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TheMethod of Momentsis generalized to predict the dose deposited by a prescribed source of
electrons in a homogeneous medium. The essence of this method is~i! to determine, directly from
the linear Boltzmann equation, the exact mean fluence, mean spatial displacements, and mean-
squared spatial displacements, as functions of energy; and~ii! to represent the fluence and dose
distributions accurately using this information. Unlike the Fermi–Eyges theory, the Method of
Moments is not limited to small-angle scattering and small angle of flight, nor does it require that
all electrons at any specified depthz have one specified energyE(z). The sole approximation in the
present application is that for each electron energyE, the scalar fluence is represented as a spatial
Gaussian, whose moments agree with those of the linear Boltzmann solution. Numerical compari-
sons with Monte Carlo calculations show that the Method of Moments yields expressions for the
depth-dose curve, radial dose profiles, and fluence that are significantly more accurate than those
provided by the Fermi–Eyges theory. ©1997 American Association of Physicists in Medicine.
@S0094-2405~97!00401-X#
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I. INTRODUCTION

The problem of calculating dose is of basic importance
radiation oncology. Exact dose calculations require the s
tion of a coupled system of linear transport equations,
obtain the fluences for electrons and photons. This is an
ceptionally difficult task, either from the mathematical or t
computational perspective. Thus, clinical dose calculation
gorithms typically rely on closed-form expressions that ha
their origins in analytic solutions of simplified problems, b
contain empirically derived corrections to account for inco
plete physics. This procedure yields clinical methods that
sufficiently fast for practical applications, but are limited
accuracy. In this paper, we present a newMethod of Mo-
mentsthat partially bridges the gap between the expens
transport-based methods and the approximate clin
methods.

Currently, many clinical dose calculation algorithms, su
as the pencil beam models proposed by Hogstromet al.,1

Brahme et al.,2 and Werner et al.,3 are based on the
Fermi–Eyges4,5 theory. This underlying theory relies on ap
proximations that commonly become invalid.

~i! Electrons are assumed to undergo onlysmall-angle
scatteringin their interactions with the atoms of the medium
However, the neglect of large-angle scattering has a sig
cant effect on the calculated dose distributions.6

~ii! Electrons are assumed to form a nearly monodir
tional beam, i.e., to have asmall angle of flight. At best, this
is valid only for small energy loss~small depths!. For large
111 Med. Phys. 24 (1), January 1997 0094-2405/97/24(1
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depths, electrons have undergone many collisions, and m
have strayed far from their original direction of flight.

~iii! At any depthz, all electrons are assumed to have
specified energyE(z). This is consistent with the approxi
mations of small angle of flight and Continuous Slowin
Down ~CSDA! energy loss. However, these approximatio
neglect electron straggling, incorrectly equate pathlen
with depth, and neglect large discrete energy loss due
secondary electron production~ionization!.

In addition to these three basic assumptions, if one in
grates the Fermi–Eyges solution over the spatial variab
transverse to the direction of the beam, one obtains a c
stant, independent of depth. Thus, the Fermi–Eyges the
incorrectly equates the fluence with the planar fluence, s
cannot yield even qualitatively accurate depth dose curv

For these reasons, the Fermi–Eyges solution is not
rectly used~without modification!in pencil beam models for
clinical treatment planning. Typically, measured depth do
and other factors, some of which account for spatial inhom
geneities, are included to attempt to improve the accurac
the overall solution. These improvements suffice for ma
applications, but not for others.

The pencil beam model and the underlying Fermi–Eyg
theory have been studied extensively by many resea
ers.7–10 Jette and Bielajew,11 Storchi and Huizenga,12 and
Bruinvis et al.13 proposed ideas to deal with some of th
limitations of the Fermi–Eyges theory. Shiu and Hogstrom14

proposed the Pencil Beam Redefinition model, and
111)/111/15/$10.00 © 1997 Am. Assoc. Phys. Med.
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112 Larsen et al. : Electron dose calculations 112
et al.15 proposed the multi-ray model. These models are
provements over the pencil beam model, but they still use
Fermi–Eyges small-angle scattering theory.

A transport-basedphase space evolutionmodel, proposed
by Huizenga and Storchi,16 yields accurate dose calculation
in a reasonable time for broad electron beams. Monte C
methods have also been used for many years to simu
electron transport. Recent advances in computer hardw
and in Monte Carlo algorithm development, such as
macro Monte Carlo method,17 are making Monte Carlo
closer to a clinical treatment planning tool.

In this paper, we present an alternativeMethod of Mo-
ments~MM! for electron dose calculations in a homogeneo
medium. This new method is based on the physically cor
linear transport~or ‘‘Boltzmann’’! equation. It generalizes
earlier work ~1950–1959! by Lewis,18 Spencer, Fano
et al.,19–22and Kessaris.23 The Method of Moments has bee
used in the nuclear engineering community to pred
gamma-ray and neutron penetration in shields24 and radiation
damage in solids.25 In this paper, we present the Method
Moments as an approximate electron dose calculation a
rithm that overcomes the approximations of the Ferm
Eyges theory listed above, and that is less computation
intensive than algorithms based on the direct solution of
transport equation.

The Method of Moments in this paper consists of tw
parts.

~1! The exact space-angle moments of the fluence are
culated directly from the underlying transport equation.~See
Appendix B. This procedure is algebraically equivalent
earlier work on the Method of Moments.18–25!

~2! The spatial moments of the fluence are used to re
sent accurately the scalar fluence and the dose.~See Sec. II.
We use a Gaussian spatial dependence for the fluence, u
earlier work, which used non-Gaussian expansions.!

We show that with energy loss described by CSDA,
space-angle moments of the fluence can be obtained a
plicit functions of electron energyE. If CSDA is not valid,
the space-angle moments are the solution of a system
simple Volterra integral equations. In either case, the m
fluence, mean spatial displacements, and mean-squared
tial displacements are obtained explicitly in terms of the s
tial moments of the fluence. Any computational steps nee
to calculate the dose are simple and inexpensive. The
approximation in this paper is that for eachE, the scalar
~angle-integrated!fluence is represented as a Gaussian fu
tion of the spatial coordinates, with energy-dependent am
tude, mean spatial displacements, and mean-squared s
displacements, that are chosen to be equal to those o
transport solution.

The Method of Moments developed in this paper is co
ceptually the simplest in a hierarchy of approximations t
would involve the calculation of higher-order spatial m
ments of the fluence and involve expressions that are m
elaborate than a simple Gaussian. Nevertheless, for the
plest case of an initially monoenergetic, monodirectio
beam with CSDA energy dependence~no secondary elec
trons!, we show the following.
Medical Physics, Vol. 24, No. 1, January 1997
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~1! Numerical comparisons of~i! the Method of Moments
~MM! approximation of the dose,~ii! the Fermi–Eyges ap
proximation, and~iii! Monte Carlo results in water, show
that the MM expression gives reasonably accurate ra
dose profiles and depth dose curves. Also, the MM res
are more accurate than the Fermi–Eyges results, particu
for electrons at large depths.

~2! The angle-integrated MM solution satisfies a dri
diffusion equation with coefficients that depend onE @see
Eq. ~D1!#. If small-angle scattering and small angular defle
tions are assumed, then this MM drift-diffusion equation
duces to the drift-diffusion equation satisfied by the Ferm
Eyges solution. For large angular deflections, the MM dr
diffusion equation reduces to the Fermi–Age equation.26

An alternative derivation of some of the results in th
paper, based on a stochastic model for electron transport
recently been given.27 This stochastic model assumes th
electrons lose their energy continuously as a function
pathlength, and change their direction at discrete ‘‘co
sions’’ without losing any energy. The results of this analy
are identical to the results obtained here for electron tra
port with CSDA and no large-angle scattering. That is,
two results are identical for problems in which the stand
Fokker–Planck approximation is valid.

The remainder of this paper is organized as follows.
Sec. II we describe the special ‘‘Boltzmann–CSD’’ transp
problem and its explicit MM solution. In Sec. III we numer
cally compare the Method of Moments, Fermi–Eyges, a
Monte Carlo solutions for 10 and 20 MeV pencil beam pro
lems. In Sec. IV we discuss our analytic and numerical
sults, and the relation between the Method of Moments
other schemes that perform electron dose calculations m
accurately than the Fermi–Eyges theory.

Finally, in a set of Appendices we present the mathem
cal derivation of the Method of Moments. In Appendix A
we describe the Linear Boltzmann, Fokker–Planck, Bo
mann–Fokker–Planck, and Boltzmann–CSD Equatio
each of which has been used to model electron transpor
Appendix B we derive the MM equations that determi
space-angle moments of the fluence for each of these e
tron transport models. In Appendix C we obtain the M
system of first-order ordinary differential equations for t
Boltzmann–CSD equation.~The explicit solutions of these
equations are given in Sec. II.! In Appendix D, we demon-
strate the connection between the MM–Boltzmann–CSD
lution, the Fermi–Eyges solution, and the Fermi–Age so
tions.

II. STATEMENT OF THE PROBLEM AND THE
METHOD OF MOMENTS SOLUTION

We will now describe the MM solution for an electro
transport problem with large-angle scattering and CSD
ergy dependence. This is probably the most physically re
istic situation for which the space-angle moments of the
ence can be obtained in closed form.~In the Appendices, we
describe how to treat more realistic problems, but we will n
consider these further in this paper.!
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113 Larsen et al. : Electron dose calculations 113
The ‘‘Boltzmann–CSD’’~BCSD! transport equation with
a point, monoenergetic, monodirectional source in an infin
homogeneous medium is

V–“F~r,V,E!1S t~E!F~r,V,E!

5E
4p
dV8 Ss~E,V–V8!F~r,V8,E!1

]

]E
S~E!

3F~r,V,E!1
Q0

2p
d~r !d~m21!d~E2E0!. ~1!

Here, r5( x,y,z)5(x1 ,x2 ,x3) is the spatial variable,V
5 (A12m2 cosf,A12m2 sinf,m) 5 (V1,V2,V3) is the an-
gular variable,E is energy,F~r,V,E! is the fluence,S(E) is
the stopping power,S t(E) is the total cross section
Ss(E,m0) is the differential scattering cross sectio
m05V8–V5cosu0, with u0 the scattering angle,Q0 is the
amplitude of the point source, andd is the Dirac delta func-
tion. The differential scattering cross section has the exp
sion

Ss~E,m0!5 (
n50

`
2n11

4p
Ssn~E!Pn~m0!, ~2!

wherePn~m0! is the nth Legendre polynomial. The expan
sion coefficientsSsn in Eq. ~2! are defined in terms ofSs by

Ssn~E!52pE
21

1

dm0Pn~m0!Ss~E,m0!, n>0. ~3!

For electron transport, one has

S t~E!5Ss0~E! ~no absorption!, ~4!

T~E![2@Ss0~E!2Ss1~E!#5scattering power. ~5!

To describe the MM solution, let us define the infinit
medium space-angle integration operator,

^F&~E![E d3r E d2VF~r ,V,E!. ~6!

Also, let us define the functions

San~E![Ss0~E!2Ssn~E!,
~7!

f n~E![E
E

E0
dE8

San~E8!

S~E8!
, n51,2.

Then T(E)52Sa1(E). Manipulating Eqs.~1!–~7!, as de-
scribed in Appendices B and C, we obtain the followi
closed-form results for 0,E,E0 :

^F&~E!5
Q0

S~E!
, ~8!

^mF&~E!5^F&~E!e2 f1~E!, ~9!

^zF&~E!5
1

S~E!
E
E

E0
dE8^mF&~E8!, ~10!

^m2F&~E!5
1

3
^F&~E!~112e2 f2~E!!, ~11!
Medical Physics, Vol. 24, No. 1, January 1997
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^x cosfA12m2F&~E!5
e2 f1~E!

2S~E!
E
E

E0
dE8@^F&~E8!

2^m2F&~E8!#ef1~E8!, ~12!

^x2F&~E!5^y2F&~E!

5
2

S~E!
E
E

E0
dE8^A12m2~cosf!xF&~E8!,

~13!

^mzF&~E!5
e2 f1~E!

S~E!
E
E

E0
dE8^m2F&~E8!ef1~E8!, ~14!

^z2F&~E!5
2

S~E!
E
E

E0
dE8^mzF&~E8!. ~15!

Also,

^xF&~E!5^yF&~E!5^xyF&~E!5^yzF&~E!

5^xzF&~E!5^zxF&~E!50.

The mean particle displacements are defined by

x̄~E![
^xF&~E!

^F&~E!
50, ~16!

ȳ~E![
^yF&~E!

^F&~E!
50, ~17!

z̄~E![
^zF&~E!

^F&~E!
5E

E

E0
dE8

e2 f1~E8!

S~E8!
. ~18!

Thus, the mean particle motion is along thez axis. AsE
decreases fromE0 to 0, z̄(E) increases from 0 to a finite
value, which is less than the electron range unlessT50. Of
course, individual electrons may increasingly stray from t
mean position asE decreases. Therefore, the variances
particle positions should all increase asE decreases.

These variances are defined by

sx
2~E!5sy

2~E!5
^x2F&~E!

^F&~E!
[s r

2~E!, ~19!

sz
2~E!5

^@z2 z̄~E!#2F&~E!

^F&~E!
5

^z2F&~E!

^F&~E!
2S ^zF&~E!

^F&~E! D 2,
~20!

with sxy(E)5syz(E)5szx(E)50.
In Eqs. 16–20, the mean particle displacements and v

ances for eachE are explicitly given in terms of the spatia
momentŝ F&(E), ^xF&(E), ^x2F&(E), and^z2F&(E).

Now let us define the functionF~r,E ! as

F~r,E![^F&~E!F 1

2ps r
2~E!

expS 2
x21y2

2s r
2~E!D G

3F 1

A2psz~E!
expS 2

@z2 z̄~E!#2

2sz
2~E! D G . ~21!

We have

E d3r F ~r ,E!5^F&~E!, ~22!
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E d3r zF~r ,E!5^zF&~E!, ~23!

E d3r x2F~r ,E!5E d3r y2F~r ,E!5^x2F&~E!, ~24!

E d3r z2F~r ,E!5^z2F&~E!, ~25!

and

E d3r xF~r ,E!

5E d3r yF~r ,E!

5E d3r xyF~r ,E!

5E d3r yzF~r ,E!5E d3r zxF~r ,E!50. ~26!

Thus,F~r,E ! is a Gaussian inr, whose energy-dependen
mean value, mean spatial displacements, and mean-squ
spatial displacements agree exactly with those of the an
larly integrated solution of Eq.~1!, for all E. We now ap-
proximate the true angularly integrated fluence byF~r,E !
and obtain the following approximation for the dose:

D~r !5
1

r E
0

E0
dE S~E!F~r ,E!. ~27!

The depth-dose curvefor an infinitely broad beam is de
fined by

D`~z![E
2`

`

dxE
2`

`

dy D~r !5
1

r E
0

E0
dE S~E!F`~z,E!,

~28!

where

F`~z,E![E
2`

`

dxE
2`

`

dy F~r ,E!

5
^F&~E!

A2psx~E!
expS 2

@z2 z̄~E!#2

2sx
2~E! D . ~29!

The radial dose profileis defined by

Drp~x,y,z!5
D~x,y,z!

D~0,0,z!
. ~30!

Equations~8!–~21! and~27! describe the MM solution of
Eq. ~1!. Next, we shall compare numerically the MM
BCSD, MM–Fokker–Planck, Fermi–Eyges, and Mon
Carlo depth-dose and radial dose profiles for two elect
pencil beam problems. We show in Appendix D that t
MM–Fokker–Planck result is obtained from the results
this section by setting

Sa2~E!53Sa1~E!5 3
2T~E!. ~31!
Medical Physics, Vol. 24, No. 1, January 1997
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III. RESULTS

Here we consider 10 and 20 MeV electron pencil bea
normally incident on a water phantom. We simulated the
problems four ways:~i! the Method of Moments applied to
the Boltzmann–CSD equation;~ii! the Method of Moments
applied to the Fokker–Planck approximation to the Bol
mann–CSD equation~in which large-angle scattering is ne
glected!;~iii! the Fermi–Eyges~FE!method; and~iv! Monte
Carlo, using theEGS4code28 with thePRESTAalgorithm.29 In
our Monte Carlo simulations we used 106 electrons, the CSD
approximation~no secondary electrons! with the unrestricted
collision stopping power, and energy cutoffs set to A
5ECUT50.521 MeV and AP5PCUT50.01 MeV. To per-
form the MM and Fermi–Eyges calculations, we used a
of multigroup cross sections generated by the CEP
code.30 Because of this multigroup approximation, there a
discrepencies between the MM and EGS calculations. H
ever, these discrepencies are slight.

Figures 1 and 2 show the broad-beam depth doses
defined by Eqs.~28!and~29!, for the MM–BCSD, the MM–
FP, and theEGS4simulations. We see that the shapes of t
two MM simulations are globally correct. The difference
between the Monte Carlo and the MM–BCSD results are
to the assumption of a spatial Gaussian, while the differen
between the Monte Carlo and the MM–FP results are du
the spatial Gaussian assumptionand the small angle of scat
tering approximation. For these problems, the omission
large-angle scattering in the MM–FP simulation leads to
error in the depth–dose distribution that is approximat
double that of the MM–BCSD simulation.

Actually, there is a second error in the MM–BCSD an
MM–FP simulations. The Method of Moments developed
this paper strictly holds for an infinite homogeneous m
dium. However, here we have applied this method to
problem of a pencil beam normally incident on a sem
infinite water phantom. We have done this by approximat
the semi-infinite phantom by an infinite phantom with

FIG. 1. Depth dose curve for a broad 10 MeV electron beam.
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115 Larsen et al. : Electron dose calculations 115
monodirectional point source, and applying the Method
Moments to the latter problem. Since virtually none of t
radiation backscatters out of the semi-infinite half-spacez.0
the error resulting from approximating the semi-infin
phantom by an infinite phantom is negligible~much less than
1%!.

In Figs. 3 and 4, radial dose profiles are plotted from
MM–BCSD, Fermi–Eyges, andEGS4 simulations at differ-
ent depths. Near the central axis, the MM–BCSD a
Fermi–Eyges profiles are remarkably similar. Away from t
central axis, the MM–BCSD results are consistently grea
than the Fermi–Eyges results, and agree with the Mo
Carlo results over a larger range. The MM–FP profiles
very similar to the other profiles near the central axis; aw
from the central axis, they are closer to the MM–BCSD
sults than to the Fermi–Eyges results.

In Figs. 5 and 6, we plot as functions of the electr

FIG. 2. Depth dose curve for a broad 20 MeV electron beam.

FIG. 3. Radial dose profiles for a 10 MeV electron pencil beam.
Medical Physics, Vol. 24, No. 1, January 1997
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energyE z̄(E),s r(E),sz(E) @see Eq.~21!#, and the mean
cosine of the angle of flight, defined as

m̄~E![
^mF&~E!

^F&~E!
5expS 2E

E

E0
dE8

T~E8!

2S~E8! D , ~32!

for the 10 and 20 MeV BCSD pencil beams. These pl
show thatm̄(E) deviates significantly from its initial value
~u50, m̄51! as the electrons lose energy. Thus, over a s
stantial range of the electron energies, the small angle
flight assumption of the Fermi–Eyges approximation is
valid. Also, as the electrons lose energy,sz(E), s r(E), and
z̄(E) monotonically increase, withsz(E),s r(E)! z̄(E).
Thus, the electrons are clustered around their mean pos
~on the central axis!, with average deviationssz(E), s r(E)
from this mean position that grow with energy loss, but th
remain small compared to the mean electron depthz̄(E).

FIG. 4. Radial dose profiles for a 20 MeV electron pencil beam.

FIG. 5. We seesr , sz , z̄, andm̄ for a 10 MeV electron pencil beam~BCSD
equation!.
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In Fig. 7, we plot theaspect ratiosz(E)/s r(E), for the
BCSD and FP solutions of the 20 MeV beam problem. H
we see a significant difference between the two solutions:
aspect ratio of the BCSD simulation increases from 0.27
20 MeV to 0.49 for 0 MeV, while the FP approximatio
produces an aspect ratio of 0 for 20 MeV, increasing to 0
for 0 MeV. The aspect ratios of the 10 MeV beam are sim
and are not shown for brevity.

Thus, in the FP simulations, electrons with specific en
giesE'E0 are distributed in an exceedingly narrow interv
in z around the mean depthz̄(E). ~This is consistent with the
Fermi–Eyges picture, in which all electrons at a specific
ergy E exist at asingle depth z.! However, in the BCSD
solution,sz does not become arbitrarily small in comparis

FIG. 6. We seesr , sz , z̄, andm̄ for a 20 MeV electron pencil beam~BCSD
equation!.

FIG. 7. The aspect ratios r /sz for a 20 MeV electron pencil beam~BCSD
and FP equations!.
Medical Physics, Vol. 24, No. 1, January 1997
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to sr . Thus, while the mean displacementsz̄(E) of the FP
and BCSD solutions are identical, the presence of lar
angle scattering in the BCSD equation creates a fundam
tally different picture of electron positionsabout this mean
displacement forE'E0 .

However, these differences may have little conseque
in dose calculations; they are most significant for small
ergy loss and small depths, where the pencil beam is exc
ingly narrow, and where the dose is likely to be deposited
the same voxel regardless of whether one uses the FP o
BCSD equation to describe the electron transport.

In Fig. 8, we plot data corresponding to various solutio
for the 20 MeV pencil beam at 15, 10, 6, and 0 MeV. For t
MM–BCSD and MM–FP solutions we plot ellipses, who
centers are at the pointsz̄(E), with minor axessz(E) and
major axess r(E); electrons that lie in these ellipses are le
than one standard deviation away from the mean displa
ment. The Fermi–Eyges solution yields vertical line se
ments, since in this theory all electrons at a specified ene
exist at a single depth.

For small energy losses, the three methods all locate
electrons in roughly the same spatial region. For large ene
losses, the Fermi–Eyges solution is exceedingly inaccur
it places the electrons much deeper inside the phantom
they should be, and the assumptionE5E(z) is noticeably
incorrect. The FP data for large energy loss is much close
the BCSD data; the mean displacements of the two solut
are identical~as they should be; see Appendix C!, and the
mean-squared displacements agree to within about 10%

In Figs. 9 and 10, we plot the data of Fig. 8 for th
MM–BCSD and Fermi–Eyges solutions, together w
Monte Carlo results~500 electrons!, for the 10 and 20 Me
pencil beams. Slight discrepencies exist in the mean de
and variances between the EGS and the MM–BCSD res
due to the approximate multigroup cross sections used in

FIG. 8. Spatial distribution of electrons from a 20 MeV pencil beam~MM–
BCSD, MM–FP, and FE solutions!.
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117 Larsen et al. : Electron dose calculations 117
Method of Moments, and the continuous energy-depend
cross sections used in EGS. Nevertheless, these figures
firm that the MM–BCSD description of the fluence is mu
more physically realistic than the Fermi–Eyges solutio
Also, Figs. 9 and 10 show that the spatial-Gaussian appr
mation made in this paper is not exact; the level curves of
scalar fluence are ‘‘umbrella shaped’’ around the mean
placements, rather than elliptically shaped. Thus, a suita
non-Gaussian ansatz could produce more accurate resu

IV. DISCUSSION

We have presented the Method of Moments for calcu
ing the dose due to a prescribed source of electrons

FIG. 9. Spatial distribution of electrons from a 10 MeV pencil beam~MM–
BCSD, FE, andEGS4solutions!.

FIG. 10. Spatial distribution of electrons from a 20 MeV pencil beam~MM–
BCSD, FE, andEGS4solutions!.
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homogeneous medium. This method is based on manipu
ing the costly-to-solve linear transport equation for the fl
ence into an easily solvable system of equations for
space-angle moments of the fluence. After the low-order s
tial moments are determined, we represent the fluence
spatial Gaussian with the same mean displacements and
ances as the transport solution, and we use this approx
tion to calculate the dose. The Method of Moments does
require the small angle of scattering, small angle of flight,
E5E(z) assumptions that are necessary for the Ferm
Eyges theory. Our sole approximation is that for each ene
E, the scalar fluence is represented as a Gaussian inr.

For small depths, the radial dose distribution of a pen
beam from the Gaussian model based on the Fermi–Ey
theory overestimates the dose at small radii and under
mates the dose at large radii. This is because the Fer
Eyges model does not account for the few important lar
angle scattering events. For large depths, where large-a
scattering events are relatively less important, the Ferm
Eyges distribution overestimates the dose because the m
incorrectly equates pathlength with depth.

The theory presented in this paper provides an answe
the question: What is the limit of accuracy of the Gauss
model for electron transport? That is, if one were able
determine the best possible Gaussian fit to the electron
ence, how accurately could one model the fluence and
culate the dose? We assert that the best Gaussian fit is
that, for each energyE, has mean spatial displacements a
variances that are identical to those of the exact Boltzm
solution. This is precisely the MM approximation develop
in this paper.

To understand how the Method of Moments solution
lates to other schemes, such as the Phase Space Evo
~PSE!model16 or the Pencil Beam Redefinition model,14 it is
necessary to explain the concepts that underline e
method. The PSE model is a kind of deterministic version
Monte Carlo—it simulates the transport process by, in effe
discretizing the transport equation on a grid and then solv
the discretized equations. In principle, the limit of the PS
solution for an infinite number of~space, angle, and energy!
grid points should be equal to the limit of the Monte Car
solution for an infinite number of histories. Because t
Monte Carlo and PSE methods are based on a direct sim
tion of the underlying transport equation, they are compu
tionally intensive and costly, compared to other approxim
methods that do not directly simulate the transport equat

The Pencil Beam1 ~PB! and Pencil Beam Redefinition14

~PBR! methods are such approximate schemes. They
based on the exact analytic solution of a simplified transp
equation~the Fermi–Eyges equation!and contain correction
factors that attempt to improve their accuracy. Thus, th
schemes require the evaluation of analytic expressions ra
than the solution of a transport equation.~What transport
physics there is, is built into the analytic expressions.! For
this reason, the PB and PBR schemes are much more c
putationally efficient than the Monte Carlo or PSE schem
But, because they are based on a fundamentally less-acc



ra

s
n
e
M
cr
M

if
r o
-
la
io
rre

b
rd

u
as
he

s
a
-
e,
os

m
on
ra
ca
on
s
cr
flu
q
e

i
er
a
ge
lo

o
a
d
e
e
ay
p

s-
an-

.

her
e-
lec-

. II,
-
y in

-
ag-
tical
c-
es
on
tion
ngle

118 Larsen et al. : Electron dose calculations 118
set of equations, they provide fundamentally less-accu
solutions.

The Method of Moments~MM! presented in this paper i
a compromise between the computationally intensive Mo
Carlo and PSE methods, and the simpler PB and BPR m
ods. Like the Monte Carlo and PSE methods, the M
scheme uses a transport equation as its underlying des
tion of the physical process. Like the PB schemes, the M
scheme yields an analytic expression, not a large system
discretized equations that must be solved on a grid.

The MM solution is exact only in the following sense:
one were to obtain the PSE solution for an infinite numbe
grid points or the Monte Carlo solution for an infinite num
ber of histories, and if for each energy one were to calcu
the zeroth, first, and second spatial moments of the solut
then these moments would agree exactly with the co
sponding spatial moments of the MM solution.

The Method of Moments described in this paper can
generalized in several ways. One can calculate higher-o
moments ofF and construct more elaborate~and, presum-
ably, more accurate! non-Gaussian representations of the fl
ence. For example, Laxet al. have represented the dose
the sum of three Gaussians, but the parameters in t
Gaussians were derived by Monte Carlo simulations.6 Also,
Jette’s second-order approximation to the Fokker–Planck
lution consists of the Fermi–Eyges solution multiplied by
polynomial.11 It is possible that by calculating higher mo
ments ofF and using the functional forms of Lax or Jett
one can significantly improve upon the estimate of the d
that one can obtain from a simple Gaussian.

One can also apply the Method of Moments to proble
containing ionization, bremsstrahlung, and pair producti
The extra difficulty is that numerical solutions of Volter
integral equations must be calculated. In addition, one
apply the method to coupled systems of transport equati
For example, the dose deposition due to photon beam
determined by a system of transport equations, one des
ing the photon fluence, another describing the electron
ence. The calculation of space-angle moments of these e
tions will apply for that problem, just as it does for th
simpler electron problem treated in this paper.

As presented in this paper, the Method of Moments
applicable only in infinite homogeneous media. Howev
planar inhomogeneities can be treated by a related theory
the Method of Moments can be extended to include lar
energy loss scattering. This work is presently under deve
ment.

It is not clear whether these generalizations of the Meth
of Moments will produce a method that, without empiric
corrections, is sufficiently fast and accurate for three-
mensional~3-D! treatment planning. If the resulting schem
contains enough transport physics, depends weakly on
pirical corrections, and is computationally efficient, it m
suffice for clinical applications. However, such develo
ments must await further study.
Medical Physics, Vol. 24, No. 1, January 1997
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APPENDIX A: THE LINEAR BOLTZMANN,
FOKKER–PLANCK,
BOLTZMANN–FOKKER–PLANCK, AND
BOLTZMANN–CSD EQUATIONS

Here we describe the linear Boltzmann equation, toget
with three of its approximations, for a homogeneous m
dium. All of these equations have been used to model e
tron transport.

First, the linear Boltzmann~B! equation for electron
transport in a homogeneous medium is given by

V–“F~r,V,E!5LBF~r,V,E!1Q~r,V,E!, ~A1!

where the Boltzmann scattering operatorLB is defined as
32,33

LBF~V,E!5E
E

`

dE8E
4p
d2V8 Ss~E8→E,V8–V!

3F~V8,E8!2S t~E!F~V,E!. ~A2!

The symbols in these equations are defined earlier in Sec
except forSs(E8→E,m0)5differential scattering cross sec
tion. We have assumed that electrons only lose energ
collisions, soSs(E8→E,m0)50 for E8,E.

Equations~A1! and~A2! provide a very accurate descrip
tion of electron transport in the absence of electric and m
netic fields. These equations are the underlying mathema
model for Monte Carlo and deterministic simulations of ele
tron transport. In this model, electrons travel in straight lin
with no energy loses between collisions. At the collisi
points, the electrons undergo discrete changes in direc
and energy. For electrons, the mean-free path, and the a
and energy change per collision are usually very small.

The differential scattering cross sectionSs has the Leg-
endre polynomial expansion

Ss~E8→E,m0!5 (
n50

`
2n11

4p
Ssn~E8→E!Pn~m0!, ~A3!

where the expansion coefficientsSsn in Eq. ~A3! are defined
in terms ofSs by

Ssn~E8→E!52pE
21

1

dm0 Pn~m0!Ss~E8→E,m0!. ~A4!

We also define

S̄sn~E![E
0

E

dE8 Ssn~E→E8!, n>0. ~A5!

For electron transport, one has

S t~E!5S̄s0~E! ~no absorption!, ~A6!

T~E![2@S̄s0~E!2S̄s1~E!#5scattering power, ~A7!
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S~E![E
0

E

dE8~E2E8!Ss0~E→E8!5stopping power.

~A8!

Because of the small-angle scattering and small energy
the functionsSsn(E8→E) are sharply peaked nearE85E,
and the expansion in Eq.~A3! requires a large number o
terms to achieve acceptable accuracy.

The Fokker–Planck~FP! approximation to Eq.~A1! is

V–“F~r,V,E!5LFPF~r,V,E!1Q~r,V,E!, ~A9!

where the Fokker–Planck scattering operatorLFP is defined
as32,33

LFPF~V,E![
T~E!

4 F ]

]m
~12m2!

]

]m

1
1

12m2

]2

]f2GF~V,E!

1
]

]E
S~E!F~V,E!. ~A10!

A classic derivation of the FP equation is given
Chandrasekhar.32 Also, Pomraning33 has shown that Eqs
~A9! and ~A10! can be derived from Eqs.~A1! and ~A2! in
an asymptotic limit in which large-angle scattering and la
energy-loss scattering are negligible. HereLFP is a much
simpler operator thanLB , but Chandrasekhar’s and Pomra
ing’s analyses both show thatLFPomits large-angle and larg
energy-loss scattering. Equation~A10! describes a scatterin
process in which electrons simultaneously lose energy
change their direction of flight continuously as functions
pathlength.

The Boltzmann–CSD~BCSD!approximation to Eq.~A1!
is

V–“F~r,V,E!5LBCSDF~r,V,E!1Q~r,V,E!, ~A11!

whereLBCSD is defined as

LBCSDF~V,E!5E
4p
dV8 Ss~E,V–V8!F~V8,E!

2S t~E!F~V,E!1
]

]E
S~E!F~V,E!,

~A12!

with

Ss~E,m0![E
0

E

dE8 Ss~E→E8,m0!. ~A13!

In the BCSD model, electrons travel in straight lines betwe
scattering events, at which their direction of flight chang
discretely. This aspect of the model is physically corre
However, electrons lose energy continuously as a functio
pathlength, and this is approximate. The advantage of
BCSD model over the FP model is that it permits large-an
scattering.

The Boltzmann–Fokker–Planck~BFP! approximation to
Eq. ~A1! is
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ss,

e

d
f

n
s
t.
of
e
e

V–“F~r,V,E!5LBFPF~r,V,E!1Q~r,V,E!, ~A14!

where LBFP, the BFP scattering operator, contains bo
Boltzmann-like and Fokker–Planck-like scatterin
terms.34,35

LBFPF~V,E!5E
E850

`

dE8E
4p
d2V8 ss~E8→E,V8–V!

3F~V8,E8!2s t~E!F~V,E!1
t~E!

4

3S ]

]m
~12m2!

]

]m
1

1

12m2

]2

]f2D
3F~V,E!1

]

]E
s~E!F~V,E!. ~A15!

In practical applications, the decomposition ofSs andSt into
ss , st , t, and s is nonunique, but the concept is for th
Boltzmann-like terms~ss andst! to describe large-angle an
large energy-loss scattering, and the Fokker–Planck-
terms~t ands! to describe small-angle and small energy-lo
scattering. The advantage of this description is that it ma
the kernelss(E8→E,m0) a less sharply peaked function o
E andm0 thanSs(E8→E,m0), and hence easier to simula
numerically.

In Appendix B, we develop the Method of Moments fo
the BFP scattering operator because it includes theB, FP,
and BCSD scattering operators as special cases.@If one sets
t5s50,ss5Ss , ands t5S t , then Eq.~A15! reduces to Eq.
~A2!. If one setsss5s t50, t5T, ands5S, then Eq.~A15!
reduces to Eq.~A10!. If one setst50, s5S, s t5S t , and
ss(E8→E,m0)5d(E82E)Ss(E8,m0), then Eq. ~A15! re-
duces to Eq.~A12!.#

We make the standard assumptions thatss and st are
related by the analogs of Eqs.~A3!–~A6!, i.e.,

ss~E8→E,m0!5 (
n50

`
2n11

4p
ssn~E8→E!Pn~m0!,

~A16!

ssn~E8→E!52pE
0

`

dm0 Pn~m0!ss~E8→E,m0!,

~A17!

ssn~E![E
0

E

dE8 ssn~E→E8!, n>0, ~A18!

s t~E!5ss0~E!. ~A19!

Finally, we make use of special properties of the spher
harmonic functionsYn,m~V!. These functions are define
by36,37

Yn,m~V!5an,mPn,umu~m!eimf, 0<umu<n, ~A20!

wherePn,m~m! are the associated Legendre functions, an

an,m5S 2n11

4p

~n2umu!!
~n1umu!! D

1/2

. ~A21!
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HereYn,m satisfy the orthogonality condition

E
4p
d2V Yn,m* ~V!Yp,q~V!5dn,pdm,q , ~A22!

the differential equation

S ]

]m
~12m2!

]

]m
1

1

12m2

]2

]f2DYn,m~V!

52n~n11!Yn,m~V!, ~A23!

and theaddition theorem,

Pk~V–V8!5
4p

2k11 (
j52k

k

Yk,j* ~V8!Yk,j~V!, ~A24!

wherePk~m! is thekth Legendre polynomial. Also37 ~see the
Introduction for the definition ofVi! note the following.

~i! The function f ~V!51 is proportional toY0,0~V!.
~A25!
ra

te
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~ii! For 1< i<3, the functions f i~V!5V i are linear

combinations of spherical harmonic functions of

order unity ~Y1,m for 21<m<1!. ~A26!

~iii! For 1< i , j<3, the functions f i j ~V!53V iV j2d i j

are linear combinations of spherical harmonic

functions of order two~Y2,m for 22<m<2!.

~A27!

APPENDIX B: CALCULATION OF THE
SPACE-ANGLE MOMENTS OF THE FLUENCE

To derive equations for the space-angle moments ofF,
we first multiply the BFP equation~A14! by an arbitrary
spherical harmonic functionYn,m~V! and integrate overV.
We obtain
E
4p
d2V Yn,m~V!V–“F~r,V,E!5E

E

`

dE8E
4p
d2VF E

4p
d2V8 Yn,m~V8!ss~E8→E,V8–V!GF~r ,V,E8!2s t~E!

3S E
4p
d2V Yn,m~V!F~r ,V,E! D 1

t~E!

4 E
4p
d2V F~r ,V,E!S ]

]m
~12m2!

]

]m

1
1

12m2

]2

]f2DYn,m~V!1
]

]E
s~E!S E

4p
d2V Yn,m~V!F~r ,V,E! D

1S E
4p
d2V Yn,m~V!Q~r ,V,E! D . ~B1!
In the first term on the right we have interchanged integ
tions overV andV8 and have then replacedV8 by V and
vice versa. In the third term on the right, we have integra
by parts.

Equations~A16!, ~A22!, and~A24! now imply

E
4p
d2V8 Yn,m~V8!ss~E8→E,V8–V!

5 (
k50

`
2k11

4p
ssk~E8→E!E

4p
d2V8

3Yn,m~V8!Pk~V–V8!

5 (
k50

`
2k11

4p
ssk~E8→E!S 4p

2k11
Yk,m~V!dknD

5ssn~E8→E!Yn,m~V!. ~B2!

Using this result and Eq.~A23!, we may write Eq.~B1! as
-

d
E
4p
d2V Yn,m~V!V–“F~r,V,E!

1LnS E
4p
d2V Yn,m~V!F~r,V,E! D

5S E
4p
d2V Yn,m~V!Q~r,V,E! D . ~B3!

HereLn are reducedscattering operators, acting only onE,
defined by

LnF~E![2
]

]E
s~E!F~E!1S s t~E!1

t~E!

4
n~n11! D

3F~E!2E
E

`

dE8 ssn~E8→E!F~E8!. ~B4!

The operatorsLn can beinverted @the solutionf (E) of the
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equationLnf (E)5g(E) exists#under very mild conditions
on s, st , t, andssn that are satisfied in practical application

Equations~B3! and ~A25! now imply

E
4p
d2V V–“F~r,V,E!1L0S E

4p
d2V F~r ,V,E! D

5S E
4p
d2V Q~r ,V,E! D . ~B5!

For 1<i<3, Eqs.~B3! and ~A26! imply

E
4p
d2V V iV–“F~r,V,E!

1L1S E
4p
d2V V iF~r ,V,E! D

5S E
4p
d2V V iQ~r ,V,E! D . ~B6!

Also, for 1<i, j<3, Eqs.~B3! and ~A27! imply

E
4p
d2V~3V iV j2d i j !V–“F~r,V,E!

1L2S E
4p
d2V~3V iV j2d i j !F~r ,V,E! D

5S E
4p
d2V~3V iV j2d i j !Q~r ,V,E! D . ~B7!

Equations~B5!–~B7! are exact, derived without approxima
tion from Eq. ~B1!. Higher-order equations can also be d
rived, but we will not do this here.

Next, we recall the space-angle integration operator^•&
defined by Eq.~6!. Integrating Eqs.~B5!–~B7! over r and
assuming that for eachE.0, F→0 as ur u→`, we obtain

L0^F&~E!5^Q&~E!, ~B8!

L1^V iF&~E!5^V iQ&~E!, ~B9!

L2^~3V iV j2d i j !F&~E!5^~3V iV j2d i j !Q&~E!. ~B10!

These are exact infinite-medium equations for the ang
moments ofF up to order 2. In the CSD approximation, the
reduce to first-order ode’s that can be solved explici
~These ode’s, together with the ode’s for the higher angu
moments, yield the components of the Goudsmit–Sa
derson distribution.38! If the CSD approximation is not valid
Eqs. ~B8!–~B10! must generally be solved numerically, b
the structure of these equations admits a simple comp
tional algorithm.

Next, we multiply Eq.~B5! by xi and Eq.~B6! by xj ~see
the Introduction for the definition ofxi! and integrate overr
to obtain

^xiV–“F&~E!1L0^xiF&~E!5^xiQ&~E!, 1< i<3,
~B11!

^xjV iV–“F&~E!1L1^xjV iF&~E!5^xjV iQ&~E!,

1< i, j<3. ~B12!
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Integration by parts overr yields

^xiV–“F&~E!52^~V–“xi !F&~E!52^V iF&~E!, ~B13!

^xjV iV–“F&~E!52^~V–“xjV i !F&~E!

52^V jV iF&~E!, ~B14!

so Eqs.~B11! and ~B12! may be written as

L0^xiF&~E!5^xiQ&~E!1^V iF&~E!, 1< i<3, ~B15!

L1^xjV iF&~E!5^xjV iQ&~E!1^V jV iF&~E!, 1< i , j<3.
~B16!

Having previously determined̂ViF& and^V iV jF&, we can
solve these equations for^xiF& and ^xjV iF&.

Finally, we multiply Eq.~B5! by xixj and integrate overr
to obtain

^xixjV–“F&~E!1L0^xixjF&~E!5^xixjQ&~E!. ~B17!

Integration by parts yields

^xixjV–“F&~E!52^~V–“xixj !F&~E!

52^~V ixj1V j xi !F&~E!, ~B18!

so Eq.~B17! may be written as

L0^xixjF&~E!5^xixjQ&~E!1^V ixjF&~E!1^V j xiF&~E!,

1< i , j<3. ~B19!

Having previously determined the space-angle mome
^V ixjF& for all i and j , we can solve these equations for th
second-order spatial moments^xixjF&(E).

To summarize, we note the following.
~1! The zeroth-order spatial moment^F&(E) is deter-

mined by solving Eq.~B8!.
~2! The first-order spatial momentŝxiF&(E) are deter-

mined by first solving Eqs.~B9! for ^V iF&(E), and then
solving Eqs.~B15!.

~3! The second-order spatial moments^xixjF&(E) are de-
termined by first solving Eqs.~B10! for ^V iV jF&(E), then
solving Eqs.~B16! for ^xjV iF&(E), and then solving Eqs
~B19!.

~In all cases, we assume the ‘‘initial’’ condition limE→` F
50.!

We emphasize that these results areexactand fundamen-
tal: they apply to any transport equation of the form d
scribed by Eqs.~A14! and ~A15!.

Some observations are made:
~i! To calculate the zeroth space-angle moment ofF, one

only needs to knows t(E) andss0(E8→E).
~ii! To calculate the first space-angle moments ofF, one

also needs to knowss1(E8→E).
~iii! To calculate the second space-angle moments oF,

one also needs to knowss2(E8→E).

Therefore, the implementation of the Method of Momen
requires knowledge of the zeroth, first, and second Legen
moments of the differential scattering cross section. T
Fokker–Planck approximation is based only on knowled
of the zeroth and first Legendre moments, through the s
ping power and the scattering power. The extra informat
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required by the Method of Moments corresponds to the
gree and importance of large-angle and large energy-
scattering in the problem.

Another aspect of the Method of Moments is that o
must solve a system of equations, each of which is of
form

Lnf ~E!5g~E!, ~B20!

where Ln is defined by Eq.~B4!. For the exact Linear
Boltzmann equation,s(E)5t(E)50, and Eq.~B20! reduces
to a simple Volterra integral equation.39 In general, Eq.
~B20! must be solved numerically. However, because e
trons ‘‘flow’’ from larger to smaller energies, it is possible
discretize Eq.~B20!on an energy grid and solve the resultin
discrete equations sequentially~one first solves for the larg
est value ofE, then the next largest value, and so on!. For
problems with CSD, Eq.~B20! reduces to a simple first-orde
ordinary differential equation that can be solved analytica
We consider this case next.

APPENDIX C: EXPLICIT RESULTS FOR THE
BOLTZMANN–CSD EQUATION

We now specialize our results to the case of the Bo
mann–CSD equation, defined by Eqs.~A11! and~A12!. This
is the most physically realistic equation for which^F&(E),
^xiF&(E), and ^xixjF&(E) can be obtained explicitly. We
consider a point source atr50, emitting electrons at energ
E0 in directions determined by an azimuthally symmet
probability distribution functionp~m!:

Q~r,V,E!5Q0d~r !
p~m!

2p
d~E2E0!. ~C1!

Here

E
21

1

dm p~m!51. ~C2!

@There are at least two types of functionsp that are relevant
in medical physics:~i! p~m!5d~m21! corresponds to a
monodirectional beam, and~ii! in the Compton scattering o
photons off electrons, electrons are released according to
Compton scattering pdfp~m!. Other choices ofp~m! occur
for beams that are not perfectly monodirectional.#

The relevant BCSD transport equation is

V–“F~r,V,E!1S t~E!F~r,V,E!

5E
4p
dV8 Ss~E,V–V8!F~r,V8,E!

1
]

]E
S~E!F~r,V,E!1Q0d~r !

p~m!

2p
d~E2E0!. ~C3!

This is of the form of Eqs.~A14! and ~A15! if we define
s t(E)5S t(E), ss(E8→E,m0)5d(E82E)ss(E,m0), t(E)
50, ands(E)5S(E), with Ss(E,m0) defined by Eq.~A13!.
Equations~A16! and ~A18! imply
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ss
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-

he

ss~E8→E,m0!5 (
n50

`
2n11

4p
d~E82E!Ssn~E!Pn~m0!,

~C4!

ssn~E8→E!5d~E82E!Ssn~E!, ~C5!

Ssn~E!52pE
21

1

dm0 Pn~m0!Ss~E,m0!. ~C6!

Thus, Eq.~B4! reduces to

LnF~E!52
]

]E
S~E!F~E!1San~E!F~E!, n>0,

~C7!

whereSan(E) is defined by Eq.~7!.
Now let us calculate the equation for the zeroth ord

space-angle moment^F&(E). Equations~B8! and ~C7! yield
the following equation for̂F&(E):

2
]

]E
S~E!^F&~E!5Q0d~E2E0!. ~C8!

Next, we calculate the equations for the first-order spa
angle moments ofF. Equations~B9!, ~C7!, ~C1!, and~C2!
yield

2
]

]E
S~E!^V iF&~E!1

T~E!

2
^V iF&~E!

5m̂Q0d i3d~E2E0!, ~C9!

where

m n̂[E
21

1

dm mnp~m!, n51,2. ~C10!

Equations~B15! and ~C7! now yield

2
]

]E
S~E!^xiF&~E!5^V iF&~E!. ~C11!

Finally, we calculate equations for the second-ord
space-angle moments ofF. Equations~B10!, ~C1!, and~C7!
yield

2
]

]E
S~E!^~3V iV j2d i j !F&~E!

1Sa2~E!^~3V iV j2d i j !F&~E!

5~2d i j13d i3d j3!S 3m 2̂21

2
DQ0d~E2E0!. ~C12!

Next, Eqs.~B16!, ~C7!, and~A7! yield

2
]

]E
S~E!^xiV jF&~E!1

T~E!

2
^xiV jF&~E!

5^V iV jF&~E!. ~C13!

Finally, Eqs.~B19! and ~C7! yield

2
]

]E
S~E!^xixjF&~E!52^xiV jF&~E!. ~C14!

For the special case of a monodirectional beam source



e

w

ne

m
e

F
re

th
th

in-
e

-

at

l
ows

ed
is

ed
is

-

tis-
lar

123 Larsen et al. : Electron dose calculations 123
which p~m!5d~m21! andm̂ 5 m 2̂ 5 1, we have written the
explicit solutions of Eqs.~C8!–~C14! in Eqs. 8–15.

Equations~C8!–~C14! show that to determine the MM–
BSCD solution, it is necessary to know the stopping pow
S(E), the scattering powerT(E), andSa2(E). For problems
with negligible large-angle scattering, Eq.~D16! shows that
Sa2(E)51.5T(E), and hence it is only necessary to kno
the stopping and scattering powers.~This is the physical re-
gime in which Fokker–Planck theory is valid.! However, for
problems with significant large-angle scattering,Sa2(E)
,1.5T(E); here Fokker–Planck theory is not valid, and o
must also knowSa2(E).

The BCSD and FP equations have the same value
Sa1(E), but different values ofSa2(E). Therefore, the FP
solution has the same zeroth and first-order space-angle
ments ofF as the BCSD solution, but different second-ord
space-angle moments. This implies that for eachE, the mean
electron displacements are the same for the BCSD and
equations, but the mean-squared displacements are diffe

APPENDIX D: RELATIONSHIP OF THE MM–BCSD
SOLUTION TO THE FERMI–EYGES AND
FERMI–AGE SOLUTIONS

Here we shall discuss the relationship between
Method of Moments solution developed in this paper and
earlier Fermi–Eyges4,5 and Fermi–Age26 solutions.

To do this, we observe that the MM scalar fluenceF~r,E !,
defined by Eq.~21!, is the exact solution of the following
anisotropic drift-diffusion problem:

2
]

]E
S~E!F~r,E!5D r~E!S ]2F

]x2
~r,E!1

]2F

]y2
~r,E! D

1Dz~E!
]2F

]z2
~r,E!

2v~E!
]F

]z
~r,E!,

0,E,E0 , 2`,x,y,z,`, ~D1!

F~r,E0!5Q0d~x!d~y!d~z!, ~D2!

F~r,E!→0 as ur u→`, for all 0,E,E0 , ~D3!

where

D r~E![
^x1V1F&~E!

^F&~E!
5

^x2V2F&~E!

^F&~E!
, ~D4!

Dz~E![
^@x32 x̄3~E!#V3F&~E!

^F&~E!
, x̄3~E!5

^x3F&~E!

^F&~E!
,

~D5!

v~E![
^V3F&~E!

^F&~E!
. ~D6!

@One can show thatF satisfies these equations either by
troducingF into them and directly verifying that they ar
satisfied, or by solving Eqs.~D1!–~D3! using Fourier trans-
forms in x, y, andz. We will not present the details here.#
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Introducing Eqs.~6!–~15! into Eqs.~D4!–~D6!, we obtain
explicitly

D r~E!5
e2 f1~E!

3 E
E

E0 dE8

S~E8!
~12e2 f2~E8!!ef1~E8!, ~D7!

Dz~E!5e2 f1~E!E
E

E0 dE8

S~E8! F13 ~112e2 f2~E8!!ef1~E8!

2e2 f1~E8!G , ~D8!

v~E!5e2 f1~E!. ~D9!

The functionf 1(E) @Eq. ~7!# has a simple physical inter
pretation, which we will now describe. Using

S~E8!52
dE8

ds

5the rate of energy loss of an electron at

energy E per unit pathlength, ~D10!

and

T~E8!52Sa1~E8!5
d^u2&
ds

5the mean-squared deflection of an electron

energy E8 per unit pathlength, ~D11!

one obtains

2
Sa1~E8!

S~E8!
dE85d^u2&~E8!

5the mean-squared angular deflection

experienced by an electron while

slowing down fromE81dE8 to E8.

~D12!

Therefore,f 1(E) is one-half the integral of the infinitesima
mean-squared angular deflections of an electron as it sl
down from E0 to E. f 1(E) and f 2(E) have the following
common properties.

~1! They both equal 0 atE5E0 and monotonically in-
crease to their maximum values asE decreases to 0.

~2! They are small if and only if the total mean-squar
angular deflection of electrons from their initial direction
small. ~This always occurs forE'E0 .!

~3! They are large if and only if the total mean-squar
angular deflection of electrons from their initial direction
large.~Thismayoccur forE'0.!

We will now show the following: for small angular de
flections and only small-angle scattering, Eqs.~D1! and
~D7!–~D9! reduce to the transverse diffusion equation sa
fied by the Fermi–Eyges solution. Also, for large angu
deflections, Eqs.~D1! and ~D7!–~D9! reduce to the Fermi–
Age equation.
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First, let us consider the limit of small angular deflectio
~f 1 and f 2 small!. Expanding Eqs.~D7!–~D9! in this limit,
we obtain

D r~E!5
1

3 E
E

E0 dE8

S~E8!
@ f 2~E8!1O~ f 2!#, ~D13!

Dz~E!52E
E

E0 dE8

S~E8! S f 1~E8!2
1

3
f 2~E8!1O~ f 2! D ,

~D14!

v~E!'1. ~D15!

For the case of negligible large-angle scattering,Ss(E,m0) is
a very highly peaked function ofm0 nearm051. Thus, by Eq.
~7!,

Sa2~E!52pE
21

1

dm0@12P2~m0!#Ss~E,m0!

52pE
21

1

dm0S 32 ~11m0!~12m0! DSs~E,m0!

'2pE
21

1

dm0@3~12m0!#Ss~E,m0!

53Sa1~E!5
3

2
T~E!. ~D16!

Hence, f 2(E)'3 f 1(E), and withO( f 2) error, Eqs.~D13!
and ~D14! reduce to

D r~E!5
1

2 E
E

E0 dE8

S~E8!
E
E8

E0
dE9

T~E9!

S~E9!
, ~D17!

Dz~E!50. ~D18!

Now we introduce Eqs.~D15!, ~D17!, and~D18! into Eq.
~D4!; the resulting equation impliesE5E(z), with

dE

S~E!
52dz. ~D19!

Using this result to eliminateE as an independent variable
we obtain exactly the ‘‘transverse’’ diffusion equation sat
fied by the Fermi–Eyges solution.

This shows that in the limit of small angular deflectio
~f 1 and f 2 small!and no large-angle scattering, the MM dr
diffusion equation forF limits to the transverse diffusion
equation satisfied by the Fermi–Eyges solution.

Next, we consider the limit of large angular deflectio
~f 1 and f 2 large!, Eqs.~D7!–~D9! yield

D r~E!'Dz~E!'
e2 f1~E!

3 E
E

E0 dE8

S~E8!
ef1~E8!, ~D20!

v~E!'0. ~D21!

The integral in Eq.~D20! is dominated by values ofE8 near
E85E. Therefore,
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E
E

E0 dE8

S~E8!
ef1~E8!

522E
E

E0 dE8

T~E8!
ef1~E8!

d f1~E8!

dE8
dE8

'2
2

T~E!
E
E

E0
dE8 ef1~E8!

d f1~E8!

dE8
dE8

5
2

T~E!
@ef1~E!21#, ~D22!

so Eq.~D20! yields

D r~E!'Dz~E!'
2

3T~E!
. ~D23!

Introducing Eqs.~D21! and ~D23! into Eq. ~D1!, we obtain
the Fermi–Age equation.

This shows that in the limit of large angular deflectio
~f 1 and f 2 large!, the MM drift diffusion equation forF
limits to the Fermi age equation. Depending on the scatte
properties of the target material, the maximum values off 1
and f 2 may or may not become large enough for Fermi–A
theory to apply. Iff 1 and f 2 do become sufficiently ‘‘large,’’
then electrons will ‘‘diffuse’’ far away from their initial di-
rection and become nearly isotropic in their angular distrib
tion; this is the situation in which Fermi–Age theory b
comes valid. Eq.~32! and Figs. 5 and 6 show that for 10 an
20 MeV electrons in water,f 1 ~and f 2! do become very large
asE→0. Therefore, in such beams, Fermi–Age theory do
become a valid approximation for small electron energie
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