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Purpose: The purpose of this study is to develop a computer-aided detection �CAD� system that
combined a dual system approach with a two-view fusion method to improve the accuracy of mass
detection on mammograms.
Methods: The authors previously developed a dual CAD system that merged the decision from two
mass detection systems in parallel, one trained with average masses and another trained with subtle
masses, to improve sensitivity without excessively increasing false positives �FPs�. In this study,
they further designed a two-view fusion method to combine the information from different mam-
mographic views. Mass candidates detected independently by the dual system on the two-view
mammograms were first identified as potential pairs based on a regional registration technique. A
similarity measure was designed to differentiate TP-TP pairs from other pairs �TP-FP and FP-FP
pairs� using paired morphological features, Hessian feature, and texture features. A two-view fusion
score for each object was generated by weighting the similarity measure with the cross correlation
measure of the object pair. Finally, a linear discriminant analysis classifier was trained to combine
the mass likelihood score of the object from the single-view dual system and the two-view fusion
score for classification of masses and FPs. A total of 2332 mammograms from 735 subjects includ-
ing 800 normal mammograms from 200 normal subjects was collected with Institutional Review
Board �IRB� approval.
Results: When the single-view CAD system that was trained with average masses only were
applied to the test sets, the average case-based sensitivities were 50.6% and 63.6% for average
masses on current mammograms and 22.6% and 36.2% for subtle masses on prior mammograms at
0.5 and 1 FPs/image, respectively. With the new two-view dual system approach, the average
case-based sensitivities were improved to 67.4% and 83.7% for average masses and 44.8% and
57.0% for subtle masses at the same FP rates.
Conclusions: The improvement with the proposed method was found to be statistically significant
�p�0.0001� by JAFROC analysis. © 2009 American Association of Physicists in Medicine.
�DOI: 10.1118/1.3220669�
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I. INTRODUCTION

In screening mammography, two mammographic views,
craniocaudal �CC� and mediolateral oblique �MLO� views,
are routinely performed for each breast. During mammo-
graphic interpretation, the radiologist combines the informa-
tion from the two views and evaluates the changes from
available prior examinations to confirm true positives �TPs�
and to reduce false positives �FPs�. It has been reported that
screening mammography using two views per breast rather
than one view can increase cancer detection sensitivity, while
decreasing the recall rate.1,2 Two-view screening mammog-
raphy has become the most common and standard method
for breast cancer screening in developed countries.

Investigators have attempted to implement multiple image
techniques in computer-aided detection �CAD� systems to
improve the accuracy of lesion analysis on mammograms.
Kita et al.3 developed a method to find correspondences be-

tween CC and MLO views of the same breast. Their method
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was based on modeling the deformation of the breast caused
by compression in different views. For a data set of 37 le-
sions, their method could predict the location in the second
view with an average minimum distance of 6.78�5.85 mm
between the correct position and an epipolar line.3 Paquerault
et al.4 investigated a two-view fusion scheme to improve the
performance of a CAD system for mass detection. In their
preliminary study, the computer-detected object pairs in two
views were first identified by using the distance between the
nipple and the detected objects.5 A trained correspondence
classifier was then used to differentiate the TP-TP pairs from
other pairs using extracted image features. Finally, a fusion
scheme that combined ranking and averaging of the pre-
screening and correspondence scores was used to estimate a
final mass score for each prescreened object. Using 169 pairs
of mammograms, they found that the two-view fusion sys-
tem achieved a significant improvement compared to their

single-view CAD system.
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In a recent study, van Engeland et al.6 investigated a
method in which a two-view classifier was trained with both
single-view and two-view features to classify the TP from
normal structures instead of training a classifier to differen-
tiate the object pairs. They evaluated the method using 948
cases and found that the method mainly improved the image-
based free response ROC �FROC� curve in the high specific-
ity range. However, no improvement was found in the case-
based FROC curve and they also pointed out that their
method may be less relevant when a CAD system is merely
used to prompt regions at a high false positive rate. Sahiner
et al.7 investigated the use of joint two-view information to
improve computerized microcalcification detection. The two-
view fusion method was trained and tested on a total of 486
paired mammograms. The improvement in detection with
their method was found to be statistically significant for both
malignant and benign clusters. Zheng et al.8 proposed a two-
view CAD system for masses which aimed to reduce the FP
rate on a given sensitivity level. It was found that at a 74.4%
case-based sensitivity, their two-view approach reduced the
FP rate by 23.7%. Qian et al.9 designed a method for fusing
detection results and image features from two views. On a
data set of 200 normal mammograms and 200 mammograms
containing small ��10 mm� masses, they obtained a signifi-
cantly improved detection performance when they used their
two-view mammogram analysis method. Recently, Velikova
et al.10 proposed a Bayesian network framework that used
the dependences between MLO and CC views to obtain a
single measure for estimating whether the mammographic
view, the breast, and the case contains a cancerous lesion.
With the use of the Bayesian network, they obtained a sta-
tistically significant improvement compared to single-view
analysis for estimating whether the view contains a malig-
nant mass. Furthermore, when the view-based results were
combined using logistic regression to estimate whether the
breast or the case contains a malignant mass, the improve-
ment was again statistically significant.

The detection of masses on mammograms is a challenging
task because the overlapping fibroglandular tissue may mim-
ick a mass or obscures the lesion. Although researchers have
devoted extensive efforts to the development of CAD sys-
tems for mass detection, the performances of current CAD
systems are far from ideal. We have been developing various
new techniques to improve the accuracy of mass
detection.11,12 In our previous study, we proposed a dual
CAD system approach that combined two mass detection
systems in parallel, one was trained with masses of average
subtlety and the other with subtle masses. The dual system
approach achieved significant improvement in the detection
of both average and subtle masses compared to the conven-
tional single system approach.13 We have also demonstrated
the feasibility of a new two-view analysis method for fusion
of information from different mammographic views.14 In this
study, our purpose is to further improve the two-view fusion
method and to develop a CAD system which combines the
dual system approach with the two-view approach. The ef-
fectiveness of the new two-view dual CAD system is evalu-

ated with a relatively large data set.
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II. MATERIALS AND METHODS

II.A. Image data sets

All mammograms in this study were collected retrospec-
tively from patient files of the Department of Radiology at
the University of Michigan with Institutional Review Board
�IRB� approval. The mammograms were digitized with a
LUMISYS 85 laser film scanner with a pixel size of
50�50 �m2 and 4096 gray levels. The full resolution mam-
mograms were first smoothed with 2�2 box filter and sub-
sampled by a factor of 2, resulting in 100�100 �m2 images.
The images at a pixel size of 100�100 �m2 were used as
the input to the CAD system.

Two independent data sets of mammograms were col-
lected for this study: A mass set with biopsy-proven malig-
nant or benign masses and a normal set containing bilateral
mammograms. The mass set contained 535 cases with 535
biopsy-proven masses in which 345 cases included only cur-
rent mammograms and 190 cases included both the current
and the prior mammograms. 233 of the masses are biopsy
proven to be malignant and 302 to be benign. Each case
contained two mammographic views �CC view and MLO
view or the lateral view�. The total number of mammograms
in the mass set is 1532 including 1070 current mammograms
and 462 prior mammograms in which 35 cases have two
prior exams and 3 cases have three prior exams. The true
location of each mass was identified independently on each
mammographic view by an experienced MQSA-approved ra-
diologist. The masses on the current mammograms are re-
ferred to as “average” and the masses on prior exams are
referred to as “subtle” because many of those may not show
a well-perceived mass even on retrospective review. The nor-
mal data set contained 800 mammograms from 200 patients;
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FIG. 1. Distributions of the mass sizes for 535 average masses identified on
the current mammograms and 190 subtle masses identified on the prior
mammograms. The size for each mass is measured independently as the
longest diameter on each mammographic view by an experienced MQSA
radiologist. The mean sizes are 15.0�7.7 mm for average masses and

10.9�6.6 mm for subtle masses, respectively.
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each case included the CC view and MLO view of both
breasts. The normal data set was only used for estimating the
FP rate during testing. Figures 1 and 2 show the histograms
of mass size and visibility, respectively, for the mass set.

II.B. Methods

Figure 3 shows a schematic of our dual CAD system with
two-view analysis. The two-view dual system approach is
described in detail below.
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FIG. 2. Histogram of the mass visibility for 1070 average masses by view
identified on the current mammograms and 462 subtle masses by view iden-
tified on the prior mammograms. The visibility is evaluated on a 10-point
rating scale with 1 representing the most visible masses and 10 the most
difficult case relative to the cases seen in their clinical practice. Each mass
on a mammogram is rated independently by an experienced MQSA radiolo-
gist. There are 60 invisible masses on current mammograms and 124 invis-
ible masses on prior mammograms.
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FIG. 3. Schematic diagram of our dual system two-view approach for mass
detection on mammograms. The system is developed for screening mam-
mography in which all masses, regardless of malignant or benign, are con-

sidered positive.
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II.B.1. Dual CAD system approach

An important purpose of a CAD system is to serve as a
second reader to alert radiologists to subtle cancers that may
be overlooked. Since the lesions identified on prior mammo-
grams upon retrospective review represent difficult cases that
are more likely to be overlooked by radiologists if similar
lesions occur on screening mammograms, it is important to
improve the sensitivity of the CAD system in detecting these
lesions. On the other hand, when a CAD system is applied to
a new mammogram in clinical practice, it has to detect breast
lesions of all degrees of subtlety effectively. However, it is
difficult to train a single CAD system to provide optimal
detection for all lesions over the entire spectrum of subtlety
because the classifiers have to make compromises to accom-
modate lesions of a wide range of characteristics.

We have developed a dual system approach and demon-
strated that it could improve the overall performance of our
CAD system.13 Briefly, the dual system is composed of two
single CAD systems in parallel. The two systems have the
same architecture that includes four processing steps: �1�
Prescreening of mass candidates, �2� segmentation of suspi-
cious objects, �3� feature extraction and analysis, and �4� FP
reduction by classification of normal tissue structures and
masses. They were optimized separately by using two differ-
ent training sets, one contained current mammograms with
average masses and the other prior mammograms with subtle
masses. The two data sets did not need to come from the
same subjects. After the two single systems were trained
separately, they were trained together with a single training
set for the dual system information fusion step using an ar-
tificial neural network. For an input unknown mammogram,
the two systems are applied in parallel and each system es-
timates a mass likelihood score for every detected object, the
trained artificial neural network merges the mass likelihood
scores of the two single CAD systems for a given object to
differentiate true masses from FPs. The details can be found
in literature.13

The single-view dual system, described above, constitutes
the first stage of the new two-view dual system in the current
study. To perform the two-view analysis, a threshold was
chosen to retain a small number of the most suspicious ob-
jects per mammographic view as input mass candidates to
the two-view fusion stage, described next.

II.B.2. Two-view information fusion

The mass candidates on one view will be paired with
mass candidates on the other view based on a regional reg-
istration method using geometric criteria. The paired objects
will undergo two-view similarity analysis to differentiate TP
and FP pairs. The two-view analysis is based on two assump-
tions: �1� The likelihood of detecting a true mass on both
views is higher than that of detecting the same FPs on both
views and �2� the corresponding true masses �TP-TP pair� on
two different mammographic views will exhibit higher simi-
larity than that of FP pairs �TP-FP pairs and FP-FP pairs� in
terms of morphological features, texture features, and cross

correlation.
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The key process of our two-view CAD system is the in-
formation fusion in which the suspicious objects on different
mammographic views are paired together and a unique fu-
sion score is generated for each individual object. Our two-
view information fusion scheme consists of four steps: �1�
Regional registration by using geometric information, �2� es-
timation of image similarity measure between paired objects
using cross correlation, �3� estimation of feature similarity
measure by designing a classifier for differentiation of TP-TP
pairs from other pairs, and �4� generation of two-view fusion
score. Figure 3 shows the block diagram of the two-view
information fusion process for suspicious objects on the CC
and MLO views of the same breast. Each step is described
below in detail.

II.B.2.a. Regional registration. Because of the compres-
sion of the highly deformable breast and the lack of invariant
landmarks in most cases, it is virtually impossible to pinpoint
the corresponding locations on different views. We previ-
ously developed a regional registration method for locating
the approximate locations of corresponding objects on mam-
mograms acquired at different views.4 From the geometry of
the mammographic image acquisition, it is known that an
object seen on the CC view can appear only in a limited
region in the MLO view, and vice versa. Radiologists at our
institution routinely use the nipple-to-object distance �NOD�
to estimate the correspondence between objects seen on dif-
ferent views of the same breast. We emulate the radiologists’
technique and use the NOD as the geometric matching crite-
rion for initial registration of potential pairs.

The regional registration is performed in a polar coordi-
nate system the origin of which is located at the nipple loca-
tion. Figure 4 illustrates the process of our regional registra-
tion method for a suspicious object on CC view. Using the
distance NOD=Rc from the nipple Nc to the center OC1 of
the object on CC view, an annular region that is bounded by
two arcs of radii Rc��R is defined on MLO view with the
nipple Nm as the center. The radial width of the annular
region 2�R was estimated with a large data set to be �3 cm
in our previous study.5 Any suspicious object on MLO view
that fall within the annular region is paired with the object
OC1 on the CC view. In this example, Om1 and Om2 are paired

FIG. 4. Illustration of the process of our regional registration method for
locating potential object pairs on CC and MLO views.
with OC1. After the regional registration process is performed
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for all suspicious objects detected on the CC view, a number
of object pairs that include true mass pairs �TP-TP pairs� and
false pairs �FP-TP, TP-FP, and FP-FP pairs� are generated.

We developed an automated nipple detection method
previously15 but it did not detect the nipple location correctly
in all mammograms. To evaluate the feasibility of the two
view analysis method independent of the nipple detection
errors, we used manually identified nipple locations in this
study.

II.B.2.b. Cross correlation measure. In this step, a tem-
plate matching approach is used to measure the similarity of
the two objects in order to distinguish the truly matched
object pairs from the incorrect object pairs. Cross correlation
is a popular template matching method. A previous study
from our laboratory found that cross correlation was superior
to 11 other similarity measures for matching corresponding
masses on serial mammograms.16 In this study, we therefore
use cross correlation as the similarity measure to match the
same mass appearing on different views. Assume that a mass
candidate on the CC view has been paired with several de-
tected objects in the annular region on the MLO view. For a
given object pair, the suspicious regions on CC and MLO
views are denoted as Ic and Im, respectively, where the region
Ic is a box enclosing the mass candidate detected by the dual
CAD system on the CC view and the size of which is deter-
mined by the segmentation of the object on this view. The
region size is thus varied for each of the candidate object.
Because the detected objects may not be centered at the
bounding box, a 2�2 mm2 search region is defined with its
center at the central location of the paired object on the MLO
view. The center of the reference region Ic is placed within
the search region and moved one pixel at a time over the
entire search region. The cross correlation �r� between Ic and
Im, where Im is a region with the same size as Ic and centered
at each location on the MLO view, is calculated as shown
below

r =
�i=1

n �Ii
c − Īc��Ii

m − Īm�
��i=1

n �Ii
c − Īc�2��i=1

n �Ii
m − Īm�2

, �1�

where Ii
x denotes the ith pixel in the region Ix �x=c ,m�, n is

the number of pixels in the reference object region Ic, and

Īx =
1

n
�
i=1

n

Ii
x. �2�

The cross correlation measure is defined as the maximum r
value among all locations within the search region.

II.B.2.c. Two-view similarity classification. We assumed
that the features of the same mass on different views will
show more similar properties than those of false pairs so that
true mass pairs �TP-TP pairs� can be distinguished from false
pairs by performing feature classification in the combined
space of similarity features.

Three groups of features, morphological features, Hessian
features, and texture features are extracted from each object.
Similarity features are derived as the absolute difference and

the mean of the corresponding features of each object pair.
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These similarity features, in combination with the geometric
similarity, i.e., the difference in NOD between the paired
objects, formed the feature space for classification of true
pairs from false pairs. A linear discriminant analysis �LDA�
classifier was trained to estimate a two-view similarity score
for each object pair as detailed in Sec. II B 4 below.

A total of 13 morphological features was extracted as the
descriptors of the segmented mass shape. The morphological
feature descriptors include the area in terms of the number of
pixels in the object, circularity, contrast, convexity, Fourier
descriptor, normalized radial length �NRL� mean, NRL area
ratio, NRL entropy, NRL standard deviation, NRL zero
crossing count, perimeter, perimeter-to-area ratio, and rectan-
gularity. The detailed definitions were described in our pre-
vious study.17

Hessian features are derived from the eigenvalues of Hes-
sian matrices in the region of interest �ROI� containing a
suspicious object in order to distinguish circular objects from
other objects. The Hessian matrix for a 2D image f�x ,y� is
defined as

Hf = � fxx fxy

fyx fyy
� , �3�

where fxx= ��2 /�x2�f , fxy = fyx= ��2 /�x�y�f , and fyy

= ��2 /�y2�f . To enhance local structures of variable sizes and
also reduce the noise, f�x ,y� is convolved with multiscale
Gaussian filters having a range of standard deviations ��s

=4–10 mm� before calculating the Hessian matrices. We de-
signed a response function for mass enhancement at a loca-
tion �x ,y� and a given scale as

R�f�x,y�,�s� = 	�2
2

�1
2 if �1,�2 � 0

0 otherwise,

 �4�

where �1 and �2 are the eigenvalues of Eq. �3� with
��1�� ��2� at the scale with Gaussian filter �s. The Hessian
feature at a location �x ,y� is defined as the maximum value
of the response at that location among all scales. Three Hes-
sian features, the Hessian feature at the center location of the
ROI �H1�, the maximum Hessian feature within the ROI
�H2�, and the difference between H1 and H2, are calculated
for each object.

The texture features are described by the run length sta-
tistics �RLS� as follows. The rubber-band straightening trans-
form �RBST� is applied to each object. A band of
60-pixel-wide region around the object margin is trans-
formed to a rectangular image. A gradient magnitude image
of the transformed rectangular object margin is derived from
Sobel filtering. Five RLS texture features—short run empha-
sis, long run emphasis, gray level nonuniformity, run length
nonuniformity, and run percentage—are extracted from the
gradient image in both the horizontal and vertical directions,
resulting in a total of ten RLS texture features. Detailed defi-
nition of the RBST and the RLS texture features for mam-
mographic masses can be found in the literature.18

II.B.2.d. Generation of two-view fusion score. Since the

correspondence of the location of an object projected on dif-
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ferent views cannot be determined accurately, several situa-
tions will occur. An object on one view may pair with a
single object, with multiple objects, or with no object, de-
pending on the number of objects within the annular region
on the second view defined for the given object. Each object
pair will obtain a similarity score after the LDA classifica-
tion. We have designed a fusion method to assign a unique
score for the suspicious object on the first view from the
similarity analysis. The similarity LDA score of the object
pair is first weighted by �i.e., multiplied with� the cross cor-
relation measure of the pair. The weighted LDA score is then
used as the fusion score for the object if there is only a single
object pair. For an object that was paired with multiple ob-
jects, the maximum weighted LDA score among all object
pairs is chosen as the fusion score for the object. For an
object without object pairs, the fusion score is set to be −2.0
as penalty. The value of −2 was chosen because it was
slightly smaller than the minimum fusion score obtained in
the training set.

II.B.3. Two-view system classifier

During this final stage, we have designed a third LDA
classifier with two input features, the mass likelihood score
from the single-view dual system detection stage and the
fusion score from the two-view analysis, to distinguish the
mass from normal tissue on each view. The same two-view
fusion process is applied to the mass candidates on each
view so that each view will have a set of detected objects
with individual scores at the output of this two-view system
LDA classifier. The classifier training and testing processes
are described below.

II.B.4. Training and testing

To train and test the proposed computerized methods, we
randomly separated the mass data sets by case into two ap-
proximately equal-size independent subsets. Twofold cross
validation was used for training and testing the algorithms.
In each cross-validation cycle, we used the training subset
for that cycle to select the optimal feature set and train the
parameters of the classifiers for the single-view dual system,
the two-view similarity analysis, and the two-view dual sys-
tem. For each classifier, the classification accuracy for the
training subset was optimized in terms of the area under the
ROC curve, Az. The single-system LDA classifiers would be
trained to combine the multidimensional features into the
mass likelihood score for each object from the single-view
system detection stage, and a neural network classifier was
trained to merge the single system scores into a dual system
score. The two-view fusion LDA classifier would be trained
to combine the multidimensional similarity features into a
similarity measure for the paired objects. The two-view dual
system LDA classifier would be trained to differentiate TPs
from FPs.

The LDA classifiers for the single-system and the two-
view similarity analysis were trained with feature selection.
Our procedures for feature selection and classifier design

11,19,20
have been described in detail elsewhere. Briefly, fea-
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ture selection with stepwise LDA �Ref. 21� and simplex op-
timization were used to select the best feature subset and
reduce the dimensionality of the feature space. The best com-
bination of the stepwise feature selection parameters, includ-
ing the threshold values for feature entry, feature removal,
and tolerance of feature correlation, was first chosen by using
a leave-one-case-out resampling method and a simplex opti-
mization procedure within the training subset. The Az from
the leave-one-case-out testing was used as the figure of merit
�FOM� to guide the search for the maximum in the parameter
space. Using the best set of parameters and the training sub-
set alone, a final stepwise feature selection was then per-
formed to select a set of features and the weights of the LDA
were estimated.

Once the training with one mass subset was completed,
the parameters were fixed and applied to the cross-validation
test subset. The entire training and testing processes were
repeated for the other cross-validation cycle in which the
training and test subsets were switched. The set of normal
mammograms was not used during training. The trained sys-
tem from each cycle was applied to the normal set to esti-
mate its FP rate in screening mammograms.

II.B.5. Performance analysis

The detection performance of the two-view dual CAD
system was assessed by free response ROC �FROC� analysis.
An FROC curve was obtained by plotting the mass detection
sensitivity as a function of FP marks per image at the corre-
sponding decision threshold. The mass detection sensitivity
was determined by the detected masses on the test mass sub-
set, whereas the number of FP marks produced by the CAD
system was determined by the detected objects on the normal
cases only. FROC curves were presented on a per-
mammogram and a per-case basis. For image-based FROC
analysis, the mass on each mammogram was considered an
independent true object. For case-based FROC analysis, the
same mass imaged on the two-view mammograms was con-
sidered to be one true object and detection of either mass or
both masses on the two views was considered to be a TP
detection. Since we used twofold cross validation method for
training and testing, we obtained two test FROC curves, one
for each test subset, for each of the conditions �e.g., single-
view approach or two-view approach�. In order to compare
the performance of the single-view and the two-view CAD
systems, we applied the jackknife free-response ROC
�JAFROC� method developed by Chakraborty et al.22 to each
pair of the image-based FROC curves obtained with the two
systems for the same test subset. To summarize the results
for comparison, an average test FROC curve was derived by
averaging the FP rates at the same sensitivity along the
FROC curves of the two test subsets for each condition.

III. RESULTS

III.A. Single-view dual CAD system

During the first step of our two-view analysis, our previ-
13
ously developed dual CAD system was used as the single-
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view system to detect mass candidates as input to the later
stages. We experimentally chose a criterion of using a maxi-
mum of five most suspicious mass candidates per image
from the single-view detection stage which is a compromise
between high sensitivity to retain masses on both views to be
paired and the FP rate not being excessively high. With this
criterion, the image-based and case-based sensitivities on the
current mass set were 88.6% and 95.4%, respectively, while
the corresponding sensitivities for the prior mass set were
71.3% and 80.7%, respectively.

III.B. Regional registration

In this study, we used the NOD to register the mass can-
didates identified by the single view CAD system. Figure 5
showed the histogram of the NOD difference for the same
mass which were identified by radiologists on different mam-
mographic views. In our mass set, there were a total of 475
average masses on current mammograms and 107 subtle
masses on prior mammograms which could be seen on both
views. We used 30 mm as the upper bound to match the
object pairs from the same breast and thus the annular region
was chosen to have a radial width of �30 mm. Under this
condition, 9 out of 475 average masses and 1 out of 107
subtle masses were not able to be paired correctly. During
the regional registration process, there were a total of 8271
object pairs from the two mass subsets which generated an
average of 10.8 object pairs in the CC and MLO views of a
breast and 4152 object pairs from the normal data set with an
average of 10.4 object pairs in the two views of a breast.
After the regional registration, we were able to match only
86.3% �410 out of 475� of the mass pairs on current mam-
mograms and 57.9% �62 out of 107� of the mass pairs on
prior mammograms. Of the average masses, 11.8% �56 out
of 475� of the misses were caused by either one or both of
the masses being missed by the dual CAD system, and only
1.9% �9 out of 475� of the average masses could not be
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FIG. 5. Distributions of the NOD differences for the same mass on different
mammographic views identified by radiologists.
matched because the difference in the NODs was larger than
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30 mm. For the subtle masses on prior mammograms, the
corresponding missed rates were 41.1% �44 out of 107� and
0.9% �1 out of 107�, respectively.

III.C. Two-view similarity classification

For two-view similarity classification, the number of the
selected features from the two mass subsets was 6 �differ-
ence in NOD, average of segmented area, average of Hessian
output, and three average RLS texture features� and 7 �Dif-
ference in NOD, average of segmented area, average of Hes-
sian output, difference in NRL entropy, and three average
RLS texture features�, respectively. Figure 6 shows the test
ROC curves of the two-view similarity classifier on mass
subsets obtained from cross-validation testing with Az values
of 0.87�0.01 and 0.88�0.01, respectively.

III.D. Detection performance comparison

The test FROC curves for average masses on current
mammograms are compared in Fig. 7. The FOMs and the p
values of the difference between pairs of image-based FROC
curves under different conditions estimated by JAFROC
analysis are tabulated in Table I. Because of the multiple
comparisons, the p value to achieve statistical significance
may be reduced to 0.002 �=0.05 /24� using the conservative
Bonferroni correction.23,24 All paired comparisons achieved
statistical significance �p�0.002�. When the single CAD
system was applied to the test sets, the average case-based
sensitivities were 50.6% and 63.6% at 0.5 and 1.0 FPs/
image, respectively, for the average masses on current mam-
mograms. When the dual CAD system was applied to the test
sets, the average case-based sensitivities were improved to
62.1% and 80.1%, respectively, at the same FP rates for the
average masses. With the proposed two-view dual system,
the average case-based sensitivities were further improved to
67.4% and 83.7%, respectively, at the same FP rates.

The improvement with the proposed approach was also
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FIG. 6. The test ROC curves for classification of TP-TP pairs from other
pairs on two test mass subsets. The Az values for the two mass subsets
obtained from cross-validation testing were 0.87�0.01 and 0.88�0.01,
respectively.
analyzed for the subtle masses on prior mammograms �Fig.
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8�. The FOMs and the p values of the difference between
pairs of image-based FROC curves under different condi-
tions estimated by JAFROC analysis for subtle masses are
tabulated in Table II. The dual system and the two-view dual
system have significantly higher �p�0.002� detection per-
formances than the single system, whereas the difference be-
tween the dual system and the two-view dual system did not
achieved statistical significance �p	0.002�. When the single
CAD system was applied to the test subsets, the average
case-based sensitivities were 22.6% and 36.2% at 0.5 and 1.0
FPs/image, respectively, for the subtle masses on prior mam-
mograms. When the dual CAD system was applied to the test
subsets, the average case-based sensitivities were improved
to 41.5% and 55.5%, respectively, at the same FP rates. With
the proposed two-view dual system, the average case-based
sensitivities for subtle masses were further improved to
44.8% and 57.0%, respectively, at the same FP rates.

IV. DISCUSSION AND CONCLUSION

We have been developing CAD methods for mass detec-
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FIG. 7. Comparison of the average test FROC curves obtained from aver-
aging the FROC curves of the two independent subsets for average masses
on current mammograms. The FP rate was estimated from normal mammo-
grams. �a� Image-based FROC curves. �b� Case-based FROC curves.
tion on mammograms. We previously designed a dual system
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approach to improve the overall performance for mass
detection.13 We also conducted a feasibility study of a new
two-view analysis method.14 In this study, we combined
these two new approaches into a two-view dual CAD system
to further improve its detection accuracy and evaluated its
performance in a relatively large data set. Our results indi-
cated that the proposed system could significantly improve
the mass detection accuracy in comparison to the single
CAD system and the dual CAD system for average masses,
whereas the difference in the performances between the two-
view dual system and the single-view dual system did not
achieve statistical significance for subtle masses.

The improvement achievable with the two-view fusion
analysis depends strongly on the sensitivity of the single-
view detection stage. If the lesion is missed in the single-
view detection, the two-view analysis will not improve the
sensitivity. We used the dual-system analysis as the first step
in order to detect as many masses as possible �especially for
subtle masses� on single views. Although the improvement
by dual system analysis was substantial in comparison with
the single CAD system, 110 masses �65 out of 475 average
masses and 45 out of 107 subtle masses� still could not be
matched after regional registration. The improvement that
was achieved by the two-view analysis was therefore some-
what limited, especially for the subtle masses. For average
masses on current mammograms, when we only analyzed the
masses which could form TP-TP pairs during regional regis-
tration �410 for the average mass set�, it was found that the
average case-based sensitivities reached 73.4% and 85.7% at
FP rates of 0.5 and 1.0 per image, respectively, with the
two-view dual system. Similarly, for the subtle mass set, the
average case-based sensitivities reached 67.7% and 80.6%

TABLE I. Estimation of the statistical significance of the difference between
the FROC curves for three approaches: The single CAD system, the dual
system, and the two-view dual system. The FROC curves with the FP
marker rates obtained from the normal data set were compared. The pairs of
image-based FROC curves were compared to JAFROC methodology. The
figure of merit from JAFROC analysis for each curve is shown.

JAFROC
Analysis

FOM �average masses�

All cases Malignant cases

Test
subset 1

Test
subset 2

Test
subset 1

Test
subset 2

Single system 0.63 0.63 0.58 0.60
Dual system 0.69 0.69 0.68 0.69
p values �0.0001 �0.0001 �0.0001 �0.0001
Dual system 0.69 0.69 0.68 0.69
Two-view
dual system

0.73 0.72 0.74 0.74

p values 0.0003 0.001 �0.0001 0.0004
Single system 0.63 0.63 0.58 0.60
Two-view
dual system

0.73 0.72 0.74 0.74

p values �0.0001 �0.0001 �0.0001 �0.0001
�62 for the subtle mass set� at the same FP rates. It can
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therefore be expected that the improvement by two-view
analysis will be greater when the single-view detection sys-
tem can be further improved in the future.

It may be noted that the improvement in detection sensi-
tivity obtained by two-view analysis is different from the
apparent increase by case-based FROC analysis. In case-
based FROC analysis, a mass is considered to be detected if
it is detected either on one view or on two views. With two-
view analysis, there is a true improvement in the detection
sensitivity, as can be observed from the comparison of the
image-based FROC curves. If an additional detected mass is
in the other view of a breast for which the mass is already
counted as TP in the case-based FROC curve for single-view
analysis, this additional detection will not contribute to an
improvement in the case-based FROC curve for two-view
analysis. This is the reason that the difference between the
two case-based FROC curves for the single-view and two-
view analysis is smaller than that observed between the two
image-based FROC curves. However, we could not conduct
a statistical comparison for case-based FROC curves due to
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FIG. 8. Comparison of the average test FROC curves obtained from aver-
aging the FROC curves of the two independent subsets for subtle masses on
prior mammograms. The FP rate was estimated from normal mammograms.
�a� Image-based FROC curves. �b� Case-based FROC curves.
the fact that the FPs from the two views might not be inde-
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pendent and a statistical test is not yet available under this
situation. Case-based performance is more generally reported
by researchers and CAD system manufacturers so that it is
more often used for comparing the detection performance
between CAD systems. One should note that the actual
image-based detection performance of two systems with
similar case-based performance can be significantly differ-
ent. For clinical applications, there is a practical advantage to
increase the sensitivity by two-view analysis because radi-
ologists have greater confidence in a lesion being a TP if the
same lesion is detected on both views and are less likely to
ignore the CAD mark. Dismissing correct CAD marks has
been observed to be a major cause of some radiologists not
gaining the benefit of using CAD.

In summary, we have developed a two-view dual CAD
system to improve computerized detection of breast masses
on mammograms. Our results indicate that the proposed
CAD system significantly improved the detection perfor-
mance as estimated by the JAFROC analysis. The improve-
ment by two-view analysis is strongly related to the perfor-
mance of the single-view detection system. The performance
of the two-view dual system can potentially be further im-
proved if the single-view CAD system is improved. We
manually identified the nipple locations for the two-view
analysis in this study. We will continue to improve the accu-
racy of our automated nipple detection method15 so that we
can fully automate the two-view analysis in the future.
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