Electron dose calculations using the Method of Moments

Edward W. Larsen
Department of Nuclear Engineering and Radiological Sciences, University of Michigan,
Ann Arbor, Michigan 48109

Moyed M. Miften® and Benedick A. Fraass
Department of Radiation Oncology, University of Michigan Medical Center, Ann Arbor, Michigan 48109

lain A. D. Bruinvis
Department of Radiotherapy, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX Amsterdam,
The Netherlands

(Received 9 May 1996; accepted for publication 10 October 1996)

The Method of Momentss generalized to predict the dose deposited by a prescribed source of
electrons in a homogeneous medium. The essence of this metlipdoisietermine, directly from

the linear Boltzmann equation, the exact mean fluence, mean spatial displacements, and mean-
squared spatial displacements, as functions of energyjiantb represent the fluence and dose
distributions accurately using this information. Unlike the Fermi—Eyges theory, the Method of
Moments is not limited to small-angle scattering and small angle of flight, nor does it require that
all electrons at any specified deplhave one specified ener@(z). The sole approximation in the
present application is that for each electron endtgyhe scalar fluence is represented as a spatial
Gaussian, whose moments agree with those of the linear Boltzmann solution. Numerical compari-
sons with Monte Carlo calculations show that the Method of Moments yields expressions for the
depth-dose curve, radial dose profiles, and fluence that are significantly more accurate than those
provided by the Fermi—Eyges theory. €997 American Association of Physicists in Medicine.
[S0094-2405(97)00401-X]
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[. INTRODUCTION depths, electrons have undergone many collisions, and most
) ) o _have strayed far from their original direction of flight.

The problem of calculating dose is of basic importance in (iii) At any depthz, all electrons are assumed to have a

radiation oncology. Exact dose calculations require the So'”épecified energE(z). This is consistent with the approxi-

tion of a coupled system of linear transport equations, Ynations of small angle of flight and Continuous Slowing

obtain the fluences for electrons and photons. This is an ©5own (CSDA) energy loss. However, these approximations

ceptionally difficult task, either from the mathematical or theneglect electron straggling incorre,ctly equate pathlength

computational perspective. Thus, clinical dose calculation al- ; ' )
. : . with depth, and neglect large discrete energy loss due to

gorithms typically rely on closed-form expressions that have B
T d . L secondary electron productigionization).

their origins in analytic solutions of simplified problems, but In addition to these three basic assumptions, if one inte-

contain empirically derived corrections to account for incom- '

plete physics. This procedure yields clinical methods that ar?rates the Fe;Lnl—dEyg(?[§ SO'?tt'sn t())ver the spatt)lal' variables
sufficiently fast for practical applications, but are limited in ransverse to the direction of the beam, one obtains a con-

accuracy. In this paper, we present a nkigthod of Mo- stant, independent of depth. Thus, the Fermi—Eyges theory

mentsthat partially bridges the gap between the expensivéncorrect!y equates the. qu.ence with the planar fluence, so it

transport-based methods and the approximate clinicgannot yield even qualitatively aqcurate depth (_josg curvesj

methods. For these reasons, the Fermi—Eyges solution is not di-
Currently, many clinical dose calculation algorithms, suchféctly usedwithout modification)in pencil beam models for

as the pencil beam models proposed by Hogstmral.,l clinical treatment planning. Typically, measured depth doses

Brahme et al.? and Werneretal.® are based on the and other factors, some of which account for spatial inhomo-

Fermi—Eyge$® theory. This underlying theory relies on ap- 9eneities, are included to attempt to improve the accuracy of
proximations that commonly become invalid. the overall solution. These improvements suffice for many
(i) Electrons are assumed to undergo oslyall-angle applications, but not for others.
scatteringin their interactions with the atoms of the medium. ~ The pencil beam model and the underlying Fermi—Eyges
However, the neglect of large-angle scattering has a signiftheory have been studied extensively by many research-
cant effect on the calculated dose distributifns. ers’~*° Jette and Bielajew} Storchi and Huizeng¥, and
(ii) Electrons are assumed to form a nearly monodirecBruinvis et al!® proposed ideas to deal with some of the
tional beam, i.e., to havesmall angle of flightAt best, this  limitations of the Fermi—Eyges theory. Shiu and Hogsttbm
is valid only for small energy lose&small depths). For large proposed the Pencil Beam Redefinition model, and Yu
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et al!® proposed the multi-ray model. These models are im- (1) Numerical comparisons @f) the Method of Moments

provements over the pencil beam model, but they still use théMM) approximation of the dosdii) the Fermi—Eyges ap-
Fermi—Eyges small-angle scattering theory. proximation, and(iii) Monte Carlo results in water, show

A transport-base@hase space evolutianodel, proposed that the MM expression gives reasonably accurate radial
by Huizenga and Storchf yields accurate dose calculations dose profiles and depth dose curves. Also, the MM results
in a reasonable time for broad electron beams. Monte Carlare more accurate than the Fermi—Eyges results, particularly
methods have also been used for many years to simulafer electrons at large depths.
electron transport. Recent advances in computer hardware (2) The angle-integrated MM solution satisfies a drift-
and in Monte Carlo algorithm development, such as theliffusion equation with coefficients that depend Bn[see
macro Monte Carlo method, are making Monte Carlo Eq.(D1)]. If small-angle scattering and small angular deflec-
closer to a clinical treatment planning tool. tions are assumed, then this MM drift-diffusion equation re-

In this paper, we present an alternativeethod of Mo-  duces to the drift-diffusion equation satisfied by the Fermi—
ments(MM) for electron dose calculations in a homogeneousEyges solution. For large angular deflections, the MM drift-
medium. This new method is based on the physically correctiffusion equation reduces to the Fermi—Age equatfon.
linear transport(or “Boltzmann”) equation. It generalizes An alternative derivation of some of the results in this
earlier work (1950-1959) by Lewis!® Spencer, Fano paper, based on a stochastic model for electron transport, has
et al.19-22and Kessarié3 The Method of Moments has been recently been givef! This stochastic model assumes that
used in the nuclear engineering community to predictelectrons lose their energy continuously as a function of
gamma-ray and neutron penetration in shi#ldsid radiation ~ pathlength, and change their direction at discrete “colli-
damage in solid®’ In this paper, we present the Method of sions” without losing any energy. The results of this analysis
Moments as an approximate electron dose calculation algare identical to the results obtained here for electron trans-
rithm that overcomes the approximations of the Fermi—port with CSDA and no large-angle scattering. That is, the
Eyges theory listed above, and that is less computationalljwo results are identical for problems in which the standard
intensive than algorithms based on the direct solution of thé-okker—Planck approximation is valid.

transport equation. The remainder of this paper is organized as follows. In
The Method of Moments in this paper consists of twoSec. Il we describe the special “Boltzmann—CSD” transport
parts. problem and its explicit MM solution. In Sec. lll we numeri-

(1) The exact space-angle moments of the fluence are cagally compare the Method of Moments, Fermi—Eyges, and
culated directly from the underlying transport equatig@ee  Monte Carlo solutions for 10 and 20 MeV pencil beam prob-
Appendix B. This procedure is algebraically equivalent tolems. In Sec. IV we discuss our analytic and numerical re-
earlier work on the Method of Moment&-29 sults, and the relation between the Method of Moments and

(2) The spatial moments of the fluence are used to represther schemes that perform electron dose calculations more
sent accurately the scalar fluence and the d@ee Sec. Il.  accurately than the Fermi—Eyges theory.

We use a Gaussian spatial dependence for the fluence, unlike Finally, in a set of Appendices we present the mathemati-
earlier work, which used non-Gaussian expansions.) cal derivation of the Method of Moments. In Appendix A,

We show that with energy loss described by CSDA, thewe describe the Linear Boltzmann, Fokker—Planck, Boltz-
space-angle moments of the fluence can be obtained as exann—Fokker—Planck, and Boltzmann—CSD Equations,
plicit functions of electron energg. If CSDA is not valid, each of which has been used to model electron transport. In
the space-angle moments are the solution of a system d&fppendix B we derive the MM equations that determine
simple Volterra integral equations. In either case, the meagpace-angle moments of the fluence for each of these elec-
fluence, mean spatial displacements, and mean-squared sp&@n transport models. In Appendix C we obtain the MM
tial displacements are obtained explicitly in terms of the spasystem of first-order ordinary differential equations for the
tial moments of the fluence. Any computational steps needeBoltzmann—-CSD equatior(The explicit solutions of these
to calculate the dose are simple and inexpensive. The sokguations are given in Sec.)lin Appendix D, we demon-
approximation in this paper is that for eaéh the scalar strate the connection between the MM—Boltzmann—CSD so-
(angle-integratedfluence is represented as a Gaussian funchution, the Fermi—Eyges solution, and the Fermi—Age solu-
tion of the spatial coordinates, with energy-dependent amplitions.
tude, mean spatial displacements, and mean-squared spatial

displacements, that are chosen to be equal to those of tr"e STATEMENT OF THE PROBLEM AND THE

transport solution.
The Method of Moments developed in this paper is con-METHOD OF MOMENTS SOLUTION

ceptually the simplest in a hierarchy of approximations that We will now describe the MM solution for an electron
would involve the calculation of higher-order spatial mo- transport problem with large-angle scattering and CSD en-
ments of the fluence and involve expressions that are morergy dependence. This is probably the most physically real-
elaborate than a simple Gaussian. Nevertheless, for the sinstic situation for which the space-angle moments of the flu-
plest case of an initially monoenergetic, monodirectionalence can be obtained in closed fortim the Appendices, we
beam with CSDA energy dependen@® secondary elec- describe how to treat more realistic problems, but we will not
trons), we show the following. consider these further in this paper.)
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The “Boltzmann—CSD”(BCSD) transport equation with , e fiB) rgy
a point, monoenergetic, monodirectional source in an infinite (X C0S ¢y1—u*®)(E)= 256 J. dE'[(P)(E")
homogeneous medium is
Q-Vd(r, Q,E)+3(E)d(r, Q,E) —(uP@)(E")]eE),  (12)
P (X*®)(E)=(y*®)(E)
= dQ' 34(E,Q-Q")D(r,Q' E)+ oE S(E) 5 £
4 dJ — 0 ! _,,2 4
S5 ). 9E(V1-p(cosd)xd)(E),
E

Q
X(I)(r,ﬂ,E)+2—7:)_5(r)5(,u—1)5(E—E0). (1) (13)
. . . -f1(B) rE

Here, r=(x,y,z)=(X;,X,,X3) is the spatial variableQ SONE) = © C4E ( u2DN(E e (ED 14
(T2 cosd T2 snoa) = (.00 isthean PP E =gy [ B WIR)EDeEL (A4)
gular variable E is energy®(r,Q2,E) is the fluenceS(E) is > E
the stopping power,(E) is the total cross section, <22¢>(E):_j dE'(uz®)(E"). (15)
3(E,up) is the differential scattering cross section, S(B) Je

o= -Q=cosb,, with 6, the scattering angleQ, is the  Also,
amplitude of the point source, aritis the Dirac delta func- _ _ _
tion. The differential scattering cross section has the expan- (XPYE)=(y®)(B) = {xy®)(E) =(yzP)(E)

sion =(xz®)(E)=(zxP)(E)=0.
“ on+1 The mean particle displacements are defined by
So(Bmo)= 2 5 Sen(E)Pulpo), 2) _ (xd)E)
o= @® 1o
where P, (1) is the nth Legendre polynomial. The expan-
i fficients,,, in Eq. (2 defined in t b — ®)(E)
sion coefficients,, in Eq. (2) are defined in terms df, by y(E)EW ) —o, 17)
1 (P)(E)
So()=27 [ duoPo(uo)SEe), 120 (@ O [y e .
“@we Je € sEy (18

For electron transport, one has
B . Thus, the mean particle motion is along theaxis. AsE
2(B)=2x(E) (no absorption @) decreases fronk, to 0, z(E) increases from 0 to a finite
T(E)=2[3(E)— 3¢ (E)]=scattering power. (5)  value, which is less than the electron range unfes®. Of
) ) ] .. course, individual electrons may increasingly stray from this
To describe the MM solution, let us define the infinite- mean position a€ decreases. Therefore, the variances in
medium space-angle integration operator, particle positions should all increase Bslecreases.

These variances are defined by
(CD)(E)EJ d3rJ d2Qd(r,Q,E). 6) (D) (E)
2E)=05(E)= e=—=02(E), 19
Also, let us define the functions 7(E)=y(E) (P)E) or(E) (19)
San(E)=2s0(E) ~ Tsi(E), o2(E)= ZTZBTONE) <zz¢>(E>_(<zd>>(E))2
(7) ‘ (®)(E) (PYE) |\ (D)E) )’
fE=[Cae ZE) s (20)
e SEH) T with o (E) =0, (E) = 0,,(E) =0.

In Egs. 16—20, the mean particle displacements and vari-
ances for eaclt are explicitly given in terms of the spatial
moments(®)(E), (xP)(E), (x>*®)(E), and(z>®)(E).

Now let us define the functiok(r,E) as

Then T(E)=2%,,(E). Manipulating Egs.(1)-(7), as de-
scribed in Appendices B and C, we obtain the following
closed-form results for @E<E,:

QO 2 2
(P)E)= g = ®) _ 1 oy
S(E) F(r, E)=(®)(E) 270%E) exp( 226
P =(d —H1(B), B
(L®)E)=(DP)(E)e 9) ) . p( [z—z(E)]Z) "
1 (B ——exp ———— | |
(2B =355 J dE'(u®)(E"), (10) V270 (E) 20%(E)
- We have
1
(W P)(E)= 3 (P)E)(1+2e72E), (12) fd3rF(r,E)=<<I>>(E), (22)
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3 _ 3.5 T . . ; T
| @ zraE -y, @3) o viev MR
EGS4 —
J’ d°r x2F(r,E):f d® y2F(r,E)=(x2®)(E), (24)
f d®r 22F(r,E) =(22D)(E), (25) o
E
-
and 2
f d3r xF(r,E) a
=Jd3r yF(r,E) ‘
:f d3r XyF(r,E) 0 ! Deptl:l3 (cm) 5 6
Fic. 1. Depth dose curve for a broad 10 MeV electron beam.
=f d3r yzF(r,E)=J d®r zxF(r,E)=0. (26)

Ill. RESULTS

Thus,F(r,E) is a Gaussian im, whose energy-dependent
mean value, mean spatial displacements, and mean-squaredHere we consider 10 and 20 MeV electron pencil beams
spatial displacements agree exactly with those of the angwormally incident on a water phantom. We simulated these

larly integrated solution of Eq(1), for all E. We now ap-
proximate the true angularly integrated fluence Mfy,E)
and obtain the following approximation for the dose:

D —EJEOdE E)E(r.E 27
(f)—p . SE)F(r,E). (27)

The depth-dose curvéor an infinitely broad beam is de-

fined by

Dm(z)EJ:dxf:dy D(r)=% fOEOdE SE)F.(z,E),

(28)
where

Foc,(z,E)Ejioc dejc dy F(r,E)

(D)) [z—2(E)]?

= ZroE) o g |
The radial dose profileis defined by

D(x,y,

Dip(X,y,2)= —D(()(())(;zz)) X (30)

Equations(8)—(21) and (27) describe the MM solution of ) ;
v— double that of the MM—BCSD simulation.

Eq. (1). Next, we shall compare numerically the M

BCSD, MM-Fokker—Planck, Fermi—Eyges, and Monte

problems four ways(i) the Method of Moments applied to
the Boltzmann—CSD equatiofij) the Method of Moments
applied to the Fokker—Planck approximation to the Boltz-
mann—CSD equatiofin which large-angle scattering is ne-
glected);(iii) the Fermi—Eyges$FE) method; andiv) Monte
Carlo, using theGsacode® with the PREsTAalgorithm?® In
our Monte Carlo simulations we used®électrons, the CSD
approximation(no secondary electronwith the unrestricted
collision stopping power, and energy cutoffs set to AE
=ECUT=0.521 MeV and ARPCUT=0.01 MeV. To per-
form the MM and Fermi—Eyges calculations, we used a set
of multigroup cross sections generated by the CEPXS
code® Because of this multigroup approximation, there are
discrepencies between the MM and EGS calculations. How-
ever, these discrepencies are slight.

Figures 1 and 2 show the broad-beam depth doses, as
defined by Eqs(28) and(29), for the MM—BCSD, the MM—
FP, and theeGs4simulations. We see that the shapes of the
two MM simulations are globally correct. The differences
between the Monte Carlo and the MM—-BCSD results are due
to the assumption of a spatial Gaussian, while the differences
between the Monte Carlo and the MM—FP results are due to
the spatial Gaussian assumptiamd the small angle of scat-
tering approximation. For these problems, the omission of
large-angle scattering in the MM—FP simulation leads to an
error in the depth—dose distribution that is approximately

Actually, there is a second error in the MM—-BCSD and

Carlo depth-dose and radial dose profiles for two electrod!M—FP simulations. The Method of Moments developed in

pencil beam problems. We show in Appendix D that the
MM-Fokker—Planck result is obtained from the results in

this section by setting

3 22(E) =33 5 (E) = 3T(E). (31)

Medical Physics, Vol. 24, No. 1, January 1997

this paper strictly holds for an infinite homogeneous me-
dium. However, here we have applied this method to the
problem of a pencil beam normally incident on a semi-
infinite water phantom. We have done this by approximating

the semi-infinite phantom by an infinite phantom with a
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Fic. 2. Depth dose curve for a broad 20 MeV electron beam. Fic. 4. Radial dose profiles for a 20 MeV electron pencil beam.

monodirectional point source, and applying the Method of€N€rgyE Z_(E)v‘fr(E)’Uz_(E) [see Eq.(21)], and the mean
Moments to the latter problem. Since virtually none of thec0sine of the angle of flight, defined as

radiation backscatters out of the semi-infinite half-spze@ o (u®)(E) Eo T(E")

the error resulting from approximating the semi-infinite M(E)EWIGXF{ ~ e dE’ ZS(E’))’ (32)

phantom by an infinite phantom is negligikflauch less than
1%). for the 10 and 20 MeV BCSD pencil beams. These plots

In Figs. 3 and 4, radial dose profiles are plotted from theshow thatu(E) deviates significantly from its initial value
MM-BCSD, Fermi—Eyges, andcs4simulations at differ-  (6=0, u=1) as the electrons lose energy. Thus, over a sub-
ent depths. Near the central axis, the MM-BCSD andstantial range of the electron energies, the small angle-of-
Fermi—Eyges profiles are remarkably similar. Away from theflight assumption of the Fermi—Eyges approximation is in-
central axis, the MM—BCSD results are consistently greatevalid. Also, as the electrons lose energy(E), o,(E), and
than the Fermi—Eyges results, and agree with the Monte(E) monotonically increase, withr,(E)<o,(E)<z(E).
Carlo results over a larger range. The MM—FP profiles areThus, the electrons are clustered around their mean position
very similar to the other profiles near the central axis; away(on the central axis), with average deviatiangE), o,(E)

from the central axis, they are closer to the MM—-BCSD re-from this mean position that grow with energy loss, but that
sults than to the Fermi—Eyges results. remain small compared to the mean electron depH).

In Figs. 5 and 6, we plot as functions of the electron

T 1

5 , ' : . r
1 : . , , 10 MeV 09
3 _ = 45} B .
10 MeV MM-BCSD — g #
EGS4 — g
2 Af Jo0.8
z=<§f1?25 .g 35t lo7 og
. [+ &
01} “\z=2.625 . T 3t 106 ©
cm _g _ =
o : g z g
g & 25- 105 g
[=] -g o,
2 < L 404 =
3 w2 £
@ I~ =
c . 2 S
- : E 15 Jos =
0.01 2=1625 ° g
& 1} - 102
a
=3 A
g osf {0.1
=
0 1 L I 1 00
0o 1 2 4 56 8 9 1
0.001 : . . s
0 o5 1 15 _2 25 3 35 Energy (MeV)
Radius (cm)

Fic. 5. We seer, , 0,, z, andu for a 10 MeV electron pencil beatBCSD

Fic. 3. Radial dose profiles for a 10 MeV electron pencil beam. equation).

Medical Physics, Vol. 24, No. 1, January 1997



116

Fic. 6. We seer, , 0,, z, andu for a 20 MeV electron pencil beatBCSD

Mean Displacement z and Standard Deviations o (cm)
<
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BCSD and FP solutions of the 20 MeV beam problem. Here[
we see a significant difference between the two solutions: th
aspect ratio of the BCSD simulation increases from 0.27 fo
20 MeV to 0.49 for 0 MeV, while the FP approximation
produces an aspect ratio of O for 20 MeV, increasing to 0.4
for 0 MeV. The aspect ratios of the 10 MeV beam are simila
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Fic. 8. Spatial distribution of electrons from a 20 MeV pencil be@iM—

BCSD, MM-FP, and FE solutiohs

In Fig. 7, we plot theaspect ratioo,(E)/o,(E), for the

and are not shown for brevity.

Thus, in the FP simulations, electrons with specific ener

gieseE~E, are distributed in an exceedingly narrow interval
in z around the mean dep#{E). (This is consistent with the
Fermi—Eyges picture, in which all electrons at a specific en
ergy E exist at asingle depthz.) However, in the BCSD
solution, o, does not become arbitrarily small in comparison
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Fic. 7. The aspect ratio,/co, for a 20 MeV electron pencil beaBCSD

and FP equations
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0 o, . Thus, while the mean displacemem(€) of the FP

&nd BCSD solutions are identical, the presence of large-
r;cmgle scattering in the BCSD equation creates a fundamen-
tally different picture of electron positioresboutthis mean

r?displacement foE~E,.

However, these differences may have little consequence

in dose calculations; they are most significant for small en-
‘ergy loss and small depths, where the pencil beam is exceed-

ingly narrow, and where the dose is likely to be deposited in

the same voxel regardless of whether one uses the FP or the
BCSD equation to describe the electron transport.

In Fig. 8, we plot data corresponding to various solutions
for the 20 MeV pencil beam at 15, 10, 6, and 0 MeV. For the
MM-BCSD and MM-FP solutions we plot ellipses, whose
centers are at the poingE), with minor axeso,(E) and
major axeso, (E); electrons that lie in these ellipses are less
than one standard deviation away from the mean displace-
ment. The Fermi—Eyges solution vyields vertical line seg-
ments, since in this theory all electrons at a specified energy
exist at a single depth.

For small energy losses, the three methods all locate the
electrons in roughly the same spatial region. For large energy
losses, the Fermi—Eyges solution is exceedingly inaccurate;
it places the electrons much deeper inside the phantom than
they should be, and the assumptibr- E(z) is noticeably
incorrect. The FP data for large energy loss is much closer to
the BCSD data; the mean displacements of the two solutions
are identical(as they should be; see Appendiy, @nd the
mean-squared displacements agree to within about 10%.

In Figs. 9 and 10, we plot the data of Fig. 8 for the
MM-BCSD and Fermi—Eyges solutions, together with
Monte Carlo result$500 electrons), for the 10 and 20 MeV
pencil beams. Slight discrepencies exist in the mean depth
and variances between the EGS and the MM—BCSD results,
due to the approximate multigroup cross sections used in the
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i . , homogeneous medium. This method is based on manipulat-
10 MeV IS . MM-BCER — ing the costly-to-solve linear transport equation for the flu-
o BGS4 * ence into an easily solvable system of equations for the
space-angle moments of the fluence. After the low-order spa-
tial moments are determined, we represent the fluence by a
. spatial Gaussian with the same mean displacements and vari-
ances as the transport solution, and we use this approxima-
tion to calculate the dose. The Method of Moments does not
require the small angle of scattering, small angle of flight, or
E=E(z) assumptions that are necessary for the Fermi—
Eyges theory. Our sole approximation is that for each energy
E, the scalar fluence is represented as a Gaussian in
For small depths, the radial dose distribution of a pencil
beam from the Gaussian model based on the Fermi—Eyges
theory overestimates the dose at small radii and underesti-
mates the dose at large radii. This is because the Fermi—
Eyges model does not account for the few important large-
angle scattering events. For large depths, where large-angle
S _ scattering events are relatively less important, the Fermi—
Fic. 9. Spatial distribution of electrons from a 10 MeV pencil bediM-— v 00¢ distribution overestimates the dose because the model
BCSD, FE, andcecs4solutions). . .
incorrectly equates pathlength with depth.
The theory presented in this paper provides an answer to
Method of Moments, and the continuous energy-dependenhe question: What is the limit of accuracy of the Gaussian
cross sections used in EGS. Nevertheless, these figures canedel for electron transport? That is, if one were able to
firm that the MM—BCSD description of the fluence is much determine the best possible Gaussian fit to the electron flu-
more physically realistic than the Fermi—Eyges solution.ence, how accurately could one model the fluence and cal-
Also, Figs. 9 and 10 show that the spatial-Gaussian approxeulate the dose? We assert that the best Gaussian fit is one
mation made in this paper is not exact; the level curves of thénhat, for each energlg, has mean spatial displacements and
scalar fluence are “umbrella shaped” around the mean disyariances that are identical to those of the exact Boltzmann
placements, rather than elliptically shaped. Thus, a suitablgo|ution. This is precisely the MM approximation developed
non-Gaussian ansatz could produce more accurate resultsin this paper.
To understand how the Method of Moments solution re-
IV. DISCUSSION lates to other schemes, such as the Phase Space Evolution

We have presented the Method of Moments for calculat{PSE)modef*® or the Pencil Beam Redefinition modéiit is

ing the dose due to a prescribed source of electrons in @ecessary to explain the concepts that underline each
method. The PSE model is a kind of deterministic version of

Monte Carlo—it simulates the transport process by, in effect,
discretizing the transport equation on a grid and then solving
the discretized equations. In principle, the limit of the PSE
solution for an infinite number dispace, angle, and enejgy
grid points should be equal to the limit of the Monte Carlo
solution for an infinite number of histories. Because the
Monte Carlo and PSE methods are based on a direct simula-
tion of the underlying transport equation, they are computa-
tionally intensive and costly, compared to other approximate
methods that do not directly simulate the transport equation.
The Pencil Bearh(PB) and Pencil Beam Redefinitibh

(PBR) methods are such approximate schemes. They are
based on the exact analytic solution of a simplified transport
equation(the Fermi—Eyges equatioand contain correction
factors that attempt to improve their accuracy. Thus, these
schemes require the evaluation of analytic expressions rather
- than the solution of a transport equatigihat transport
2 4 Depth (Cé;n ) ) 10 physics there is, is built into the analytic expressipior

this reason, the PB and PBR schemes are much more com-
Fic. 10. Spatial distribution of electrons from a 20 MeV pencil bea#ivi— putationally efficient than the Monte Carlo or PSE schemes.
BCSD, FE, anccs4solutions). But, because they are based on a fundamentally less-accurate
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set of equations, they provide fundamentally less-accuratACKNOWLEDGMENTS

solutions. o _ We would like to acknowledge several helpful discus-
The Method of Moment$MM) prese_nted in this Paperis sjons with Brian Foote, Henk Huizenga, and Jerry Pomran-
a compromise between the computationally intensive Mont@ng_

Carlo and PSE methods, and the simpler PB and BPR meth- This work was partly supported by NCI Grant No.
ods. Like the Monte Carlo and PSE methods, the MM5pPO1CA59827.
scheme uses a transport equation as its underlying descrip-

tion of the physical process. Like the PB schemes, the MMAPPENDIX A: THE LINEAR BOLTZMANN
scheme yields an analytic expression, not a large system %fOKKER—PLANCK ’

discretized equations that must be solved on a grld BOLTZMANN=FOKKER—=PLANCK. AND
The MM solution is exact only in the following sense: if oL TZMANN-CSD EQUATIONS
one were to obtain the PSE solution for an infinite number of . . .
Here we describe the linear Boltzmann equation, together

grid points or the Monte Carlo solution for an infinite num- . . S
with three of its approximations, for a homogeneous me-

ber of histories, and if for each energy one were to calculate,. .
. . ._dium. All of these equations have been used to model elec-
the zeroth, first, and second spatial moments of the solutio

i Rton transport.
then these moments would agree exactly with the corre- First, the linear BoltzmannB) equation for electron

sponding spatial moments of the MM solution. transport in a homogeneous medium is given by
The Method of Moments described in this paper can be
Q-VO(r,Q,E)=LgdP(r, Q,E)+Q(r,QE), (A1)

generalized in several ways. One can calculate higher-order
moments of® and construct more elaboratand, presum- where the Boltzmann scattering operatgris defined a¥32
ably, more accurajenon-Gaussian representations of the flu- -

ence. For example, Laat al. have represented the dose as LBQD(Q,E):f dE' | d2Q' S(E'—E,Q'-Q)

the sum of three Gaussians, but the parameters in these E am

Gaussians were derived by Monte Carlo simulatibAdso, XP(Q' E)—3(E)P(Q,E). (A2)
Jette’s second-order approximation to the Fokker—Planck SQI:
lution consists of the Fermi—Eyges solution multiplied by a

a1l g ; ; ; _
polynomfgl. Ifj IS posghblef that. by lc?lculatmfthlgheero tion. We have assumed that electrons only lose energy in
ments of® and using the functional forms of Lax or Jette, collisions, s (E' —E, 1) =0 for E' <E.

one can significaqtly improveT upon the e§timate of the dose Equation/A1) and(A2) provide a very accurate descrip-
that one can obtain from a simple Gaussian. tion of electron transport in the absence of electric and mag-
One can also apply the Method of Moments to problemsetic fields. These equations are the underlying mathematical
containing ionization, bremsstrahlung, and pair productionmodel for Monte Carlo and deterministic simulations of elec-
The extra difficulty is that numerical solutions of Volterra tron transport. In this model, electrons travel in straight lines
integral equations must be calculated. In addition, one cawith no energy loses between collisions. At the collision
apply the method to coupled systems of transport equationgoints, the electrons undergo discrete changes in direction
For example, the dose deposition due to photon beams &nd energy. For electrons, the mean-free path, and the angle
determined by a system of transport equations, one descril@nd energy change per collision are usually very small.
ing the photon fluence, another describing the electron flu- The differential scattering cross sectia has the Leg-
ence. The calculation of space-angle moments of these equ@fdre polynomial expansion
tions will apply for that problem, just as it does for the * on+1
simpler electron problem treated in this paper. S(E'—E,up)= 2 P S(E'—E)Py(o), (A3)
As presented in this paper, the Method of Moments is n=0 m
applicable only in infinite homogeneous media. Howeverwhere the expansion coefficierig, in Eq. (A3) are defined
planar inhomogeneities can be treated by a related theory arid terms of%g by
the Method of Moments can be extended to include large- 1
energy loss scattering. This work is presently under develop- Esn(E'HE)=27Tf duo Pr(po)2s(E'—E,po). (A4)
ment. -
It is not clear whether these generalizations of the Method/Ve also define
of Moments will produce a method that, without empirical E
corrections, is sufficiently fast and accurate for three-di- Esn(E)EJ dE’ 3s(E—E’), n=0. (A5)
mensional(3-D) treatment planning. If the resulting scheme 0
contains enough transport physics, depends weakly on enfror electron transport, one has

he symbols in these equations are defined earlier in Sec. I,
except for2 (E'— E, uo) =differential scattering cross sec-

pirical corrections, and is computationally efficient, it may s (E)=E_ (E) (no absorption (A6)
suffice for clinical applications. However, such develop- ‘ i o
ments must await further study. T(E)=2[3(E)— 24 (E)]=scattering power, (A7)

Medical Physics, Vol. 24, No. 1, January 1997



119 Larsen et al.: Electron dose calculations 119

Q-VO(r, Q,E)=LgepsP(r, Q,E)+Q(r, Q,E),  (Al4)

E
S(E)Ef dE'(E—E')Xso(E—E')=stopping power.
0 where Lgrp, the BFP scattering operator, contains both
Boltzmann-like  and  Fokker—Planck-like  scattering

(A8)
34,35

Because of the small-angle scattering and small energy lostrms:
the functions,(E'—E) are sharply peaked ne&l’=E,
and the expansion in EqA3) requires a large number of LBFP(D(QaE):fx dE,f 4?0’ o(E'—E,Q'-Q)
terms to achieve acceptable accuracy. E'=0 4z

The Fokker—PlanckFP) approximation to Eq(Al) is

. t(E)
Q-VO(r,Q,E)=Ld(r, Q,E)+Q(r, Q,E), (A9) XP(Q'E")—a(E)P(Q,E) + ——
where the Fokker—Planck scattering operatgg is defined P P 1 g2
ag?™ X| o (1) ot o
p du  1—pudd
LesD(Q E)—T(E) [ i (1—u? i J
PR T o T o XD(QE)+ o= SE)D(Q,E).  (AL5)
(92
+ 1.2 W}CD(Q’E) In practical applications, the decomposition3fands; into

o5, 0y, t, and s is nonunique, but the concept is for the
J Boltzmann-like term$o, anda;) to describe large-angle and
+ JE S(E)®(L,E). (A10) large energy-loss scattering, and the Fokker—Planck-like
. o . ) . terms(t ands) to describe small-angle and small energy-loss
A classic derivation of the FP equation is given Dby scattering. The advantage of this description is that it makes
Chandrasekha¥ Also, Pomraning® has shown that Egs. the kernelo((E' —E, u,) a less sharply peaked function of
(A9) and (A10) can be derived from Eq$Al) and(A2) in  E and y, thanS (E' —E, 1), and hence easier to simulate
an asymptotic limit in which large-angle scattering and |ar99numerically.
energy-loss scattering are negligible. Hergs is a much In Appendix B, we develop the Method of Moments for
simpler operator thahg, but Chandrasekhar's and Pomran- the BEP scattering operator because it includesBhé&P,
ing’s analyses both show thiags omits large-angle and large 3nd BCSD scattering operators as special cdlesne sets
energy-loss scattering. Equatioh10) describes a scattering {=g=0, os=3, ando,=3,, then Eq(A15) reduces to Eq.
process in which electrons simultaneously lose energy angg\z)_ If one setsrg=0,=0,t=T, ands=S, then Eq.(A15)
change their direction of flight continuously as functions of \equces to Eq(A10). If one setst=0, s=S, ¢,=3,, and

pathlength. 0(E'—E,up)=6(E'—E)S(E’, o), then Eq.(A15) re-
The Boltzmann—CSMDBCSD) approximation to Eq(Al) dLSJCGS to EqC()A12).] ® °
IS We make the standard assumptions thatand o, are
Q-Vd(r,Q,E)=Lgess®(r, Q,E)+Q(r, Q,E), (Al1) related by the analogs of Eq&3)—(A6), i.e.,
wherel gcgp is defined as Zo2n+1
0d(E'—Bp)= 2 5= s E'—E)Py(po),
LBCS,;{I)(Q,E):J4 dQ’ 3(E,Q-Q)d(Q'E) (A16)
J ' — ” '
~S(B)P(Q.E)+ o= SE)P(Q,E), osnlE *E>—2ﬂf0 dpeo Prlpt0)0s(E'—E o),
(A17)
(A12)
. E
with 0E)= [ 4B o (EED, n=0, (A18)
0
E

In the BCSD model, electrons travel in straight lines between Finally, we make use of special properties of the spherical
scattering events, at which their direction of flight changedharmonic functionsY,, (€2). These functions are defined
discretely. This aspect of the model is physically correctby®®®
However, electrons lose energy continuously as a function of _ im
pathlength, and this is approximate. The advantage of the Yom( )= anmPn,jm(1)€ ¢, 0<|ml=n, (A20)
BCSD model over the FP model is that it permits large-anglevhereP,, (1) are the associated Legendre functions, and
scattering.

The Boltzmann—Fokker—PlandBFP) approximation to

[2n+1 (n—|m|)!)l’2
Eq.(Al) is ®nm™= (A21)

47 (n+|m|)!
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HereY , satisfy the orthogonality condition (i) For 1<i<3, the functionsf,(Q)=Q, are linear
j4ﬂdZQ YE (@)Y 4(R)=81p0mq. (A22) combinations of spherical harmonic functions of
the differential equation order unity (Y, for —1=m=1). (A26)
9 9 92 (i) For 1=<i,j=<3, the functionsf;;(Q)=3Q;Q;— &
(_(1 MZ) 9 1 9d2 Y m(€2) . o . )
M e e are linear combinations of spherical harmonic
=N+ DYn (D), (A23) functions of order two(Y,, for —2<=m=2).
and theaddition theorem, (A27)
P(Q-Q)= 2 Y (@)Y (), (A24)  APPENDIX B: CALCULATION OF THE
2k+ 1 SPACE-ANGLE MOMENTS OF THE FLUENCE

whereP,(uw) is thekth Legendre polynomial. AlS8 (see the

) S - To derive equations for the space-angle moments of
Introduction for the definition of);) note the following. d 5 J o

we first multiply the BFP equatiofA14) by an arbitrary
() The function f(Q)=1 is proportional toYq ). spherical harmonic functiol¥, ,,(2) and integrate ovef).
(A25) We obtain

JdZQ Yn,m(Q)Q-Vcb(r,Q,E):J dE’ dZQ{ dZQ’Yn,m(ﬂ’)crs(E’—>E,Q’-Q)}@(r,Q,E’)—at(E)
41 E 41

A7

X d’Q Y, o(Q)P(r,Q,E) +@ d’Q &(r,Q E)(i(l— 2) i
. n,m ’ ’ 4 i ’ ’ 07/.1, ,LL &M
92 d 5
+1——#2 t?d’z) nm(ﬂ)+—S(E)( Lwd Q Yn,m(ﬂ)¢(r,Q,E))
+ f d2Q Yn,m(Q)Q(r,Q,E)). (B1)
41

In the first term on the right we have interchanged integra- 5
tions overQ and Q' and have then replaced’ by Q and J“”d Q Yom(2)Q-VO(r, Q,E)
vice versa. In the third term on the right, we have integrate

by parts.

2
Equations(A16), (A22), and(A24) now imply *La Lwd @ Y”'m(ﬂ)q)(r'Q’E))

- | @0 Yn,mm)Q(r,n,E)). ®3)
4
Lwdzﬂ’ Yom(Q)o(E'—E Q'-Q)
i 2k+1 , Here L, arereducedscattering operators, acting only &
= osE'—E) | d°Q’ defined by
k=0 A4m 4

Yn,m(Q)P(Q-Q)

d t(E
_i 2k+1 (E/E) Yo (D)5 La®(B)=——=s(E)®(E)+ O't(E)+(T)n(n+1)
= 2k+1 k,m kn
=0sn(E'—E)Yn m(€2). (B2) XCID(E)—fEdE’ osn(E'—=E)®(E’). (B4)

Using this result and EqA23), we may write Eq(B1) as The operatord ,, can beinverted[the solutionf(E) of the
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equationL ,f(E)=g(E) exists]under very mild conditions Integration by parts over yields
ons, oy, t, andoyg, that are satisfied in practical applications. , . /(O.Uy. 0.

Equations(B3) and (A25) now imply (xiQ-VO)(E) {(Q-Vx)P)(E) (i®)(E), (BI3)

d?Q Q-Vo(r, Q,E)+L, Lﬂdzﬂ CI)(r,Q,E)) - (Q,00)(E), (B14)

4
:( &0 o(r,0 E)). ©5) so Egs.(B11) and(B12) may be written atc,
. o Lo(X @Y E)=(x;Q)(E)+(Q,®)E), 1<i<3, (B15)
For 1<i<3, Egs.(B3) and(A26) imply L1(X; QP )(E)=(x;QiQ)(E) +(Q;Q;®)(E), 1<i,j(§136)
J’4 d’Q Q,Q-VO(r, Q,E) Having previously determined);®) and(Q;(;®), we can
" solve these equations f¢x;®) and(x;Q;®).
L, J’Mdzﬂ QiCD(r,Q,E)> " (I;;r;:lllr?/ we multiply Eq.(BS) by x;x; and integrate over
(XiXjQ-VO)(E) +Lo(xx;P)(E)=(x;x;Q)(E).  (B17)
- 4wd29 QiQ(r’Q'E))' (B6) Integration by parts yields
Also, for 1<i,j<3, Egs.(B3) and (A27) imply (XiX; - V) (E) = — ((2-Vxx)) P)(E)
= —((Qix;+ Q%) P)(E), (B18)

2 . . — ' .
Lwd QE30:0;=0)Q-VO(r, Q.E) so Eq.(B17) may be written as

L0<X|XJ(I)>(E):<X|XIQ>(E)+<Q|Xl¢)>(E)+<QJX|¢>(E),

+Lo .
1<i,j<3. (B19)

f dZQ(39|Q]_5|J)¢)(r,Q,E))
A7

) Having previously determined the space-angle moments
Lwd Q(30i0;— 5ij)Q(r'Q'E))- (B7) (Qix;®) for all i andj, we can solve these equations for the
second-order spatial momer{tsx;®)(E).
Equations(B5)—(B7) are exact, derived without approxima-  To summarize, we note the following.

tion from Eq.(B1). Higher-order equations can also be de- (1) The zeroth-order spatial momex®)(E) is deter-

rived, but we will not do this here. mined by solving Eq(B8).

Next, we recall the space-angle integration operatpr (2) The first-order spatial moments;®)(E) are deter-
defined by Eq.(6). Integrating Eqs(B5)—(B7) overr and  mined by first solving Eqs(B9) for (Q;®)(E), and then
assuming that for eace>0, ®—0 as f|—~, we obtain solving Egs.(B15).

Lo(®)(E)=(Q)(E), (B8) (3) The segond-ordgr spatial momefusx;®)(E) are de-

termined by first solving EqgB10) for (Q;Q;®)(E), then

L(Q;P)E)=(Q;Q)(E), (B9)  solving Egs.(B16) for (x;Q;®)(E), and then solving Egs.

(B19).
L 3QiQ'_5i' (I) E)= 3QiQ'_5i' E). B10
2 i~ ) PYE)=(( i~ %) (E). - (B10) (In all cases, we assume the “initial” condition lgn,., ®

These are exact infinite-medium equations for the angular:o_)

moments ofb up to order 2. In the CSD approximation, they  \ye emphasize that these results exactandfundamen-

reduce to first-order ode’s that can be solved explicitly.ty): they apply to any transport equation of the form de-
(These ode’s, together with the ode’s for the higher angulagcriped by Eqs(A14) and (A15).

moments, yield the components of the Goudsmit—Saun- ggme observations are made:
derson distributiori?) If the CSD approximation is not valid, (i) To calculate the zeroth space-angle momerbpbne
Egs. (B8)—-(B10) must generally be solved numerically, but only needs to knowr,(E) and o (E'—E).
t_he structure of these equations admits a simple computa- (jj) To calculate the first space-angle momentsbofone
tional algorithm. also needs to know g (E' —E).

Next, we multiply Eq.(BS) by x; and Eq.(B6) by x; (see (iii) To calculate the second space-angle moment®,of
the Introduction for the definition of;) and integrate over  yne also needs to know,(E' —E).

to obtain . .
Therefore, the implementation of the Method of Moments

(X Q-VD)(E)+Lo(x;PY}E)=(xQ)(E), 1=<i=<3, requires knowledge of the zeroth, first, and second Legendre
(B11) moments of the differential scattering cross section. The

(X Q-VOY(E) +L1(x; QD) (E) = (x,Q,Q)(E) Fokker—Planck approximation is based only on knowledge
= B I ' of the zeroth and first Legendre moments, through the stop-
1<i,j=<3. (B12)  ping power and the scattering power. The extra information
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required by the Method of Moments corresponds to the de- n+1
gree and importance of large-angle and large energy-loss o4(E'—E, ,uo)—E —— O(E' —E)2s(E)Pn( o),
scattering in the problem.

Another aspect of the Method of Moments is that one (C4)
must solve a system of equations, each of which is of the o (E'—E)=48(E'—E)3s,(E), (C5)
form N

L,f(E)=g(E), (B20) Esn(E)ZZWf_ldMo Pn(10)%s(E,p0). (C6)
where L, is defined by Eq.(B4). For the exact Linear Thus, Eq.(B4) reduces to
Boltzmann equatiors(E)=t(E) =0, and Eq.(B20) reduces
to a simple Volterra integral equatidh.In general, Eq. L @(E)z—iS(E)¢>(E)+2 (E)®(E), n=0
(B20) must be solved numerically. However, because elec- JE an ' '
trons “flow” from larger to smaller energies, it is possible to (C7)
discretize Eq(B20) on an energy grid and solve the resulting wheres ,(E) is defined by Eq(7).
discrete equations sequentiallyne first solves for the larg- Now let us calculate the equation for the zeroth order

est value ofE, then the next largest value, and so.0for  space-angle momex®)(E). Equations(B8) and(C7) yield
problems with CSD, EqB20) reduces to a simple first-order the following equation foX®)(E):
ordinary differential equation that can be solved analytically.

We consider this case next. -~ S(E)(P)(E)=Qod(E — Ey). (C8)
Next, we calculate the equations for the first-order space-
APPENDIX C: EXPLICIT RESULTS FOR THE angle moments of. Equations(B9), (C7), (C1), and(C2)
BOLTZMANN—-CSD EQUATION Y'eld
- ) ( )
We now specahze our results to the case of the Boltz S(E)(Q DYE)+ —— (Q,D)(E)
mann—CSD equation, defined by E¢&11) and(A12). This
is the most physically realistic equation for whi¢i)(E), :ﬁQo5i35(E—Eo), (C9)

(x;®)(E), and(xjx;®)(E) can be obtained explicitly. We
consider a point source a0, emitting electrons at energy Where
E, in directions determined by an azimuthally symmetric

o~ 1
probability distribution functiorp(w): M”Ef du u"p(m), n=12. (C10)
-1
Q(r, Q,E)=Q,d(r) p(,u) S(E—Ey). (c1)  Equations(B15) and(C7) now yield
J
Here = S(E)(xi®P)(E)=(Q;®)(E). (C11)
1 _ Finally, we calculate equations for the second-order
f_ld’“ p(p)=1. (€2) space-angle moments &f. EquationgB10), (C1), and(C7)

[There are at least two types of functiomghat are relevant ylel;:i
in medical physics:(i) p(w)=8u—1) corresponds to a _ 7 O _ s
monodirectional beam, ar(d) in the Compton scattering of E S(E)(30 2= ;) P)(E)
photons off electrons, electrons are released according to the
Compton scattering pdb(x). Other choices op(u) occur
for beams that are not perfectly monodirectional.]

The relevant BCSD transport equation is =(—8+36836)3)

Q-VO(r, Q,E)+3,(E)d(r, Q,E)

+222(EX(3QiQ;— ;) P)(E)

3u2-1
% Qod(E—Ey). (C12)

Next, Egs.(B16), (C7), and(A7) yield
:LJ’Q' 24(E.0-0)2(r.0%E) 2 SE O ONE) + L (x,0,D)(E)

J £ S(E)O(r, QE)+Q05(r)M6(E E,). (C3) =<Qiﬂj<b>(E)- (C13)
Finally, Egs.(B19) and (C7) yield

This is of the form of Eqs(A14) and (A15) if we define

J
=0, ands(E) =S(E), with 2 4(E, u,) defined by Eq(A13).
Equations(A16) and (A18) imply For the special case of a monodirectional beam source, for
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which p(x)=&u—1) andf. = x? = 1, we have written the

explicit solutions of Eqs(C8)—(C14)in Egs. 8—15.
Equations(C8)—(C14) show that to determine the MM—

BSCD solution, it is necessary to know the stopping power

S(E), the scattering poweF(E), and3; ,»(E). For problems
with negligible large-angle scattering, E@P16) shows that

2 2(E)=1.5T(E), and hence it is only necessary to know

the stopping and scattering powe($his is the physical re-
gime in which Fokker—Planck theory is validdowever, for
problems with significant large-angle scattering,,(E)

<1.5T(E); here Fokker—Planck theory is not valid, and one

must also knowt ,,(E).

The BCSD and FP equations have the same value of

3, ,1(E), but different values ok ,,(E). Therefore, the FP

123

Introducing Eqs(6)—(15) into Egs.(D4)—(D6), we obtain
explicitly

—f4(E) '
e 1 Eo, dE , ,
T (E)= _ e f2(E"))f1(E)
EO dE, 1 ’ ’
T E)y=e 1B | " — |- (1+2e f(E))eM(E)
Z( ) E S(E/) 3( )
_e_fl(E,)}, (D8)
v(E)=e (), (D9)

The functionf(E) [Eq. (7)] has a simple physical inter-

solution has the same zeroth and first-order space-angle mpretation, which we will now describe. Using

ments ofd as the BCSD solution, but different second-order

space-angle moments. This implies that for eB¢ckhe mean

electron displacements are the same for the BCSD and FP
equations, but the mean-squared displacements are different.

APPENDIX D: RELATIONSHIP OF THE MM-BCSD
SOLUTION TO THE FERMI-EYGES AND
FERMI-AGE SOLUTIONS

Here we shall discuss the relationship between the T(E")=25_(E')=
Method of Moments solution developed in this paper and the

earlier Fermi—Eygés and Fermi—Ag# solutions.

To do this, we observe that the MM scalar fluefdeE),
defined by Eq.21), is the exact solution of the following
anisotropic drift-diffusion problem:

9°F °F

J
— 58 SEF(LE)=%(B)| 57 (LE)+ 57 (1E)

2

- J°F
+ Z,(E) E(f, E)

JF
—uv(B) - (1LE),

0<E<Ep, —o<x,y,z<x, (D1)
F(r,Eo) =Qod(x)d(y) 8(2), (D2)
F(r,E)—0 as |r|—w, for all 0O<E<E,, (D3)
where

o @Y (E)  (%0,P)(E)
SEET@E T (@yE) .
=<[x3—x_3(E)]Q3<I>)(E) — . (xs®)(E)
B VT R e A (T
(D5)

=<Q3‘I’>(E)

v(E)——<q)>(E) . (D6)

. dE
SEY="3s

=the rate of energy loss of an electron at
energy E per unit pathlength, (D10)
and
d(6?)
ds

=the mean-squared deflection of an electron at

energy E’ per unit pathlength, (D11)
one obtains
2a(E")
2 — dE'=d(6?)(E’
SE) (63)(E")

=the mean-squared angular deflection
experienced by an electron while

slowing down fromE’+dE’ to E’.
(D12)

Therefore,f,(E) is one-half the integral of the infinitesimal
mean-squared angular deflections of an electron as it slows
down from E, to E. f,{(E) and f,(E) have the following
common properties.

(1) They both equal 0 aE=E; and monotonically in-
crease to their maximum values Bsdecreases to O.

(2) They are small if and only if the total mean-squared
angular deflection of electrons from their initial direction is
small. (This always occurs foE~E,.)

(3) They are large if and only if the total mean-squared
angular deflection of electrons from their initial direction is
large.(This mayoccur forE~0.)

We will now show the following: for small angular de-
flections and only small-angle scattering, EqB®1) and

[One can show thaE satisfies these equations either by in- (D7)—(D9) reduce to the transverse diffusion equation satis-
troducing F into them and directly verifying that they are fied by the Fermi—Eyges solution. Also, for large angular

satisfied, or by solving Eq$D1)—(D3) using Fourier trans-
forms inx, y, andz. We will not present the details here.]
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deflections, Eqs(D1) and (D7)—(D9) reduce to the Fermi—
Age equation.
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First, let us consider the limit of small angular deflections
(f, and f, small). Expanding Eq9D7)—(D9) in this limit,
we obtain
Eo dE’

S(E) (D13)

Z(E)= [12(E")+ O],
) Eo dE’ 1 5
@z(E):ZfE @(M(E')_gfz(e)"‘o(f )|
(D14)
v(E)=~1. (D15)

For the case of negligible large-angle scatterdigE, i) is
a very highly peaked function qf, nearuy=1. Thus, by Eq.

(),

1
S a(E)= 27TJ'71dM0[1_ P2(10) 1% s(E, 10)
1 3
:27TJ' dM0(§(1+M0)(1_Mo) 2 s(E, 10)
-1
1
%ZWJlldMO[S(l_MO)]ES(E-MO)

3
=33 4(E)= > T(E). (D16)

Hence, f,(E)~3f,(E), and with O(f?) error, Egs.(D13)
and(D14) reduce to

. 1 (& dE' (B _ T(E") 517
703 |, 557 ) sy (L0
Z,(E)=0. (D18)

Now we introduce Egs(D15), (D17), and(D18) into Eq.
(D4); the resulting equation implies=E(z), with

dE
S(E)

Using this result to eliminat& as an independent variable,
we obtain exactly the “transverse” diffusion equation satis-
fied by the Fermi—Eyges solution.

This shows that in the limit of small angular deflections
(f, andf, small)and no large-angle scattering, the MM drift
diffusion equation forF limits to the transverse diffusion
equation satisfied by the Fermi—Eyges solution.

Next, we consider the limit of large angular deflections
(f, andf, large), Eqs(D7)—(D9) yield

—f1(E) ’
e 'l on dE efl(E,)
3 e S(E) ’

—dz. (D19)

Z,(E)~Z,(E)~ (D20)

v(E)=~0. (D21)

The integral in Eq(D20) is dominated by values &' near
E’ =E. Therefore,
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JEO dE, efl(E’)
e S(E")
:_ZJEO dE’ f(E) df,(E") dE’
e T(E") dE’
2 Eo , dfy(E")
~— r of(E"y 7 7 ’
(E) fE dE’ et = dE
— f1(E) _
6 [e's 1], (D22)
so Eq.(D20) yields
Z(BE)=Z((E)~ (D23)

3T(E)"

Introducing Eqs(D21) and (D23) into Eq. (D1), we obtain
the Fermi—Age equation.

This shows that in the limit of large angular deflections
(f, and f, large), the MM drift diffusion equation foF
limits to the Fermi age equation. Depending on the scattering
properties of the target material, the maximum value$,of
andf, may or may not become large enough for Fermi—Age
theory to apply. Iff; andf, do become sufficiently “large,”
then electrons will “diffuse” far away from their initial di-
rection and become nearly isotropic in their angular distribu-
tion; this is the situation in which Fermi—Age theory be-
comes valid. Eq(32) and Figs. 5 and 6 show that for 10 and
20 MeV electrons in wateff,; (andf,) do become very large
asE—O0. Therefore, in such beams, Fermi—Age theory does
become a valid approximation for small electron energies.
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