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We have implemented a nonparametric density estimation technique, the adaptive kernel density
estimator �AKDE�, to generate additional phase space �PS� variables in the vicinity of simulated PS
points in Monte Carlo linear accelerator simulation. The method involves the placement of kernels
at simulated PS points that have a “window width” that depends on the density of simulated PS
points. This method has been tested on known one-dimensional �1-D� and two-dimensional �2-D�
probability density functions �PDFs� and has been used to sample �photons only� from PS files
generated from accelerator simulations. The original simulated PS vector �x ,y ,u ,v ,E� was reduced
to a rotationally invariant PS vector �r ,� ,� ,E� that takes advantage of the azimuthal symmetry ���
above the collimating jaws. The new PS vector �r� ,�� ,�� ,E�� is sampled in the vicinity of the
sampled PS vector �r ,� ,� ,E�. The first step in assessing the accuracy of the method was a corre-
lation analysis among the AKDE generated PS variables compared with correlations among the
original PS variables. “In-air” particle fluence distributions between AKDE samples and the origi-
nal PS distribution showed agreement within 2% �−8.8% to 6.8%� across the entire phase space
plane. Central axis energy distributions and angular distributions agreed on average to within 1.5%
�range=−1.5% to 6.6%� and 0.1% �range=0 to 3.0%�, respectively. Dose profiles were calculated
for field sizes 3�3 cm2, 10�10 cm2, and 30�30 cm2 for AKDE and compared against calcula-
tions performed with PS recycling. AKDE calculated depth doses and profiles were within 2% and
2% /1 mm, respectively, of those computed using PS recycling. © 2006 American Association of
Physicists in Medicine. �DOI: 10.1118/1.2163250�
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I. INTRODUCTION

Monte Carlo simulation of the linear accelerator treatment
head using the BEAMnrc1 code yields an output file that
records the phase space �PS� particle vector
�x ,y�position� ,u ,v�direction�, E�energy� , latch ,wt�weight��
for each particle crossing the scoring plane. The variable
latch contains the particle charge, the number of times the
particle has crossed the scoring plane, and information that
allows the particle’s history to be traced. When the PS file is
used as an input for patient-dependent simulation, it may
have to be recycled several times in order to achieve accept-
able statistics in the final dose calculations. Walters et al.
have described in detail the effect of restarting and recycling
the PS on the uncertainty of the dose calculation during

simulation with BEAMnrc, and have pointed out how correla-
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tions arising particularly from particle restarting can signifi-
cantly underestimate the uncertainty.2 In this paper we pro-
pose an alternative to PS recycling using an approach called
the adaptive kernel density estimator �AKDE� originally pro-
posed by Silverman3 to estimate population densities. This
method �the response kernel density estimation Monte Carlo
method �RKMC�� has been previously investigated at our
institution with its application to electron transport simula-
tion in the EGS4 Monte Carlo code.4 We have now applied
this technique to PS treatment head simulation. The basic
method can be summarized as follows: �a� a PS vector is
read from the PS input file, �b� AKDE is used to sample
additional “on the fly” PS vectors in the vicinity of the ex-
isting vector, and �c� the new PS distribution, now containing

many more samples than the original PS file, is used for the
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patient-dependent calculation. The AKDE technique is novel
because it generates PS samples without the need for direct
particle simulation and, in principle, has the potential to re-
duce the latent variance given a minimum number of simu-
lated histories in the PS file. Our intent in this paper is to
describe the AKDE method and its application in treatment
head simulation. We illustrate the accuracy of the AKDE
method through evaluation of fluence distributions and in-
phantom dose calculations in comparison to other more well-
established methods, such as PS recycling.

In what follows we will discuss the theory associated with
AKDE and its application in Monte Carlo sampling, discuss
preprocessing of the PS variables for input to AKDE, and
finally compare AKDE with direct PS simulation and PS
recycling in linac treatment head simulation and in-phantom
dose calculations.

II. THEORY

A. Adaptive Kernel Density Estimator „AKDE…

A theoretical derivation of the AKDE method is reported
in the text by Silverman.3 We present necessary parts of the
theory here and in the Appendix for completeness. Suppose
we have a simulated dataset of n independent and identically
distributed samples x1 ,x2 , . . . ,xn, �each of dimension d�,
from an unknown probability distribution function �PDF�
f�x�, that we would like to estimate. Because of the complex-
ity and multidimensionality of the data, it is very difficult to
use parametric density estimation �e.g., Gaussian with un-
known mean and variance� to obtain accurate results. In
other fields, kernel density estimators are widely used in
nonparametric density estimation and these are investigated
in this report. For a fixed kernel density estimator, the �usu-
ally unknown� PDF f�x� is approximated by the following
PDF:

f̂�x� =
1

n�H�1/2�
i=1

n

k��x − xi�TH−1�x − xi�� . �2.1�

The bandwidth matrix H is a d-dimensional symmetric posi-
tive definite matrix that can be thought of as a covariance
matrix for the kernel, and it typically has the following form
H= �diag�h1

2 ,h2
2 , . . . ,hd

2� ,h1 ,h2 ,hd�0�, where hi is the global
bandwidth for variable xi �the ith component of vector x� and
is a measure of the “spread” of the variable xi, and the kernel
K�x�=k�xTx� is a symmetric, non-negative function that is
centered at zero and integrates to 1:

	 K�x�dx = 1, 	 xK�x�dx = 0 �2.2�

and

	 x2K�x�dx = k2 � 0.

The deviation of the density estimator f̂ from the true density

f is usually quantified using a measure termed the mean in-
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tegrated square error �MISE� as a criterion of the global ac-
curacy:

MISE� f̂� = E	 �f�x� − f̂�x��2 dx , �2.3�

where E��� denotes the expectation value of the quantity �.
It is possible to choose a global bandwidth to minimize

MISE. For example, in one dimension, the following expres-
sion for MISE holds:

MISE� f̂� 

1

4
h4k2

2	 f��x�2 dx + n−1h−1	 K�t�2 dt . �2.4�

The details of the proof are shown in the Appendix. The first
term in the above expression represents the bias term �trun-
cation error� and the second term is the variance term �sta-
tistical error�. The above expression also represents two fun-
damental difficulties of density estimation, which is true for
any number of dimensions: �1� MISE cannot be evaluated
unless f�x� is known and �2� a compromise has to be made
between bias and variance to reduce the MISE. The band-
width h needs to be small to reduce the bias; however, re-
ducing the variance requires a large value of nh. Unless n is
sufficiently large, h has to be large. Silverman derived the
following expression for the optimal value using a Gaussian
kernel for the global bandwidth such that the MISE is mini-
mized:

hopt = 0.9An−1/5, where A = min��,
IQ

1.34
� . �2.5�

In this equation, � is the standard deviation in the sample
dataset and IQ is the interquartile range, or the distance be-
tween the 25th and 75th percentiles of the dataset. For a
distribution with dimension d, Eq. �2.5� becomes hopt

�n−1/�d+4� if the variables in each dimension are independent.
However, if the unknown PDF has a narrow peak and

long tails, it becomes difficult to find a good global band-
width. Either the central peak is underestimated or the noise
in the long tails dominates. This becomes even more trouble-
some in high-dimensional density estimations �in particular,
if the variables in higher dimensions are not independent�,
because both the peak area and the tails can be important in
different regions of phase space. The AKDE overcomes this
difficulty by using local bandwidths according to the density
of the data points. In areas where data points are dense, small
bandwidths are used whereas larger bandwidths are used in
areas where the data is sparse. The algorithm requires an
initial estimate of the approximate point density; this esti-
mate yields a pattern of bandwidths corresponding to the
various data points and these bandwidths are used to con-
struct the adaptive estimator. This process is accomplished in
the steps shown in Sec. 2 of the Appendix. Equation �A12�
�Sec. 2 of the Appendix� illustrates the use of a Gaussian
kernel for density estimation. The diagonal form of H makes
Monte Carlo sampling from the multidimensional Gaussian

straightforward.
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B. Monte Carlo sampling using AKDE

Monte Carlo implementation of AKDE does not require

calculating f̂�x� at each observation point, x. Instead, a phase
space vector x can be sampled using the following algorithm.

�a� Generate a uniform random number � in the interval
�0,1�.

�b� Sample a PS vector index i=�n+1, where n is the total
number of PS vectors in the original PS �note all PS
vectors are equally probable by construction, for our ap-
plication�.

�c� Sample a new PS vector in the vicinity of x by sampling
from the multivariate Gaussian distribution as defined by
Eq. �A12� �Sec. 2 of the Appendix�.

III. PREPROCESSING OF THE PS VARIABLES

The PS simulation of a Varian 21EX linear accelerator
was carried out using the BEAMnrc Monte Carlo code. The
simulation included patient-independent structures such as
target, primary collimator, flattening filter, ion chamber, and
mirror. The phase space variables of all the particles were
scored on the plane below the mirror and above the collimat-
ing jaws, at a distance of 25 cm downstream from the target.
In this study, we focused only on photons in the PS file �i.e.,
electrons were excluded� in order to illustrate a proof of prin-
ciple.

The original 5-D PS vector �x ,y ,u ,v ,E� was transformed
to a 4-D rotationally invariant PS vector �r ,� ,� ,E� by taking
advantage of azimuthal symmetry ���, as shown in Fig. 1,
for the patient-independent simulation. �This assumption
would, however, not hold for an asymmetric beam.� This
reduces the dimensionality of the PS variables that are

FIG. 1. A schematic showing the cylindrical coordinate geometry used for

the preprocessing of the phase space variable. 
̂ is the particle direction, 
z

is the z component, 
xy is the x-y �planar� component, and � is the azi-
muthal angle of 
xy w.r.t. the radial vector.
sampled by AKDE. This was accomplished using the follow-
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ing transformation between the initial �input� and trans-
formed �output� variables: PS input= �x ,y ,u ,v ,E� ,
PS output= �r ,� ,� ,E�:

Transformation,

� = cos−1� x
x2 + y2� = cos−1� x

r
� ,

r = x2 + y2,

cos � = �u cos � + v sin �

sin �
� , �3.1�

� = cos−1�w� .

Here, r is the radius vector; u ,v, and w are the direction
cosines with respect to the x ,y, and z axes, respectively; and
� is the azimuthal angle of the planar component of the
particle’s direction with respect to the cylindrical radial vec-
tor r. The reason to use angles in the transformed phase
space is to take advantage of symmetry. This allowed us to
reduce the dimensionality of the phase space, which mini-
mized the sampling of variables with AKDE. The �r ,� ,� ,E�
coordinate system is rotationally invariant; hence they can be
sampled independent of the azimuthal angle �. The direction
variables u and v, on the other hand, are fixed in the Carte-
sian frame, hence are dependent on �, and their use will
require more transformations and will result in a smaller
population to sample from. When a PS file is used as an
input for dose calculation, a data point �r ,� ,� ,E� is sampled
uniformly �or in accordance with the particle weights� from
the PS. AKDE is then used to sample the new data point
�r� ,�� ,�� ,E�� in the vicinity of �r ,� ,� ,E�, as described
above. The azimuthal angle �� for the position coordinate is
sampled uniformly between 0 and 2	. The direction cosine
vectors for a particle sampled at �r� ,��� with sampled direc-
tion ��� ,��� are calculated as follows:

u� = sin �� cos �� cos �� − sin �� sin �� sin ��,

v� = sin �� sin �� cos �� + sin �� cos �� sin ��,

w� = cos ��. �3.2�

IV. PHASE SPACE ANALYSIS USING AKDE

In this section we compare the AKDE generated PS with
the original PS. AKDE calculations were performed using
the transformed PS variables using global bandwidths calcu-
lated from Eq. �2.5�. Note that although the AKDE method
assumes independent and identically distributed samples, the
PS entries are not independent due to multiple PS particles
from the same primary particle. AKDE can still be applied to
all entries �as in recycling� when PS is used as an input.
However, to estimate the uncertainty correctly, one needs to
tally all entries that correspond to the same history. The
bandwidths calculated for these variables are shown in Table
I for 50�106 and 100�106 particles. Boundary conditions

were placed on the boundaries of the r and � variables to
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avoid negative values of these variables. Specifically, r and �
were transformed to log10�r� and log10���, respectively,
which avoided negative r and �.

The low energy cutoff on E and the periodic behavior of �
on �0,2	� allowed us to avoid the log transformations for
these variables. As expected, the bandwidths decrease with
increasing sample size for all variables.

We performed an analysis to assess the correlations
among the variables in AKDE samples taken from the trans-
formed phase space, in comparison to the correlations among
variables in the original phase space. The coefficients were
calculated using the covariance Cov�x ,y� and correlation co-
efficient �xy,

�x,y =
Cov�x,y�

�x�y
; − 1 � �xy � 1,

Cov�x,y� =
1

n
�
j=1

n

�xj − x��yj − y� . �4.1�

The results presented in Table II using 50 000 PS points were
analyzed using the statistical analysis toolkit in Excel, and
were in some instances, independently verified. AKDE
sampled PS variables retain the correlations �particularly the
strong correlations�, even though the local correlations
among the changes in the PS variables are neglected in our
approach. This is justified by noting that the first step in
AKDE samples the original phase space record, or the actual
trajectory, implying that the first-order correlations among
the PS variables are preserved. For the variables with weaker
correlations, e.g., �r ,��, �� ,E�, �� ,��, the correlations with
AKDE-generated variables are higher than those from the
PS. Although this is a small effect, it is being further inves-
tigated. At this stage we believe that it may be due to sys-
tematic bias introduced by the finite bandwidth used with
AKDE. The overall behavior shows that r and � are strongly
correlated due to the forward bremsstrahlung production

TABLE I. Global bandwidths for AKDE variables.

50�106 100�106

r�cm� 0.238 0.21
��rad� 0.012 0.01
��rad� 0.448 0.312
E�keV� 134 960 86 943

TABLE II. Correlation coefficients from the original PS distribution and KDE
transformed PS distribution.

PS variables Original PS KDE transformed PS

�r ,�� 0.942 0.94
�r ,�� −0.002 −0.013
�r ,E� −0.252 −0.252
�� ,�� −0.002 −0.038
�� ,E� −0.292 −0.290
�� ,E� 0.0002 0.025
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from the tungsten target. This correlation decreases for larger
r due to increased multiple scattering. A weaker correlation
is seen between E and � due to the inverse relation between
angle of scattering and energy loss. The correlation between
r and E is consistent with the observed correlations between
r and � and E and �. The variable � is weakly correlated to
the other variables. Figures 2�a� and 2�b� show scatter plots
for pairs of transformed variables �r ,�� and �� ,r� for the
original PS and those generated using AKDE. The above
correlations are almost identical for the original PS and the
AKDE generated samples, even for �� ,r� that shows the
maximum deviation from the original PS distribution.

Photon fluence distributions as a function of radius out-
ward from the central axis, as computed by the AKDE gen-
erated PS and the original PS distribution, are shown in Fig.
3�a�. Overall fluence differences are less than 1% with local
differences of up to ±9% seen in the range 6–7 cm, corre-
sponding to the edge of the primary collimator at the phase
space plane. The finite width of the kernels has the greatest
effect on the high gradient regions of the density distribution
because AKDE convolves the data point with a finite band-
width kernel. The angular distribution �Fig. 3�b�� and the
energy distribution �Fig. 3�c�� calculated in a 1 cm radius
around the central axis show an average deviation of 0.1%
�range=0% to 3.0%� and 1.5% �range=−1.5% to 6.6%�, re-

FIG. 2. Overlay of scatter plots of various PS parameters: �a� radius vector
�r� versus polar angle ��� and �b� Azimuthal angle of the planar component
of the particle’s direction ��� versus radius vector �r�.
spectively, in comparison to the original PS.
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V. DOSE CALCULATION USING AKDE

AKDE was applied to PS distributions for in-phantom
dose calculations. Calculation accuracy was assessed for the
following field sizes: 3�3 cm2, 10�10 cm2, and 30
�30 cm2. Profiles and central axis depth doses were calcu-
lated in a phantom of size 25.6�30�30 cm3�3�3 cm2�,
30�30�30 cm3�10�10 cm2�, and 40�40�40 cm3�30
�30 cm2� at 10 cm depth and 90 cm SSD for a 6 MV pho-
ton beam. The voxel sizes used are 2, 3, and 5 mm along the
profile directions for 3�3 cm2, 10�10 cm2, and 30
�30 cm2, respectively. A slightly larger voxel size �up to
1 cm� was used along other directions. The average uncer-
tainty �1�� in all the voxels greater than Dosemax/2 was less
than 1.5%. All calculations of dose in phantom were carried
out using the Dose Planning Method �DPM� Monte Carlo
code,5,6 which reads the patient-independent PS as input and
includes the field-defining jaws and MLC for the phantom
calculation.

A benchmark result was calculated using 200�106 par-
ticles in the patient-independent PS. The PS file was recycled
100 times �for the 30�30 cm2 field� to substantially reduce
the statistical fluctuation in the calculated dose. Agreement
with ion-chamber �CC13, active volume 0.13 cm3� measure-
ments are within 2% /2 mm, as shown in Figs. 4�a� and 4�b�
for the three field sizes. Figures 5�a�–5�c� show transverse
profiles for the AKDE, PS recycle, and benchmark calcula-

FIG. 4. A comparison between benchmark calculation and ion-chamber
�CC13� data for three field sizes 3�3 cm2, 10�10 cm2, and 30�30 cm2:
�a� Transverse profiles. �b� Depth dose profiles. The relative uncertainty in
the high dose region for the Monte Carlo calculation was less than 1% in
each voxel.
FIG. 3. In-air fluence analysis for the original PS distribution and AKDE
generated distributions. Angular distributions and energy distributions were
generated using a 1 cm radius around the central axis. �a� Relative fluence
versus radii �cm�. �b� Central axis angular distribution as a function of angle
�degrees�. �c� Central axis energy distribution as a function of energy
tion for the three field sizes along with their percentage dose
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differences. The PS recycle and AKDE calculations used
100�106 particles as input in the patient-independent PS.
The PS calculation was recycled up to 100 times and AKDE
was used to generate up to 100 times more samples �starting
with 100�106 samples in the original PS� for these field
sizes. The agreement between AKDE and PS recycle with
respect to the benchmark result is within 2% and 2.5%, re-
spectively, in the high dose region for all the three field sizes.

FIG. 5. Transverse profiles showing PS recycling, AKDE, and a benchmark
benchmark calculation has been shown for three field sizes: �a� 3�3 cm2, �
region for both AKDE and PS calculations were less than 1.2% �3�3 cm2�
Larger differences are seen for AKDE in the penumbral re-
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gion, where the differences are 5% and 8% for 10�10 cm2

and 30�30 cm2, respectively, however, these differences are
well within 1 mm distance to agreement. The percentage
dose difference plot for a 10�10 cm2 field size shows that
PS recycle may introduce some level of systematic bias
when recycled many times. This is also the case for both
AKDE and PS recycle for the 3�3 cm2 field size. Central
axis depth dose curves were also extracted for these field

lation. % dose differences for PS recycling and AKDE with respect to the
�10 cm2, and �c� 30�30 cm2. The relative uncertainties in the high dose

% �10�10 cm2�, and 0.8% �30�30 cm2�.
calcu
b� 10
, 0.9
sizes, as shown in Fig. 6�a�. Figures 6�b� and 6�c� show
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percentage dose differences for PS recycle and AKDE with
respect to the benchmark calculation. The agreement for both
PS recycle and AKDE is at a maximum within 2%.

VI. CONCLUSION AND DISCUSSION

In this study we have implemented a nonparametric den-
sity estimation technique, the adaptive kernel density estima-
tor �AKDE� method, and have applied the method to Monte
Carlo-based treatment head simulation. AKDE was com-
pared to the original PS distribution by performing a corre-
lation analysis among the PS variables. Analysis shows that

FIG. 6. Depth dose comparisons for PS recycling and AKDE with respect to
the benchmark calculation. �a� The relative dose as a function of depth for a
3�3 cm2, 10�10 cm2, and 30�30 cm2 field size. �b� % dose difference
between the PS recycled run and the benchmark for a 3�3 cm2, 10
�10 cm, and 30�30 cm2 field size. �c� % dose difference between AKDE
and the benchmark for a 3�3 cm2, 10�10 cm2, and 30�30 cm2 field size.
although the variables have been sampled independently,
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first-order correlations among the phase space variables are
preserved. The in-air photon fluence distribution shows
agreement to within 2% �−8.8% to 6.8%� in comparison with
the original PS distribution, while central axis energy distri-
butions and angular distributions show agreement to within
1.5% �range=−1.5% to 6.6%� and 0.1% �range=0 to 3.0%�,
respectively. Dose profiles were also calculated for field
sizes: 3�3 cm2, 10�10 cm2 and 30�30 cm2 for AKDE
and compared with PS recycle and benchmark calculations.
AKDE shows agreement to within 2% /1 mm with respect to
the benchmark calculation. The AKDE method generates
samples “on the fly” with minimal time and memory require-
ments, and maintains correlations between the various PS
variables. As such, this method may provide an attractive
alternative to PS recycling.

AKDE may introduce some systematic bias if the initial
sample size is small, just as with PS recycle. The minimum
number needed in the phase space for AKDE calculations
would depend on the specific application. For the purpose of
this study, we have assumed that the minimum number
needed for AKDE is the same as needed for conventional
phase space recycling. In principle, the AKDE method may
require fewer phase space particles, but this has not been
examined for this paper. Similarly, there is no theoretical
limit to the upper bound of the number of AKDE samples,
but again we are taking a conservative stance and keeping
the upper bound consistent with the number of recycled his-
tories in order to compare the two methods. In this work all
dose calculations were performed using a fixed global band-
width for each phase space variable. The use of local band-
widths has not been explored here; however, we anticipate
that local bandwidths are likely to improve further the accu-
racy of AKDE.
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APPENDIX

1. MISE and optimum bandwidth for univariate
kernel density estimators

Given a set of observations x1 ,x2 , . . . ,xn, the univariate
kernel density estimator is written as

f̂�x� =
1

nh
�
i=1

n

K� x − xi

h
� , �A1�

and its corresponding MISE is defined by

MISE� f̂� = E	
−�

+�

� f̂�x� − f�x��2 dx , �A2�
where E�x� is the expectation value of x.
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Since the integrand is non-negative, the order of integra-
tion and expectation can be reversed. The optimum band-
width is determined by minimizing the MISE. Using the
definition of mean and variance, Eq. �A2� reduces to

MISE� f̂� = 	
−�

+�

�Ef̂�x� − f�x��2 dx + 	
−�

+�

var f̂�x�dx

= 	
−�

+�

bias2�x�dx + 	
−�

+�

var f̂�x�dx . �A3�

Using the expression of f̂�x�, the expectation and variance
can be written as

Ef̂�x� = 	
−�

+� 1

h
K� x − y

h
� f�y�dy

and

var f̂�x� =
1

n
	

−�

+� 1

h2K� x − y

h
�2

f�y�dy

−
1

n�1

h
	

−�

+�

K� x − y

h
� f�y�dy�2

, respectively.

�A4�

Substituting the above expressions in Eq. �A3� results in an
expression for MISE that still cannot be minimized since h is
inside the kernel function. However, assuming that the un-
known density f�x� has continuous derivatives of all orders
and the kernel K�x� is narrow enough, then along with Eq.
�2.2� the optimal h can be evaluated by making a linear
transformation y=x−ht and expanding f�x−ht� using Taylor
series. The expressions for bias and variance reduce to

bias�x� =
1

2
h2f��x�k2 + O�h3� 


1

2
h2f��x�k2 �A5�

and

var f̂�x� =
1

nh
f�x�	

−�

+�

K�t�2 dt + O�n−1�



1

nh
f�x�	

−�

+�

K�t�2 dt . �A6�

Thus the expression for MISE becomes

MISE� f̂� 

1

4
h4k2

2	
−�

+�

f��x�2 dx +
1

nh
	

−�

+�

K�t�2 dt . �A7�

Minimizing the above equation gives an expression for opti-
mum bandwidth as
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hopt = k2
−2/5�	

−�

+�

K�t�2 dt�1/5�	
−�

+�

f��x�2 dx�−1/5

n−1/5.

�A8�

2. Formulation of local bandwidths for the
adaptive kernel estimator

�1� Find a pilot estimate f̃�t� that satisfies f̂�xi��0 for all
i:

f̃�t� =
1

n
�
i=1

n

KH�t − xi� . �A9�

�2� Define local bandwidth factors �i by

�i = � f̂�xi�
g
�−�

, �A10�

where g is the geometric mean of f̂�xi�,

log g = n−1�
i=1

n

log f̂�xi� �A11�

and � is the sensitivity parameter that is 1 /d for d�1 and
1/2 for d=1, where d describes the dimension. It allows the
local bandwidth factors to depend on a power of the pilot
density and hence gives more flexibility to the method.

Then one can define the adaptive kernel estimator as fol-
lows:

f̂�t� =
1

n
�
i=1

n

KH�t − xi� ,

KH�xi� =
1

�2	�d/2�H�1/2 exp�−
1

2
xi

TH−1xi� ,

H = �� diag�h1
2,h2

2, . . . ,hd
2�,h1,h2, . . . ,hd � 0� . �A12�
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