as shown in Fige2 The pixels at the
sity if the histogram is misclassified. Further study is neede Lnhanced breast boundary contribute a small peak to the left

to more accurately distinguish these wo classes. tail of the gray level histogram of the breast area. Moreover
The dynamic range reduction technique reduces the vari; gray 9 ' '

ability of the gray level histograms and enhances their char'—f dense tissue is present close to the bregst bound_ary, it may

acteristics. This pre-processing facilitates the classification df°t Pé segmented correctly due to intensity reduction. Other

the image into the correct class. There are many imagW frequency estimation techniques such as wavelet decom-

smoothing techniques published in the literature. Low-pasg0sition will be investigated in future studies.

filtering with a box filter is the simplest choice. The effec-  In this feasibility study, we used a small data set of mam-
mograms to develop a rule-based classifier for the histogram
analysis. Although a large fraction of the histograms mani-

MLO view fest characteristic features that can be grouped into four
1.0 : 1 1 1 classes, corresponding approximately to the four BI-RADS
® Rad.1 breast density ratings, there are many exceptions. One such
) o Sa:- 2 example is shown in Fig. 9. This causes misclassification and
2 0.8 1 ; R:d:i o i incorrect thresholding by the histogram classifier. It will be
[} H Rad. 5
=3 @
2> 061 ° g -
o— Q
77} "V
5 0(9@7 v TasLe Ill. A comparison of computer classification and radiologists’
0 o4 Oo L BI-RADS breast density ratings.
- ) [e) v
g Computer BI-RADS BI-RADS BI-RADS BI-RADS
] o v classification 1 2 3 4 Total
0 02 - v L
) v Class | 210 262 52 16 540
° (16.2%)  @0.2%) 4%) (1.2%) @1.5%)
Class Il 0 92 184 24 300
0.0 T . . . (0%) (7.1%)  (14.2%)  1.8%) @3.1%)
0.0 0.2 0.4 0.6 0.8 1.0 Class I 1 52 167 100 320
(0.1%) @%) (12.8%)  7.7%) (4.6%)
% Breast Density (True) Class IV 5 12 43 80 140
(0.4%) 0.9%) 38.3%) 6.2%)  (10.8%)
Fic. 8. A comparison of the percent breast density obtained from the five Total 216 418 446 220 1300
radiologists’ manual segmentation with their average for the same mammo- (16.6%) 32.2%) 34.3%) 16.9%)  (00%)

grams. The MLO view is shown. The trend for the CC view is similar.
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Fic. 9. The gray level histograms of two mammograms classified by radiologists as BI-RADS rdtipger mammograjmand BI-RADS rating 4(lower
mammogram The shapes of the histograms are very similar and cannot be distinguished by our current histogram analysis method. These two examples were
correctly classified with the additional Std and NSH criteria.

necessary to investigate if other classification strategies caslemonstrated in this preliminary study that the estimation of
be more effective than a rule-based method. Furthermore, waammographic density can be performed efficiently and ac-
have not performed a systematic study to optimize the mangurately by the automated image analysis tool. The fully au-
parameters used in the segmentation algorithm. Further wortomated algorithm can provide an objective and reproducible
will be required to investigate the dependence of the segmermuantitative estimation of mammographic breast density that
tation accuracy on the various parameters. The parameté expected to be superior to subjective visual assessment and
selection and the performance of the computer classifier wilkomparable to manual segmentation by radiologists.

have to be improved by training with a larger data set and its

generalizability evaluated with unknown cases. The generaliack NOWLEDGMENTS
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The computer-estimated mammographic breast density COxpPPENDIX A: GRAY-LEVEL
relate closely with the average manual segmentation by fivg HRESHOLDING—DISCRIMINANT ANALYSIS (DA)
experienced radiologists and the average bias is much le§geTHOD
than that of the radiologists’ visual estimation. We have . . .
found that correct classification of the histogram shapes is . Suppose the probability Of, the gray levglin an image
the most crucial step in our approach. The histograms o‘l“”th L gray levels can be estimated as
many mammograms have distinctive characteristics that can L
be recognized by a rule-based classifier. However, some his- pj=n;/N, sz n;. (A1)
tograms deviate from these rules and this can lead to mis- =1
classification. A further investigation will be needed to de- If the pixels in the image are classified into two clasSgs
sign more robust rules or classifiers to improve theand C; by the thresholdk, then the probabilities of class
classification accuracy. Despite these limitations, we haveccurrence and the class mean levels are given by
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APPENDIX B: GRAY-LEVEL
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PRINCIPLE (MEP) METHOD
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L
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i=1
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probability of the pixels with gray level value less thianis
given by

k
F<k>=i§O pi. (B2)

And thea posterioriprobability of all those pixels with val-
ues greater than or equal kas 1-F(k). Thus the Shannon
entropy of the thresholded image is

H(F(k))=—F(k)logF (k) — (1—F(k))log(1—F(k)).
(B3)

The optimal threshold maximizesH (F(k)).
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