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Efforts to minimize the effects of partial volume contamination (PVC) in in vivo magnetic
resonance spectroscopy (MRS) have focused upon improving the sensitivity and efficiency of
spatially localized MRS measurements. Such improvements may improve spatial resolution and
reduce the time required to acquire multiple spectra, however, PVC can affect in vivo spectra at
any resolution. In this paper, a model for segmenting in vivo MRS signals compromised by PVC
in selected applications is introduced. The segmentation algorithm used is linear and is based on
filters originally developed for image processing applications. The model is developed from first
principles and evaluated using computer simulations. It is suited for segmenting multivoxel or
chemical shift imaging data, and can be used with spectra acquired at any spatial resolution. It
is used to estimate the size of the partial volumes contributing to a voxel compromised by PVC
and the spatially selective signal components that would be expected to arise from these partial
volumes if they could be measured directly. Several spectral perturbants present in in vivo MRS
measurements violate the linearity assumptions underlying the model and produce systematic
errors that must be accounted for. A number of perturbants are discussed, and the potential in
vivo applications of the model are illustrated using solvent-suppressed 'H—CSI spectra from the

normal human brain.
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I. INTRODUCTION

Magnetic resonance spectroscopy (MRS) has become an
important tool for noninvasively studying the biochemistry
of normal and pathological human tissues in vivo.'™® De-
spite this, in vivo MRS has yet to firmly establish itself as a
clinical tool. Several factors are responsible for this, includ-
ing the intrinsic insensitivity of MRS and the relative abil-
ity of various localization techniques to exclude unwanted
signal contributions. These factors limit the spatial resolu-
tion and spatial selectivity of MRS and directly affect the
qualitative and quantitative value of noninvasive
measurements.>”'? Inadequate spatial resolution and/or
spatial selectivity effectively corrupts localized MRS sig-
nals by causing signal contributions from sources outside
the volume of interest (VOI), to be included in the ac-
quired signal. This effect is known as partial volume con-
tamination (PVC) and can lead to incorrect conclusions
concerning the identity and relative amounts of various
biochemical species believed to arise from a specific tissue
or lesion. As a result, subtle differences between normal
and pathological tissues can be masked by PVC, especially
in locations where the two tissue types mix with one an-
other beyond the limits of MRS to resolve.

Efforts to minimize the effects of PVC have focused
upon improving the sensitivity and efficiency of spatially
localized MRS measurements. Several improvements have
increased the relative sensitivity of single voxel MRS mea-
surements, but signals must still be averaged over relatively
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large volumes of tissue to obtain an adequate signal-to-
noise ratio (SNR) within a reasonable period of time.’
Other improvements have increased the efficiency of ac-
quiring multiple spatially localized spectra in a time effi-
cient manner (e.g., chemical shift imaging),'"!? but this
does not necessarily translate into an improvement in spa-
tial resolution. Furthermore, the acquisition of multiple
spatially localized signals can exacerbate the problem, as
several different signals can be compromised by PVC if
special attention is not paid to voxel placement. Ultimately
PVC can affect spatially localized signals at any spatial
resolution, and the only way to eliminate the effects of
PVC during signal acquisition is to prevent its occurrence
by shaping each localized volume to conform to the local
geometry of the VOL."

In this paper, we introduce a model for segmenting
MRS signals compromised by PVC in selected applica-
tions. The model described here incorporates a linear seg-
mentation algorithm we term “ASPECT” (Analysis of
SPectra using Eigenvector deComposition of Targets) that
utilizes the properties of the eigenimage filter.'* The model
provides a closed-form solution to the segmentation prob-
lem and offers an operator-independent method for seg-
menting MRS spectra compromised by PVC. A function-
ally similar version of the model has been reported for
volume determination in MRI,15 however, a recent search
of the literature indicates that no other post-processing
methods have heretofore been implemented to correct the
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FiG. 1. The PVA model for two-component systems. The voxel Vy is
composed of two partial volumes—one within the VOI and one outside
the VOI. Given the spatial resolution of this measurement, the signals
arising from the partial volumes cannot be measured directly, however,
they can be estimated using the PVA model if the signal arising from Vy
is modeled as a linear combination of the signals arising from V,and V.

effects of PVC in spatially localized MRS. The model is
developed from first principles and is based on the assump-
tion that PVC can be modeled as a linear phenomenon. It
is suited for segmenting multivoxel or chemical shift imag-
ing (CSI) data, and can be used with spectra acquired at
any spatial resolution. It is used to estimate the size of the
partial volumes contributing to a voxel compromised by
PVC and the spatially selective signal components that
would be expected to arise from these partial volumes if
they could be measured directly. The model and the AS-
PECT algorithm are fully developed for two-component
systems—that is, for systems where PVC arises from only
one undesired source—however, it is generally applicable
and its extension to multicomponent systems is straightfor-
ward.

Violations of the assumption that PVC can be modeled
as a linear phenomenon introduce systematic error into the
analysis and restricts the potential utility of the model.
Such violations are produced by biological heterogeneity
and/or spectral perturbations, such as feature misregistra-
tion, phase differences, and differential saturation between
spectra. The effects of these spectral perturbations on AS-
PECT is discussed and illustrated via simulation. The ef-
fect of biological heterogeneity is likely to be application
specific, and must be characterized and/or corrected for in
each case. As an example of its potential in vivo applica-
tions, the model is also demonstrated using solvent-
suppressed 'H-CSI spectra from a normal human brain.

A. The partial volume analysis model

Partial volume contamination results from incomplete
superposition of a localized volume with the VOI. Figure 1
illustrates the spatial relationship that produces PVC from
one undesired source. The VOI is shaded in the figure and
the rectangular grid represents an array of contiguous vox-
els that intersect a plane through the VOI. Each voxel in
the grid produces an extrinsic MRS signal that has contri-

Medical Physics, Vol. 21, No. 2, February 1994

butions from all sources within it. Given the location and
spatial resolution of these voxels, the signal arising from
voxel Vy has contributions from partial volumes within the
VOI and outside the VOI, and is thus compromised by
PVC. The signal arising from voxels ¥V, and V5 are un-
compromised in the sense that they are composed exclu-
sively of contributions from sources within or outside the
VOIL. In a clinical scenario, this is analogous to Vy being
composed of partial volumes of a lesion and contiguous
normal tissue. In this case, the signal arising from ¥ con-
tains contributions from both and the unambiguous char-
acterization of the tissue in ¥y is compromised.

The partial volume analysis model for a two-component
system seeks to segment the signal arising from Vy into the
spatially selective signal components that arise from the
partial volumes. To solve this problem, we model the signal
arising from Vy as a linear combination of the signals aris-
ing from two other voxels. The use of a linear model re-
quires that three assumptions be met. First, we assume the
signal arising from Vy is composed of exactly two signal
components, and that independent measurements of these
signal components can be made. Second, we assume the
signals arising from the two components are qualitatively
different from one another and uniquely characterize their
respective sources. Third, we assume that PVC is a linear
phenomenon and the signals arising from a given source
distribution are spatially invariant (i.e., the sample is ho-
mogeneously distributed across the voxel). While these as-
sumptions limit the potential in vivo applications of the
PVA model, they may not be unreasonable in certain ap-
plications. As an example, Fig. 1 illustrates the use of CSI
to sample relatively small contiguous voxels that bracket
the VOL. In this case, the assumptions may be reasonable,
as the effects of biological heterogeneity are minimized
given the proximity of the voxels and the simultaneous
acquisition of all three input signals.

To model the partial volume problem, we define the
spatially localized discrete time signal from Vy to be the
target signal we wish to segment, and denote it x{n]. We
assume that ¥y is made up of contributions from two
source distributions that are present in V4 and V. The
discrete time signals from V', and ¥V are denoted a[n] and
b[n], respectively. The signals x[#n], a[n], and b[n] are nom-
inally N-point discrete time sequences derived from peri-
odically sampling the corresponding free induction decays.
Given the assumptions underlying the PVA model, x{n]
can be modeled as a linear combination of a[r] and b[n]:

x[n]=aal[n]+Bb[n]. (1

If V,, Vg, and Vy also denote their respective absolute
volumes (in cma), then the partial volumes within the VOI
and outside the VOI are V,=aV, and V,=BV 3, respec-
tively. The component signals arising from ¥ and V, are
given by x [n]=aa[n] and x g[n] =pBb[n], respectively. This
analysis reduces the segmentation of x[n] to acquiring the
signals a[n)], b[n], and x[x], and solving (1) for a and B.
We assume that the desired signals can be acquired using
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FIG. 2. The geometric relationship between D, U, and E. D and U are two
linearly independent vectors that span the N-dimensional inner product
space V¥, and @ is the angle between them. E is the vector in ¥ that
simultaneously maximizes the projection of D and suppresses the projec-
tion of U onto itself. The direction of E is given by Eq. (5).

various noninvasive spatial localization techniques. The so-
lutions for a and B are estimated using the ASPECT algo-
rithm described below.

B. The ASPECT algorithm

ASPECT is used to determine the values of ¢ and B in
(1) given the signals x[n], a[n], and b[n]. In theory, the
N-point discrete time domain signals can be used directly,
providing phase differences between the signals are elimi-
nated. In practice, we generate the corresponding N-point
discrete frequency domain signals X[k}, A[k], and B[k] and
use only their pure absorption components. In the analysis
that follows, these discrete sequences are denoted in terms
of the N-dimensional vectors X, A, and B, and (1) is recast
as the vector equation

X=aA+BB. (4)

The ASPECT algorithm uses the properties of the
eigenimage filter developed by Windham et al.'* The eigen-
image filter for two-component systems is developed from
a contrast optimization criterion that seeks to maximize
the projection of a desired feature, characterized by the
vector D, while suppressing the projection of a single un-
desired feature, characterized by the vector U, onto an
eigenvector E. Windham showed that there is only one
nontrivial solution for E, and it is given by

D-U
E=D—(U.U)U, (5)

where D+ U and U-U are scalar products. The geometric
relationship between D, U, and E is illustrated in Fig. 2.
There are four important properties of E, insofar as AS-
PECT is concerned: (a) E is always in the vector space
spanned by D and U; (b) E always exists and E5£0, except
when D=KU; (c) the projection of U onto E is suppressed
(i.e., E-U=0); and (d) the projection of D onto E is not
identically zero, except when D=kU. Note that E is the
component of D orthogonal to U and can be derived using
the Gram-Schmidt orthogonalization procedure.'

The properties of E are exploited by ASPECT to seg-
ment signals compromised by PVC into their individual
components. To do this, we define the vector X to be the
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FIG. 3. The geometric relationship between A, B, X, E, , and Eg. A and
B are two linearly independent vectors that span ¥V and @ is the angle
between them. X is a linear combination of A and B. E, is the vector
in ¥ that simultaneously maximizes the projection of A and suppresses
the projection of B onto itself. Eg is the vector in ¥ that simultan-
eously maximizes the projection of B and suppresses the projection of
A onto itself.

target vector we wish to segment, and the vectors A and B
to be the constituents of X. The components X are then
given by aA and B, where a and 8 are termed the frac-
tional components of A and B in X, respectively. In order
to determine a and B, we form two eigenvectors, denoted
E, and Eg, using (5). The geometric relationship between
these eigenvectors and A, B, and X is illustrated in Fig. 3.
The eigenvector E, is formed by defining A as the desired
feature and B as the undesired feature in (5):

A‘B
EA=A—( )B. (6)

BB

The eigenvector Eg is formed by reversing the assignments
of A and B made above:

B-A
EB=B—(A_A)A. (7)

Based on the eigenvector properties stated above, it follows
that E, +B=Eg+A=0. It also follows that E, + A0 and
Eg-B-40, unless A and B are parallel.

In order to determine the fractional component of A in
X, we form the scalar product E,+X in (4) and solve for
a:

E A° X
- E A A )
Substituting (6) into (8), we obtain an expression for a in
terms of A, B, and X:

_(A-X)(B-B)—(A-B)(B-X)
~  (A-A)(B-B)—(A-B)?

The expression for 8 is derived in analogous fashion and is
given by

a

(8)

(9
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TABLE I. ASPECT segmentation of signals containing two features. Seg-
mentation results are presented for two sets of data utilizing two well-
resolved or two poorly resolved resonances. Rows 1A and 1B give seg-
mentation results for deterministic data. SNR,, and SNRy are the SNR
values for the resonances in A and B, respectively. SNR$ and SNR are
the SNR values of the resonances in X at the corresponding positions in
A and B. ¢, and B, are the ASPECT estimates of a and 3, where the
predicted values (denoted a,and Bp) are 2.00 and 5.00, respectively. A%,
and A%;g are statistics used to compare the ASPECT estimates with the
corresponding predicted values.

Two well-resolved resonances

TABLE II. ASPECT segmentation of signals containing multiple overlap-
ping features. Segmentation results are presented for a set of data that
simulate in vivo *’P-MRS spectra. Row 1 gives segmentation results for
deterministic data. SNR values are given for the spectral feature corre-
sponding to the PCr resonance. For rows 2-5, PCr has the highest SNR
of the resonances present in each spectrum. The signals used here simu-
late in vivo *'P-MRS spectra from a normal human brain (A), prolacti-
noma (B), and a mixture of the two (X). a, and B, are the ASPECT
estimates of a and 3, where the predicted values (denoted a, and B,) are
0.75 and 0.25, respectively. A%, and A% are statistics used to compare
the ASPECT estimates with the corresponding predicted values.

Row S/N, S/Ny S/Ni S/N¥® o A%, B, A%, Row S/N, S/Ny S/Ny a, A%, B. A%;
2A 2721 21.62 4593 113.58 1985 —0.75 4942 —1.16 2 29.35 2226 2751 0746 053 0.252 +0.80
3A 1328 1061 23.09 5608 1928 —3.60 4728 —5.44 3 1451 11.66 13.80 0726 —320 0270 +8.00
4A  27.21 21.62 23.09 5608 1982 —0.75 4940 —1.20 4 2935 2226 13.80 0.747 040 0247 —120
5A 1328 1061 4593 113.58 1931 —3.45 4730 —540 5 1451  11.66 27.51 0.726 —320 0274 +9.60
Two poorly resolved resonances

Row S/N, S/Ng S/NY® S/N® o A%, B, A%

1B - <+ 2000 - 5000 - various spectral perturbations. These results are summa-
2B 2829 2155 4539 11345 2006 +0.30 4934 —132  rized in Table III and illustrated in Figs. 7 and 8.

ig ;‘;";; ;?:; ;;;; :g'gg ;gg; +(1)-Z(5) :gz‘; —?-;i All simulations were performed on a SUN 3/160 work-
SB 1441 1057 4539 11345 2038 +190 4694 —6.12 station equipped with a TAAC-1 application accelerator.

4SNRy values were calculated directly from X.

"SNRy values were calculated indirectly from deterministic a,A or BB
and the noise signal added to deterministic X. This was required as a
result of the degree of overlap of the features in A and B.

_(B-X)(A-A)—(A-B)(A-X)
~ (A+A)(B'B)—(A-B)?

Note that the expressions for @ and 3 are symmetric with
respect to A and B and have identical denominators.

The PVA model and ASPECT algorithm are generally
applicable to systems containing more than two compo-
nents. In the case of multicomponent systems, (1) is ex-
panded to include weighted contributions from several
components and x[n] is modeled as a linear combination of
each. The corresponding vector equation for M compo-
nents is given by

(10)

M
X= z a,'A,'.
i=1
The values of each a; are calculated from (8) using the
corresponding generalized eigenimage filter, which can be
computed directly using the Gram-Schmidt orthogonal-
ization procedure.!’

(1)

Ill. SIMULATIONS

Computer simulations were performed to test the accu-
racy of ASPECT and to illustrate the effects of varying
random error, spectral resolution, and the complexity of its
signal inputs when the linearity assumptions underlying
the PVA model are satisfied. These results are summarized
in Tables I and II and illustrated in Figs. 4-6. Additional
simulations were performed to test the effects of violating
the linearity assumptions underlying the PVA model by
intentionally introducing systematic error in the form of
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Simulated data were created using the SA/GE™ spectral
analysis software package (GE Medical Systems, Milwau-
kee, WI) and processed using an eigenanalysis program
named SAGETOOL written in C. SAGETOOL inputs the sig-
nals A, B, and X and outputs estimates of the scalar con-
stants a and 8 (denoted a, and 3,) calculated by ASPECT

A

| LALLM L B A L B e S 2|

1000 500 [} -500 -1000
Hz

FIG. 4. ASPECT segmentation of two well-resolved features. A and B are
simulated signals with added noise containing a single resonance with
linewidth 50 Hz FWHM at 200 and —200 Hz, respectively. X is a sim-
ulated signal containing both resonances with a,=2.000 and S8,=35.000.
Each signal consists of 1024 points and has a digital resolution of 0.5
points/Hz. A%, and A%g are —3.60 and — 5.44, respectively, and cor-
respond to row 3A in Table I. Note that A has no remarkable features.
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FIG. 5. ASPECT segmentation of two poorly resolved features. A and B
are simulated signals with added noise containing a single resonance with
linewidth 50 Hz FWHM at 25 and —25 Hz, respectively. X is a simulated
signal containing both resonances with ap=2.000 and 8,=5.000. Each
signal consists of 1024 points and has a dp ital r&olutlon of 0.5 points/
Hz. A%, and A%gare +1.75 and — 6.12, respectively, and correspond to
row 3B in Table I. Note that A has no remarkable features.

and the component signals a A and 8,B. The values of a,
and B, are then compared to the predicted values of a and
B (denoted a, and Bp) and a statistic is calculated to com-
pare the estimated and predicted values. This statistic is
denoted A%, or A%g. In the case of a, A%, is defined as
the difference between a, and a, and is expressed as a
percentage of a,. A significant A%,, value (>10%) indi-
cates that the underlying cause (i.e., random or systematic
error) has introduced a significant error component paral-
lel or antiparallel to A, depending on the sign of A%, .
A%pg is similarly defined. This statistic is used to decipher
general trends between simulations and small differences in
A%, or A%g may not be significant.

All signals within a given figure are identically scaled
unless otherwise indicated. For those simulations incorpo-
rating added noise, the noise in the input signals is modeled
after noise statistics observed in a set of >’P-MRS experi-
ments performed at 25.8 MHz. The noise in these signals
was approximately normally distributed with a mean of
zero and an average standard deviation of 6.51 % 108, Iden-
tical distributions were used to simulate uncorrelated noise
spectra. Three different simulated noise spectra were then
individually scaled and added to deterministic X, A, and B
to produce input signals having uncorrelated random
noise. The root mean square (RMS) of the noise for a
given signal was varied by changing the scaling of the noise
added to the deterministic signal. In each set of simula-
tions, two simulations were performed in which A, B, and
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FI1G. 6. ASPECT segmentation of multiple overlapping features. A and B
are simulated >'P-MRS spectra from a normal human brain and prolac-
tinoma, respectively. X is a simulated signal containing contributions
from both with a,=0.75 and B,=0.25. In each signal, contributions are
present from B, a, and ¥ resonances of ATP, PCr, PDE, P;, and PME.
Each signal consists of 1024 points and has a digital resolution of 0.5
points/Hz. A%,, and A% are —0.53 and +0.80, respectively, and cor-
respond to row 2 in Table II. Note that A has no remarkable features.

X have approximately equal RMS noise values. These sim-
ulations were done to simulate the noise characteristics
expected in spatially localized MRS measurements from
identically sized voxels, and are summarized in rows 2 and
3 in the tables. Two additional simulations were performed
in which the relative levels of the RMS noise in A and B
were smaller or larger than that present in X. These sim-
ulations were done to illustrate the effects of varying the

TABLE III. The effects of various spectral perturbations on ASPECT
segmentation. Segmentation results for deterministic data that violate the
linearity assumptions underlying the PVA model are presented. These
segmentations use perturbed constituent signals (denoted A’ and B’) and
an unperturbed target signal evaluated from the expression
X=a,A+B,B, with @,=0.75 and 8,=0.25. In row 1, the P, resonance
has been shifted by 25 Hz in A’ and —25 Hz in B’. In row 2, the scale
factors of A and B are reduced by 15% and 20% in A’ and B’ compared
to their contributions in X. In row 3, time invariant (zeroth-order) phase
shifts of 5° and —5° have been applied in A’ and B’. In row 4, linear time
varying (first-order) phase shifts of 30°/Hz and —30°/Hz have been
applied in A’ and B’.

Row Perturbation a, A%, B. A%
1 Feature misregistration 0.690 —80 0.328 +31.2
2 Differential saturation 0.882 +17.6 0.312 +24.6
3 Zeroth-order phase 0.701 —6.5 0336 +344
4  First-order phase 0.741 —12 0242 —3.2
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FIG. 7. The effects of feature misregistration on ASPECT. The P; reso-
nance has been misregistered in A’ and B’ compared to its location in X.
This resonance is shifted by 25 Hz in A’ and by —25 Hz in B’. A%, and
A%p are —8.0 and -+ 31.2, respectively, indicating a significant parallel
error component is present in X. Note the A has a large feature in the
vicinity of the P; resonance indicating a significant orthogonal component
is also present in X.

SNR in A and B versus varying the SNR of X, and are
summarized in rows 4 and 5 in the tables.

In addition to the input signals, a number of other sig-
nals are shown in the figures. The components of A and B
in X calculated using ASPECT (c A and 5,B) are denoted
X, and X, respectively. The residual signal, defined as
A=X—(X,+Xpg), represents the component of X orthog-
onal to the vector space spanned by A and B. Thus, A is a
qualitative measure of the accuracy of the segmentation. A
A possessing significant features indicates that the linearity
assumptions underlying the PVA model are invalid and
that systematic error is likely to affect the segmentation. A
A free of significant features indicates there are no orthog-
onal signal components resolved above the noise and is a
marker that the signal components of X are parallel to A
and B.

Table I shows the results of two sets of simulations
intended to illustrate the effects of segmenting signals hav-
ing only two features. These simulations were designed to
test ASPECT using relatively simple signals. The first set
used signals containing two well-resolved Lorentzian reso-
nances (each resonance had a linewidth of 50 Hz FWHM
and the two were separated by 400 Hz). The second set
used signals containing two poorly resolved Lorentzian
resonances (each resonance had a linewidth of 50 Hz
FWHM and the two were separated by 50 Hz). In both
sets, a deterministic segmentation and segmentations with
varying amounts of added noise were performed. In each
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F1G. 8. The effects of time varying phase differences on ASPECT. A’ and
B’ have small linear (first-order) phase differences compared to the in-
phase contributions of A and B in X. A first-order phase shift of 30°/Hz
has been applied to A and a shift of —30°/Hz has been applied to B to
produce A’ and B’. A%, and A% are —1.2 and —3.2, respectively,
indicating that the parallel error components are insignificant. Note, how-
ever, that A is scaled X 10 and has significant features across the range of
resonances used, indicating a significant orthogonal component is present
in X.

case, a, and Bp were arbitrarily set to 2.000 and 5.000,
respectively, and as such these simulations are not intended
to model typical in vivo conditions. Rows 1A and 1B show
that ASPECT is exact for deterministic data that satisfy
the PVA model assumptions. This appears to be indepen-
dent of the resolution of the spectral features. Table I also
shows that ASPECT provides reasonable estimates of a,
and B, with these data when added noise is present, as
demonstrated by the relatively small A% values. Figures 4
and 5 demonstrate the segmentation results provided by
ASPECT using noisy well-resolved and poorly resolved
signals, respectively. In both cases, A has no significant
features visible above the noise.

Table II shows the results of a set of simulations in-
tended to illustrate the effects of segmenting signals having
multiple overlapping resonances. These simulations were
designed to test ASPECT with signals that simulate in vivo
3Ip_MRS spectra. In this case, signals were simulated from
published results.'® These simulated signals were estimated
by triangulation from spatially localized 'P-MRS spectra
of prolactinoma and uninfiltrated normal brain tissue.
These signals contain resonances from adenosine triphos-
phate (ATP), phosphocreatine (PCr), phosphodiesters
(PDE), inorganic phosphate (P;), and phosphomo-
noesters (PME). The input signals in these simulations
differ primarily in terms of the relative intensities of the
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resonances present, however, there are also slight differ-
ences in the chemical shifts of several of these resonances.
As in the previous segmentations, a deterministic segmen-
tation and segmentations with varying amounts of added
noise were performed. In these simulations, a,and Bp were
set to 0.75 and 0.25, respectively, in order to simulate the
signals that may be acquired in a CSI experiment. In this
case, Fy, V,, and Vp are identically sized and ¥y encom-
passes partial volumes of prolactinoma and normal tissue
with normal tissue present as the larger partial volume.
Table II shows that ASPECT is exact for deterministic
signals containing multiple overlapping resonances and
provides reasonable estimates of a, and B, with these data
when added noise is present, as demonstrated by the rela-
tively small A% values. Figure 6 demonstrates the segmen-
tation results provided by ASPECT using noisy simulated
3'P_MRS spectra. A has no significant features visible
above the noise.

While these simulations do not constitute an exhaustive
study, a number of subtle characteristics are suggested by
the data in Tables I and II. First, ASPECT’s accuracy
appears to be more sensitive to SNR, and SNRy than to
SNRy. This can be seen by first observing A% values ob-
tained when holding SNR, and SNRy constant and vary-
ing SNRy and then observing the values obtained when
holding SNRy constant and varying SNR, and SNRy. In
the former case the changes in A% are relatively small,
while in the latter case they are relatively large, with A%
values consistently decreasing as SNR, and SNRy are in-
creased. Second, ASPECT’s accuracy appears to be more
sensitive to SNR, and SNRy than it is to the values of a,
and B,. This can be seen by comparing A% values in Ta-
bles I and II. In Table I, A%, is consistently smaller than
A% for both well-resolved and poorly resolved signals,
despite the fact that B,>a,. This is because SNR, is con-
sistently larger than SNRp which was an unanticipated
result that arose from the location of the resonances in A
and B and the randomness of the simulated noise spectra
used. In Table II, A%, is again consistently smaller than
A%pg, however, in this case, ap>Bp. Finally, ASPECT’s
accuracy appears to be more sensitive to SNR, and SNRy
than it is to the degree of overlap (and hence the vector
direction) of A and B. This can be seen by comparing A%
values obtained for two poorly resolved resonances with
those for two well-resolved resonances. In Table I, A%, is
consistently smaller, and A% is consistently larger for
poorly resolved signals than for the corresponding well-
resolved signals. Note that the percent change between the
two sets of simulations is greater for A%, than it is for
A%g. This is because SNR, is larger and SNRy smaller
for the poorly resolved signals than for the corresponding
well-resolved signals, while SNRy is approximately the
same. Again, the relationship between SNR, and SNRy
values arose from the location of the resonances in A and B
and the randomness of the simulated noise spectra used.

Table III shows the results of a set of simulations in-
tended to illustrate the effects of violating the linearity as-
sumptions underlying the PVA model. These simulations
were designed to test ASPECT with *'P-MRS signals sim-
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ilar to those described above, with the exception that the
spectral parameters (i.e., intensity, frequency, linewidth,
and phase) were perturbed to produce a systematic error in
the values of @, and B,. Such perturbations arise in vivo
from a number of sample-dependent factors (e.g., biologi-
cal heterogeneity, magnetic susceptibility gradients) and
instrument-dependent factors (e.g., B, homogeneity, B,
uniformity, and eddy currents). The size of the respective
perturbations is somewhat exaggerated, in comparison to
what may be encountered in vivo, and noise is absent in
order to emphasize the magnitude of the systematic error.

Segmentations were performed using simulated signals
perturbed by feature misregistration, differential satura-
tion, and time invariant (zeroth-order) and linear time
varying (first-order) phase differences between the features
in the input signals. Significant A% values ( >20%) are
observed for feature misregistration, differential saturation,
and zeroth-order phase differences, indicating significant
parallel error components are present in X; smaller A%
values (<5%) are observed for first-order phase differ-
ences. Examples of these segmentations are given for fea-
ture misregistration (Fig. 7) and linear time varying phase
differences (Fig. 8). In each case, A has features present,
indicating an orthogonal signal component is present in X.
This is most pronounced in Fig. 7, where a feature likely to
be visible above ambient noise is present in the vicinity of
the P; resonance. Though not shown, a A comparable to
Fig. 8 was observed for zeroth-order phase differences,
while the A observed for differential saturation had no sig-
nificant features. Collectively these results suggest that AS-
PECT is sensitive to these spectral perturbations and there-
fore the sample-dependent and instrumental factors that
produce them. In addition, the segmentation modeling dif-
ferential saturation confirms that A is not a sensitive indi-
cator for parallel error components unless a significant or-
thogonal error component is also present.

IV. DISCUSSION

A partial volume analysis model has been developed to
segment MRS spectra compromised by partial volume con-
tamination. The model is based upon linearity assumptions
that limit the potential in vivo applications of the model,
however, they may not be unreasonable in certain applica-
tions. The model uses an eigenanalysis based segmentation
algorithm termed ASPECT that inputs the vector compro-
mised by PVC and two vectors that characterize the partial
volume components and outputs estimates of the fractional
components of each signal component in the compromised
spectrum.

Computer simulations utilizing two well-resolved reso-
nances, two poorly resolved resonances, and simulated
SIP_MRS signals show that ASPECT is exact for deter-
ministic data. This finding is independent of the number
and resolution of the spectral features present. These data
also show that ASPECT provides reasonable accuracy for
well-resolved resonances (A%<5.4%), poorly resolved
resonances (A% <6.2%), and simulated >'P-MRS signals
(A%<9.6%) when added noise is present. In addition, the
simulations suggest that ASPECT’s accuracy is more sen-



284 Roebuck, Windham, and Hearshen: Segmentation of MRS signals using ASPECT 284

sitive to SNR 4 and SNRp than it is to SNRy, the values of
a, and B, or the degree of overlap of A and B. The seg-
mentation results demonstrate how the ASPECT estimates
of a and B are used to decompose the target signal into its
components. Notably, there are no remarkable features in
the residual signals in these figures.

While ASPECT is easy to use and offers an operator-
independent method for segmenting MRS spectra compro-
mised by PVC, it is also sensitive to several sample and
instrument-dependent factors expected to arise in in vivo
measurements. These factors produce spectral perturba-
tions that violate the linearity assumptions underlying the
model. Several sources of error are identified and illus-
trated using computer simulations, including feature mis-
registration and phase differences between spectra. Signif-
icant A% values (>20%) are observed for feature
misregistration and time invariant phase differences;
smaller A% values (<5%) are observed for linear time
varying phase differences. These error sources are present
in in vivo data, where magnetic field inhomogeneity pro-
duce intervoxel frequency shifts and eddy currents produce
time varying phase effects that typically manifest them-
selves as line shape distortions in the spectra. We have
shown that the intervoxel frequency shifts and line shape
distortions arising from eddy currents can be eliminated in
CSI data without operator intervention by time domain
phase correction using water reference spectra acquired
under identical (or similar) conditions.!® This correction
has been applied to in vivo CSI data with good results (see
below). The latter effect can also be eliminated in single
voxel data by time domain phase correction, but intervoxel
frequency shifts remain and must be corrected by other
means. In both cases, the time invariant phase offset be-
tween the rotating frame and the absorption mode detector
phase is also eliminated by the correction so no additional
phasing is required to obtain pure absorption line shapes.

The effects of feature misregistration and phase differ-
ences between spectra highlight the need to perform care-
fully designed experiments and to correct for spectral per-
turbations that can be estimated on the basis of a priori
information when using the PVA model with in vivo data.
This leave differential saturation and biological heteroge-
neity as the main potential sources of systematic error.
Both of these effects are minimized when using small vol-
umes and contiguous volumes for A, B, and X. Preliminary
work suggests that these conditions can be met in vivo. As
an example, Fig. 9 illustrates an ASPECT segmentation of
in vivo "H-CSI spectra taken from the occipital-parietal
cortex in the human brain. A, B, and X are spectra taken
from voxels containing predominantly gray matter (GM),
white matter (WM), and a mixture of the two, respec-
tively. The time domain phase correction has eliminated
intervoxel frequency shifts and spectral asymmetries in the
N-acetyl aspartate (NAA), creatine/phosphocreatine
(Cr/PCr) and choline (Cho) resonances. The relative ra-
tios of Cho/Cr and NAA/Cr in these spectra are consis-
tent with literature values for GM and WM published by
Kreis er al.,”° suggesting that A and B accurately charac-
terize the spectral features of GM and WM. The A pro-
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FIG. 9. ASPECT segmentation of "H—CSI spectra from a human brain. A,
B, and X are STEAM spectra (TR 2000 ms, TE 30 ms, TM 11 ms, and
17 min acquisition time) taken from voxels containing GM (A), WM
(B), and a mixture of the two (X), respectively. 1-D-CSI spectra are
acquired by exciting a column of tissue (1.6 cmX 1.6 cmX 7.0 cm) local-
ized across the midline in the occipital—parietal cortex and then phase
encoding along the long axis of the column to produce an array of 1.6
cm X 1.6 cmx0.4 cm CSI voxels. The CSI data are then corrected to
eliminate phase and frequency offsets arising from eddy currents, By in-
homogeneity, and detector phase offsets. Signals from four CSI voxels
(total volume 4.0 cm®) containing either predominantly (>80%) GM,
WM, or a mixture of the two are summed together and apodized using a
2.0 Hz exponential filter. The CSI voxels used for X, A, and B do not
overlap, and the noise in the input signals is thus uncorrelated. Each
signal consists of 1024 points with a digital resolution of 1.0 Hz/point.
The points shown (N =174) defined the vectors used by ASPECT. o, and
B, are 0.405 and 0.467, respectively. Note that A has no remarkable
features visible above the noise in the vicinity of the Cho (3.2 ppm),
Cr/PCr (3.0 ppm), and NAA (2.0 ppm) resonances.

duced shows no significant features, suggesting that AS-
PECT has accounted for the majority of the MRS signal
present, despite the potential of biological heterogeneity
and PVC to compromise the quality of A and B.

The preliminary work presented here suggests the sys-
tematic errors encountered when using the PVA model
with in vivo data may be overcome. Provided they are, the
PVA model should improve the quality of in vivo spectra
compromised by PVC. Ongoing work will focus on further
characterizing the effects of random and systematic errors
on ASPECT. In parallel with this, the PVA model will be
tested using in vitro and in vivo MRS data to assess its
applicability and range of use.
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