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SUMMARY

In this paper, we consider the stability issue of economic model predictive control (EMPC) for constrained
nonlinear systems and propose a new contractive constraint formulation of nonlinear EMPC schemes. This
formulation is one of Lyapunov-based approaches in which the contractive function chosen a priori can be
used as a Lyapunov function. Some conditions are given to guarantee recursive feasibility and asymptotic
stability of the EMPC. Moreover, we analyze the transient economic performance of the EMPC closed-
loop system in some finite-time intervals. The proposed EMPC scheme is applied to a chemical reactor
model to illustrate its utility and benefits. Copyright © 2016 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Economic model predictive control (EMPC) has received much attention because of its ability in
integrating real-time process economic optimization and feedback control into an optimal control
framework [1, 2]. Unlike traditional MPC, where target-tracking controllers are computed by min-
imizing positive definite cost functions [3], EMPC directly utilizes general economic functions as
stage costs to design controllers. Therefore, EMPC can directly address the operational require-
ments and, hence, significantly improve system performance compared to the hierarchical control
method in which an economically optimal operating point is computed by a real-time optimizer
(RTO) in the upper layer and a target-tracking MPC in the lower layer is used to drive the system
to the designed operating point [1, 4]. However, in general EMPC cannot guarantee stability of op-
erating points using traditional MPC techniques because it minimizes a general (not necessarily
convex or positive definite) cost function over a finite prediction horizon [4].
A special way to address stability of EMPC is to establish economic criterion-based Lyapunov

functions by modifying economic cost functions. For example, in [5] the economic cost function
was transformed to the so-called rotated cost, and then the monotonic decreasing property of the
value function of the rotated cost is established by the assumption of strong duality and the terminal
equality constraint. In [6], this terminal constraint was replaced by a terminal inequality constraint
and a terminal penalty. Moreover, the assumption of strong duality was relaxed as a dissipativity
condition with some elaborately chosen supply and storage functions, and the closed-loop stability
of the optimal steady state was ensued by the dissipativity condition [4, 7, 8]. In [9] a generalized
terminal equality constraint and a weighted terminal penalty were presented for both EMPC and
target-tracking MPC, however with no stability analysis. The authors in [10, 11] presented a stabi-
lizing EMPC without terminal constraints by imposing controllability conditions and using a
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sufficiently long prediction horizon. However, a long horizon makes the EMPC optimization prob-
lem a challenge to solve, thereby causing difficulties in real-time applications.
Another way to guarantee stability of EMPC is to enforce Lyapunov-based stability constraints to

optimization problems of EMPC. For instance, [12] proposed a Lyapunov-based EMPC scheme
which uses two different modes of operation such that the closed-loop system is ultimately bounded
in a small region. In [13], the Lyapunov-based EMPC [12] was modified as a double-layer stabiliz-
ing EMPC structure, where three (economic) MPC controllers with different prediction horizons
were considered, and stability of the closed-loop system was guaranteed by a controllability as-
sumption. As one case of lexicographic multiobjective MPC [14], lately [15] proposed a
Lyapunov-based EMPC scheme in a double-layer framework in which economic performance
and stability were viewed as two conflicting objectives. To make a tradeoff for both objectives, a
contractive constraint was designed using an upper-layer tracking-target MPC subject to a terminal
equality constraint. Then this constraint imposed to the lower-layer economic MPC was employed
to ensure stability of the EMPC, together with inherent robustness [16] of the upper-layer MPC. Be-
sides solving two constrained optimization problems at each time, the global optimality of the
upper-layer MPC is not necessarily guaranteed because of the non-convex nature of the optimiza-
tion problem subject to nonlinear equality constraints [17]. In [18], we made use of control
Lyapunov functions and the dual-mode approach to design a Lyapunov-based EMPC with a slight
computational demand.
Motivated by the existing work in, e.g. [5, 11, 15], here we present a new stabilizing EMPC

scheme with a contractive constraint for constrained nonlinear systems. Like other Lyapunov-based
approaches, this scheme exploits the traditional terminal region and penalty function [3] to construct
a contractive constraint. Sufficient conditions for guaranteed recursive feasibility and asymptotic
stability are established. Moreover, the closed-loop transient performance evaluated over some
finite-time intervals is analyzed under the same conditions. The proposed scheme has several spe-
cial features.
1) It asymptotically stabilizes the optimal steady state without additional strong duality or

dissipativity conditions w.r.t. the economic criterion; the conditions that are satisfied for linear sys-
tems with convex constraints and strictly convex costs, however, might not for other cases [5]. As a
result, the proposed scheme can be used to optimized-based control of plants in general cases.
2) This scheme makes use of a terminal inequality constraint and the original economic criterion.

The notion of terminal inequality constraints is widely used in traditional MPC [3] and was first ex-
tended to EMPC [6] because it can increase the size of the feasible set of initial conditions and de-
crease the differences between predicted and closed-loop trajectories. However, in these (economic)
MPC problems, cost functions are often modified by adding penalty functions to establish stability
of the optimal steady state. Note that the optimal trajectories minimizing the original cost function
are generally different from those minimizing a modified function. Hence, MPC closed-loop trajec-
tories corresponding to the original and modified cost functions are not expected to be the same.
3) The controller is computed by solving a single-layer optimization problem with a contractive

constraint. Compared to the double-layer contractive EMPC [15], this scheme does not need the op-
timality of the contractive constraint, and its stability is established only using contraction of the
constraint.
4) Recursive feasibility of this scheme always holds in the context of contractive constraints. It

should be noted that to the best of our knowledge, the idea of imposing contractive constraints to
MPC has been proposed for the first in [19, 20] for traditional MPC of continuous-time systems,
and in [15] for economic MPC of discrete-time systems, but with different assumptions, Lyapunov
functions and optimization problem frameworks.
These features of the proposed EMPC provide an alternative to stabilizing EMPC design, and

will be illustrated by a comparison study of an example for a continuous stirred tank reactor
(CSTR). The rest of this paper is as follows. In Section 2 we describe the problem to be addressed.
In Section 3 we propose the new EMPC scheme and establish some conditions under which recur-
sive feasibility and asymptotic stability are guaranteed. Furthermore, we analyze transient economic
performance of the proposed EMPC scheme in the same section. In Section 4 the proposed EMPC
scheme is applied to a chemical reaction process. We conclude the paper in Section 5.
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2. PROBLEM SETUP

Notation

Let R≥0 and I≥0 denote the sets of non-negative real and integer numbers, respectively. Ia:b is the set
{i∈I≥0: a≤ i≤b} for some a∈I≥0 and b∈I≥0. Given two sets S1⊆Rn and S2⊆Rn, define S1\S2 = {x∈Rn

| x∈S1 & x∉S2}. A function α: Rn→R≥0 is positive definite w.r.t. x= s if it is continuous, α(s) = 0, and
α(x)>0 for all x≠ s. A continuous function α: R≥0→R≥0 is a class-К function if it is strictly increas-
ing and α(0) =0, α(s)>0 for all s>0; it is a class-К∞ function if it is a class-К function and
α(s)→∞ as s→∞. A continuous function β: R≥0 ×R≥0→R≥0 is a class-КL function if β(s, t) is a
class-К function in s for each fixed t≥0; it is strictly decreasing in t for every fixed s>0 and β(s,
t)→0 as t→∞. For a given pair of functions α1 and α2, α1°α2(s) denotes the function α1(α2(s))
and α1k(s) =α1°α1k�1(s) for k∈I≥0, with α10(s) = s. The symbol ‘:=’ denotes that the left-hand side of
an equation is defined as the right-hand side. The converse applies to ‘=:’.
Consider the discrete-time nonlinear systems of the form

xkþ1 ¼ f xk ; ukð Þ; ∀k∈I≥0 (1)

where system state xk∈Rn and control input uk∈Rm at time k, and map f: Rn×Rm→Rn. It is assumed that
the system has an equilibrium point (xs,us) such that xs= f(xs,us). The solution of the system for a given
sequence of control inputs u and initial state x0 is denoted as xk=φ(k;x0,u) for k∈I≥0, where x0 =φ(0;x0,
u). The system is subject to the state and control constraints

xk∈X ; uk∈U ; ∀k∈I≥0 (2)

where X⊂Rn and U⊂Rm are compact sets, containing the equilibrium point in their interior. We as-
sume that the states can be measured at each time k∈I≥0.
The economic criterion to be minimized is represented by the stage cost function Le: X×U→R.

The optimal operating point that stabilizes the system (1) is one of the steady-state points of (1),
which is computed by

xs; usð Þ ¼ argmin
x;uð Þ

Le x; uð Þ x ¼ f x; uð Þ; x∈X ; u∈Uj g:f (3)

For simplicity, we assume that (xs,us) is unique hereafter; otherwise, let (xs,us) denote any of the
steady-state points satisfying (3).
In target-tracking MPC, Le(x,u) is often chosen as a positive definite function w.r.t. (xs,us), i.e. Le

(x,u)≥0 for all (x,u)∈X×U and Le(x,u) = 0 if and only if (x,u) = (xs,us). In this case, the optimal op-
eration often leads to closed-loop stability of xs using the standard MPC stability designs [3]. In
EMPC, however, Le(x,u) is chosen according to some economic criteria such as energy saving, pro-
duction cost and yield, etc. These economic criteria have to be minimized or maximized in terms of
profits and environmental concerns for plants. Hence, in EMPC Le(x,u) is not necessarily positive
definite w.r.t. (xs,us). Consequently, convergence and stability properties in the optimal economic
operation are in general not guaranteed using the standard MPC stability designs because these de-
signs depend on the positive definiteness of Le(x,u).
The control problem of this paper consists in computing an MPC law by minimizing the eco-

nomic objective function evaluated over a prediction horizon 0<N<∞,

XN�1

i¼0
Le xi; uið Þ (4)

subject to the constraints (1) and (2), which guarantees closed-loop asymptotic stability of the optimal
operating point (xs,us). Moreover, we will investigate the transient performance of the closed-loop
system
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J clT xð Þ ¼
XT

k¼0
Le xk ;μN xkð Þð Þ (5)

for some finite-time interval T∈I≥1, where μN(x) is the first element of the control sequence minimizing
(4) for x0 = x.

3. CONTRACTIVE EMPC SCHEME

Consider the system (1) and denote by (xi|k, ui|k) the state and control input at time k+ i, predicted at
time k for i∈I≥0. Let u={u0|k, u1|k, …, uN�1|k} be a sequence of N predicted control inputs and x=
{x0|k, x1|k, …, xN|k} be its corresponding predicted state trajectory according to the model (1).
According to the economic criterion Le(x,u), we define the cost function to be minimized, JN, as

JN xk ;uð Þ ¼
XN�1

i¼0
Le xijk ; uijk
� �

(6)

where xk is the state at the current time k and x0|k= xk.
Let Ja: X×UN→R≥0 be an auxiliary cost function and η∈R≥0 be a scalar, which will be specified

later on. We propose a new contractive EMPC formulation in which the following finite horizon
optimal control problem is solved at each time k∈I≥0:

J �N xkð Þ ¼ min
u

JN xk ;uð Þ (7a)

s:t:xiþ1jk ¼ f xijk ; uijk
� �

; ∀i∈I0:N�1 (7b)

xiþ1jk∈X ; uijk∈U ; ∀i∈I0:N�1 (7c)

x0jk ¼ xk∈X (7d)

xN jk∈X f (7e)

J a xk ; uð Þ≤ηk (7f)

where JN
*(x) is the optimal value function of (7) and terminal region Xf is a compact subset of X. The

constraint (7d) is called the initial condition, and (7e) is the terminal constraint. Here the constraint (7f)
will be designed as a contractive constraint used to establish closed-loop stability of (xs,us). We denote
the (possible local) optimal solution to the optimization problem as u*(xk) = {u0|k

* (xk),…,uN�1|k
* (xk)} and

then JN*(xk) = JN(xk,u*(xk)).
Consider the system (1) with the constraint (2). We define the set of admissible (x,u) pairs as

ZN ¼ x;uð Þjφ k; x; uð Þ∈X ; uk∈U ; φ N ; x; uð Þ∈X f ; ∀k∈I0:N�1
� �

(8)

where x is an initial state at initial time k=0 and u={u0, …, uN�1}. Then the set of admissible initial
states, XN, is defined as the projection of ZN onto X, i.e.

XN ¼ x∈X j∃u∈RmN such that x; uð Þ∈ZN
� �

: (9)

At time k∈I≥0, for the state xk∈XN the set of admissible control sequences, UN, is defined as

UN xk ; ηkð Þ ¼ u∈RmN j xk ; uð Þ∈ZN ; 7fð Þ� �
: (10)

Clearly, the optimal solution to (7) satisfies u*(xk)∈UN(xk,ηk).
We now construct the function Ja(x,u) and scalar η. To this end, we introduce two auxiliary func-

tions La: X×U→R≥0 and Ea: X→R≥0, where La is positive definite w.r.t. (xs,us) and Ea is positive
definite w.r.t. xs. We define Ja(x,u) as follows:
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Ja xk ; uð Þ ¼ Ea xN jk
� �þXN�1

i¼0
La xijk ; uijk
� �

(11)

where xi|k=φ(k+ i;xk,u) for i∈I1:N�1 with x0|k= xk and u∈UN(xk,ηk) corresponding to the state xk at time
k∈I≥0. Because La(x,u) and Ea(x) are positive definite w.r.t. (xs,us) and xs, we have Ja(xk,u)≥La(x0|k,u0|k)≥
0 with u∈UN(xk,ηk) for any xk∈XN. Substituting u*(xk) into (11), we have a value function of Ja(xk,u) as
follows:

V xkð Þ ¼ Ea x�N jk
� �

þ
XN�1

i¼0
La x�ijk ; u

�
ijk xkð Þ

� �
(12)

where xi|k
* =φ(k+ i;xk,u*(xk)) for i∈I1:N�1. Note that u*(xk) is the optimal control for (7) and not for

(11). Clearly, we have V(xk)≥La(xk,u0|k* (xk))≥ 0 for all xk∈XN because of the positive definiteness of
La(x,u) and Ea(x). To obtain η, we need an assumption on the terminal region Xf and the functions
La and Ea.

Assumption 1

There exists a compact terminal region Xf⊂X, containing xs in its interior, and a continuous control
law μf: Xf→U, with μf(xs) =us, such that

Ea f x;μf xð Þ
� �� �

� Ea xð Þ≤� La x;μf xð Þ
� �

; ∀x∈X f : (13)

Assumption 1 implies that the region Xf is an invariant set of the system (1) in closed-loop with μf(x)
provided that Xf is a sublevel set of Ea(x). In the literature, many approaches have been proposed to
design μf(x) as well as Xf and Ea(x) satisfying this assumption; see, e.g. [21–24].Let u*(xk�1) be the
optimal solution to (7) at time k� 1 and construct a sequence at time k as

ûk ¼ u�1jk�1 xk�1ð Þ;⋯; u�N�1jk�1 xk�1ð Þ;μf x�N jk�1

� �n o
: (14)

Then we define ηk as

ηk ¼ V xk�1ð Þ þ β J a xk ; ; ûkð Þ � V xk�1ð Þ½ � (15)

with some β ≤ 1. Because V(xk)≥ 0 and Ja(xk,u)≥ 0 for any xk∈XN and u∈UN(xk,ηk), it is straightfor-
ward to obtain that ηk≥ 0 for all k∈I>0. Note that although ηk depends on xk�1, V(xk) is the function
on xk because of the receding horizon control principle.In MPC, the control input applied to the plant
is the first action of u*(xk), which yields an implicit state feedback EMPC law μN(x) defined as

μN xkð Þ ¼ u�0jk xkð Þ; ∀k∈I≥0: (16)

This controller gives rise to the closed-loop system

xkþ1 ¼ f xk ; μN xkð Þð Þ; ∀k∈I≥0: (17)

The procedure for implementing the EMPC controller (16) is summarized as Algorithm 1.

Algorithm 1 (Economic MPC with a contractive constraint)

1 (Initialization) Pick N>1, β ≤1 and La(x,u), and compute (Ea,Xf,μf) to satisfy (13); set η0:=+∞
for a given x0∈XN and let k=0. Solve the optimization problem (7) and obtain its optimal
solution u*(x0). Implement the control action u0 =μN(x0) to the system (1) and let k=1.

2 Compute V(xk�1) and evaluate ηk by (14)–(15) with the state xk at time k.
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3 Solve the optimization problem (7) and obtain its optimal solution u*(xk).
4 Implement the control action uk=μN(xk) to the system (1).
5 Let k= k+1 and go back to Step 2. ■

Note that in Algorithm 1 the contractive constraint (7f) is inactive at initial time k=0 because η0:=
+∞. Hence, the set XN defined as (9) is identified as the set of admissible initial states of the
optimization problem (7).

Lemma 1

Consider Assumption 1 and the parameter β ≤1. The optimization problem (7) is recursively feasi-
ble within the invariant set XN.
Proof: Let u*(xk) be the optimal solution to (7) at time k, with x0|k= xk∈XN. At the next time k+1,

we use (14) to choose a candidate sequence and a corresponding state sequence as follows:

ûkþ1 ¼ u�1jk xkð Þ;⋯; u�N�1jk xkð Þ;μf x�N jk
� �n o

(18)

x̂kþ1 ¼ x�1jk ;⋯; x�N jk ; xNþ1jk
n o

(19)

where xi|k* =φ(k+ i;xk,u*(xk))∈X for i∈I1:N and xN+1|k= f(xN|k* ,μf(xN|k* )). Because of the terminal constraint
(7e) and the invariance property of Xf, we have xN+1|k∈Xf. Thus, the constraints in (7b)–(7e) are
fulfilled.
Now we consider the contractive constraint (7f). Because this constraint is inactive at k=0, we test it

for k∈I≥1. In order to satisfy (7f), we substitute (18)–(19) to (11) and consider the following inequality:

Ja xkþ1; ûkþ1ð Þ≤ηkþ1 ¼ V xkð Þ þ β J a xkþ1; ûkþ1ð Þ � V xkð Þ½ �: (20)

Let α=1� β ≥ 0. Then (20) can be rewritten as

Ja xkþ1; ûkþ1ð Þ≤Ja xkþ1; ûkþ1ð Þ þ α V xkð Þ � J a xkþ1; ûkþ1ð Þ½ �: (21)

From Assumption 1, it is known that

V xkð Þ � Ja xkþ1; ûkþ1ð Þ≥La xk ;μN xkð Þð Þ≥0: (22)

Hence, the inequality (21) holds if α≥ 0 and the equality is always true if α=0. Therefore, the inequal-
ity (20) holds for any β ≤ 1. This implies that (18)-(19) satisfy (7f) and the candidate (18) satisfies the
overall constraints in (7), which implies that this candidate is a feasible solution to (7) at time k+1.
Hence, UN(xk+1,ηk+1) is not empty and xk+1 = f(xk,μN(xk))∈XN for ∀xk∈XN. This establishes recursive
feasibility of (7) with the invariant set XN. ■
Note that similar to the standard MPC [3, 21], a larger size of Xf generally leads to a larger size of

XN because of the property of the terminal region constraint.

Remark 1

It is possible that V(x)> Ja(x,û) because u*(x) is not optimal for Ja(x,u) but for JN(x,u). Moreover,
the optimal path from x0 = xs to xN= xs is often different from xk≡ xs for all k∈I0:N in the context of
EMPC [4]. Consequently, the function V(x) is not necessarily positive definite w.r.t. xs as it is in
target-tracking MPC. In other words, it is possible that V(xs)≠0 unless some additional conditions
are imposed. Note that (x,u) = (xs,us) if V(x) =0 because of the positive definiteness of La and Ea w.r.t.
(xs,us) and xs, respectively.
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Assumption 2

The functions f and Le are continuous on the compact sets X×U, respectively, and there exist some
class-К∞ functions αf, αl, and γi, i=1,…,4 such that ||f(x,u)� f(z,v)||≤αf(||(x,u)� (z,v)||), ||Le(x,u)�Le
(z,v)||≤αl(||(x,u)� (z,v)||), La(x,u)≤ γ1(||x� xs||) + γ2(||u�us||), and γ3(||x� xs||)≤Ea(x)≤ γ4(||x� xs||),
∀(x,u), (z,v)∈X×U for some vector norm ||�||.
Because La and Ea are positive definite w.r.t. (xs, us) and xs, respectively, the class-К∞ functions γi,

i=1,…,4 exist in the finite dimensional case with X and U, and with continuity of La and Ea.

Assumption 3

The optimal solution to (7), u*(x), satisfies that ui|k* (xs) =us for i∈I0:N�1. Moreover, there exists a
class-К∞ function αu such that ||ui|k* (x)�ui|k* (xs)||≤αu(||x� xs||) for any x∈Xf and i∈I0:N�1.

Assumption 3 holds if u*(x) is continuous on Xf. As a candidate solution to (7), the sequence u(x) with
ui|k(x) =uf(x) for i∈I0:N�1 satisfies Assumption 3. Combining Assumptions 1–3, we have the following
stability result.

Theorem 1

Suppose that Assumptions 1–3 hold and the parameter 0<β ≤1. If (7) is initially feasible, then xs
is an asymptotically stable equilibrium point of the closed-loop system (17) with the region of
attraction XN.
Proof: By applying Lemma 1 and the assumptions recursively, it is obtained that (7) is feasible

for xk∈XN at time k∈I≥0. Thus, XN is an invariant region of the closed-loop system.
Let u*(xk) and u*(xk+1) be the optimal solutions to (7) at time k and k+1, respectively. Consider

a candidate Lyapunov function V(x) given as (12). For all xk∈XN, the constraint (7f) and the def-
inition of V(x) lead to

V xkþ1ð Þ � V xkð Þ≤β Ja xkþ1; ûkþ1ð Þ � V xkð Þ½ �≤� βLa xk ;μN xkð Þð Þ (23)

where ûk+1 is given by (18). Because of the positive definiteness of La(x,u) w.r.t. (xs,us), βLa(x,u)≥ ρ1
(||x� xs||) for all (x,u)∈ X×U, where ρ1 is a class-К∞ function. Hence, V(x) is a strictly monotone
decreasing function along the trajectories of (17) and V(xk)≤V(x0) for all k∈I≥0. Moreover, by (23)
we have V(x)≥ ρ1(||x� xs||) because V(x)≥ 0 for all x∈XN.
In order to obtain the upper bound of V(x), we separately consider the cases of x∈X\Xf and x∈Xf.

Let Lmax=max {L(x,u)| (x,u)∈X×U} and Emax=max{E(x)| x∈X}. Then for the state x∈X\Xf, it holds
that V(x)≤Emax+NLmax=:Vmax.Considering any state x∈Xf at time k, i.e. xk= x, it is obtained from
Assumptions 2 and 3 that

V xð Þ≤γ4 x�N jk � xs
��� ������ ���� �

þ
XN�1

i¼0
γ1 x�ijk � xs

��� ������ ���� �
þ γ2 u�ijk ; xð Þ � us

��� ������ ���� �h i

¼ γ4 f x�N�1jk ; u
�
N�1jk

� �
� f xs; usð Þ

��� ������ ���� �
þ γ1 x0jk � xs

�� ���� ��� �

þ
XN�1

i¼1
γ1 f x�ijk ; u

�
ijk

� �
� f xs; usð Þ

��� ������ ���� �
þ
XN�1

i¼0
γ2 u�ijk xð Þ � u�ijk xsð Þ

��� ������ ���� �

≤γ4∘αN x� xsj jj jð Þ þ Nγ2∘αu x� xsj jj jð Þ þ
XN�1

i¼0
γ1∘αi x� xsj jj jð Þ

¼: ρ x� xsj jj jð Þ:

where α0(r) = r and αi(r) = αf°αi�1(r) + αf°αu(r)∈K∞ for i∈I1:N. Clearly, ρ is a class-К∞ function. If
ρ(||x� xs||)≥Vmax for x∈X\Xf, we get V(x)≤ ρ(||x� xs||) for all x∈X. Otherwise, we multiply ρ(||x� xs||)
by a constant C such that Cρ(||x� xs||)≥Vmax for x∈X\Xf. This operation yields V(x)≤ ρ2(||x� xs||) for
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all x∈X, where ρ2(r):=max{1, C}ρ(r). Hence, we have ρ1(||x� xs||)≤V(x)≤ ρ2(||x� xs||) for all x∈XN, with
class-К∞ functions ρ1 and ρ2. Combining the inequality (23), V(x) is a Lyapunov function of the closed-
loop system (17) and xs is an asymptotically stable equilibrium point of (17) within XN. Because XN is
invariant for (17), it is a region of attraction of the closed-loop system. ■

Remark 2

From the proof of Lemma 1 and Theorem 1, one can see that the contractive property of (7f) is
crucial in guaranteeing stability of the optimal steady state of the closed-loop system. Hence, the
resulting EMPC (here referred to as Contractive EMPC) scheme can be viewed as a variant of
contractive MPC [19, 20, 25], but with several different features. In traditional contractive MPC
[3], a Lyapunov function is chosen a priori as a positive definite function M(x), e.g. M(x) = xTPx
with P>0, to ensure that M(x(k;x,u))≤M(x) with k=1,2,…,N. Then a variable horizon (N*) op-
timal control problem is solved online, where Xf depends on the current state x and M(x). In the
original version of contractive MPC, the whole control sequence u* is applied to plants in an
open-loop fashion and the procedure is repeated at every time interval N*. Under assumptions
of feasibility, exponential stability of the origin is ensured by the contractive constraint. Unlike
the traditional contractive MPC, here the Lyapunov function is defined as V(x) = Ja(x,u*(x)) and
it is not necessarily positive definite w.r.t. xs because u*(x) is not optimal for Ja(x,u) but for JN
(x,u). Moreover, the optimization (7) is a fixed horizon problem where Xf is chosen to satisfy
Assumption 1, i.e. Xf is not related to the current state x and V(x), and recursive feasibility is
always guaranteed. The controller obtained here follows the standard receding horizon principle,
in the sense that only the first control element of the solution to (7) is applied to (1) at each
time. In addition, here the contractive constraint (7f) does not lead to exponential stability of
the closed-loop system (17).

Remark 3

In the context of EMPC, the idea of imposing a contractive property on the closed-loop behavior is
also presented in [15]. In that work, the author regarded stability and economics as two conflicting
objectives and proposed a double-layer lexicographic optimization formulation, i.e.

1st layer :
u�1 xkð Þ ¼ argminu J tr xk ; uð Þ ¼

XN�1

i¼0
La xijk ; ; uijk
� �n o

s:t: 7bð Þ � 7dð Þ; xN jk ¼ xs

8<
: (24)

2nd layer :

u�2 xkð Þ ¼ argminuJN xk ; uð Þ
s:t: 7bð Þ � 7dð Þ; xN jk ¼ xs

J tr xk ; uð Þ≤ξk :¼ J �tr xkð Þ þ a Vtr xk�1ð Þ � J �tr xkð Þ	 


8><
>: (25)

where Jtr(x,u) is the target-tracking function, JN(x,u) is the economic function given as (6), Jtr
*(x) = Jtr

(x,u1*(x)), Vtr(x) = Jtr(x,u2*(x)), and some 0≤ a< 1. The last constraint in (25), i.e. Jtr(x,u)≤ ξ , is a con-
tractive constraint, which, together with inherent robustness of target-tracking MPC, ensures that Vtr

(x) is a Lyapunov function of the system (1) in closed-loop with this EMPC law specified as the first
element of u2

*(x). Because of the global optimality of u1
*(x) and the positive definiteness of Jtr*(x) w.r.t.

xs, Vtr(x) is positive definite w.r.t. xs. Note that this formulation needs to online solve two non-convex,
nonlinear optimization problems, which significantly increases the computational load of
implementing MPC [14]. In particular, non-convexity may lead to non-global solution in both layers
and therefore, no guarantee of feasibility for (25) because of discontinuous Pareto fronts of non-
convex multiobjective optimization (15). Finally, the terminal equality will reduce the size of feasible
set of initial conditions (6).
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Note that the contractive constraint (7f) can be replaced with some conditions, e.g. [26]

Ja xk ; uð Þ � V xk�1ð Þ≤� σLa xk�1;μN xk�1ð Þð Þ (26)

for some σ∈R≥0. In this case, recursive feasibility and stability also hold for σ∈(0, 1] from the proof of
Lemma 1 and Theorem 1. Additionally, because recursive feasibility of (7), which is essential in es-
tablishing stability, is ensured for β∈(0,1] but not for β>1, stability of (17) cannot be established for
the general case of β>1. But on a case by case it is possible to find conditions for β>1 to establish
stability of (17).
Let the balls Br be defined as Br={x∈X: ||x� xs||≤ r} for some norm ||�|| and r> 0, and the level sets of

V(x) as Sc={x∈X: V(x)≤ c}for some c>0. Because the system (17) asymptotically converges to (xs,us)
while remaining bounded for all k∈I≥0, for a small c>0 there exists a finite time interval Tc∈I≥1 such that
for all k≥Tc, φ (k;x0,μN)∈Sc with x0∈XN. Then from Theorem 1 we have the following corollary on V(x)
and the terminal predicted state xN|k.

Corollary 1

Consider a small number c>0 such that Sc⊂Xf. Under the assumptions in Theorem 1, the closed-
loop states of (17) enter Sc in such way that V(x) decreases exponentially. Moreover, if the state
xk∈XN\Sc, then its optimal predicted state xN|k* satisfies that

jjx�N jk � xsjj≤θ1 jjx0 � xsjj; kð Þ (27)

where θ1 is a class-КL function.
Proof: Let Ŝ be the closure of set XN\Sc. We compute the minimal value of La(x,u)/Ja(x,u) for ∀(x,

u)∈(Ŝ,UN) and denote it as ā, where u is the first element of sequence u. Note that ā exists because
of Assumptions 1–3 and the positive definiteness of La(x,u) and Ea(x,u). Clearly, we have 0<ā< 1.
By the inequality (23), we have V(xk+1)�V(xk)≤�āβV(xk). This implies that V(xk)≤ (1�āβ)kV(x0).
Because e(s�1)� s≥ 0 ⇔ sk≤ e(s�1)k for ∀s∈[0,1) and k∈I≥0, we have

V xkð Þ≤V x0ð Þe� �aβð Þk ; ∀xk∈XN∖Sc: (28)

Because Sc is the sublevel set of V(x) and the system [17] is asymptotically stable, V(x) decreases
exponentially until V(x)≤ c, i.e. x∈Sc.
By Assumption 2 and the definition of V(x), it is derived that γ3(||xN|k* � xs||)≤Ea(xN|k* )≤V(xk) for ∀xk∈XN.

Consider any state xk∈XN\Sc. Then combining (28), we have

jjx�N jk � xsjj≤γ�13 ρ2 x0 � xsj jj jð Þe� �aβð Þk
� �

¼: θ1 jjx0 � xsjj; kð Þ (29)

for ∀xk∈XN\Sc of (17). Because the functions γ3, ρ2∈К∞, θ1 is a class-КL function and thus (27) holds. ■

Remark 4

It is observed from (28) that the larger the value of β, the faster the decaying of V(x). This implies that a
lager value of β speeds up the closed-loop system (17) to approach to the optimal steady-state point. In
this sense, β is named as the contractive factor reflecting the contractive property of the closed-loop
behavior.
Now we analyze economic performance of the proposed EMPC scheme. Without loss of generality,

here we assume that Le(x,u)>0 for all x∈X and u∈U. Given an initial state x0∈XN\Sc, from Corollary 1
we can find a finite time interval T>0 such that φ(k;x0,μN(�))∈XN\Sc for k∈I1:T and φ(k;x0,μN(�))∈Sc
for k∈I≥T+1. Moreover, we consider any admissible control sequence u and its associated trajectory
φ(k;x0,u) which satisfies ||φ(T;x0,u)� xs||≤ ||φ(T;x0,μN(�))� xs||≤ r for some r>0. Then we have the
following results on the transient performance (5) evaluated over the finite time interval T.
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Proposition 1

Consider a small number c>0 such that Sc⊂Xf. Under the assumptions in Theorem 1, the transient
performance (5) evaluated over the finite time interval T satisfies that

J clT x0ð Þ≤JT x0; uð Þ þ N � Tð ÞαL∘ρ�12 cð Þ þ NLe xs; usð Þ þ
XT�1

k¼0
θ2 jjx0 � xsjj; kð Þ: (30)

where αL is a class-К∞ function and θ2 is a class-КL function.
Proof: Let the sequences u*(xk) and u*(xk+1) be the optimal solutions to (7) at time k and k+1, re-

spectively, where xk+1 = f(xk,μN(xk)). Considering the sequence (18), we compute the optimal value
functions of JN as follows:

J �N xkð Þ ¼ Le xk ; μN xkð Þð Þ þ
XN�1

i¼1
Le x�ijk ; u

�
ijk

� �

J �N xkþ1ð Þ≤JN xkþ1; ûkþ1ð Þ ¼ Le x�N jk ;μf x�N jk
� �� �

þ
XN�2

i¼0
Le x�iþ1jk ; u

�
iþ1jk

� �

which lead to

J �N xkþ1ð Þ � J �N xkð Þ≤Le x�N jk ;μf x�N jk
� �� �

� Le xk ;μN xkð Þð Þ: (31)

Adding (31) from k=0 to k=T�1, it is obtained that

J clT x0ð Þ≤J �N x0ð Þ � J �N xTð Þ þ
XT�1

k¼0
Le x�N jk ; μf x�N jk

� �� �
≤J �N x0ð Þ

þ
XT�1

k¼0
Le x�N jk ;μf x�N jk

� �� �
:

(32)

By Assumption 2, for x∈Xf we have Le(x,μf(x))�Le(xs,us)≤αl(||x� xs||) +αl°αμf(||x� xs||)=:αL(||x� xs||)
with the class-К∞ function αL. Because of (29), we have that

J clT x0ð Þ≤J �N x0ð Þ þ TLe xs; usð Þ þ
XT�1

k¼0
θ2 jjx0 � xsjj; kð Þ (33)

where θ2(||x0� xs||, k) =αL°γ3�1(ρ2(||x0� xs||)e
�āβk) and it is a class-КL function.

From the dynamic programming principle, JN*(x) satisfies that

J �N x0ð Þ≤ inf
u∈UN x0ð Þ

JT x0; uð Þ þ J �N�T φ T ; x0; uð Þð Þ� �
:

Let r= ρ2�1(c). For T∈I1:N�1 and u steering (1) to the ball Br within T time steps, we obtain that

JT x0; uð Þ ¼ JT x0; uð Þ þ J �N�T φ T ; x0; uð Þð Þ � J �N�T φ T ; x0; uð Þð Þ
≥J �N x0ð Þ � N � Tð Þ αL rð Þ þ Le xs; ; usð Þ½ �: (34)

Note that for T≥N, the non-negativity of Le(x,u) implies that the inequality JT(x,u)≥ JN* (x) holds for all
admissible u∈UT(x), implying (34) again. Substituting (34) to (33) leads to

J clT x0ð Þ≤JT x0;uð Þ þ N � Tð ÞαL rð Þ þ NLe xs; usð Þ þ
XT�1

k¼0
θ2 jjx0 � xsjj; kð Þ

for all admissible u∈UT(x) steering (1) to Br within T time steps, which is equal to (30). ■
It is remarked that from Proposition 1 the transient performance given here does not admit

transient optimality in the sense of (11) because the error term will not vanish as N→∞ and ||φ
(T;x0,μN(�))� xs||→ 0. Nevertheless, the closed-loop system (17) admits the asymptotic time aver-
age performance.
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Proposition 2

Under the assumptions in Theorem 1, the closed-loop system (17) admits the asymptotic time av-
erage performance, i.e.

lim
K→∞

inf J clK xð Þ=K≤Le xs; usð Þ (35)

with the region of attraction XN.
Proof: It is straightforward to test that the suboptimal controller defined by the sequence (18) can as-

ymptotically stabilize the system [1] to xs with XN. Then following the proof of Theorem 7 in [13],
one can show the inequality (35) and hence, the proof of this claim is omitted. ■
Note that because the asymptotic average performance may not be a singleton in the context of

economic NMPC, a lower bound on the asymptotic average performance under the proposed EMPC
scheme is considered in (36) from [4, 8, 13]. In addition, the average transient performance over a finite
time window is not guaranteed to be better than Le(xs,us) and it may take any value. Recently [11]
established optimal transient performance estimates for the EMPC without terminal constraint.
Because of the constraint (7f), the contractive factor β will affect the predicted optimal performance

JN*(x). For clarity, let x= xk, JN*(x, β):=JN*(x), η(β):=η and UN(x,β):=UN(x,η) for a selected 0< β ≤ 1.
From Theorem 1, the feasible set UN(x,β) is always non-empty for any x∈XN.

Proposition 3

Under the assumptions in Theorem 1, the predicted optimal performance satisfies that JN*(x,β1)≤
JN*(x,β2) for any 0< β1< β2≤1 and x∈XN.
Proof: The proof consists of two parts. We first prove that UN(x,β2)⊆UN(x,β1) for 0< β1< β2≤1

and any x∈XN, and then prove the proposition by contradiction under the assumptions.
Part 1. From the proof of Lemma 1, it is known that η(β)>0 for any 0<β ≤1. For two values

0< β1< β2≤1, then we have η(β2)<η(β1) because of the inequality (22). Consider the
sets UN(x,β1) and UN(x,β2), and pick any u(β2)∈UN(x,β2). We obtain that Ja(x,u(β2))≤ η
(β2)<η(β1), which leads to u(β2)∈UN(x,β1). Because of arbitrariness of u(β2)∈UN

(x,β2), it is obtained that UN(x,β2)⊆UN(x,β1) for 0< β1< β2≤1 and any x∈XN.
Part 2. By contradiction, it is assumed that JN*(x,β1)> JN*(x,β2) for any 0< β1< β2≤1 and

x∈XN. Let u
*(βi)∈UN(x,βi) be the optimal solution corresponding with JN*(x,βi) for

i=1, 2. From Part 1, we have u*(β2)∈UN(x,β1), which implies that there exists a solution
u*(β2) such that JN*(x,β2)< JN*(x,β1) in UN(x,β1). This contradicts the optimality of
JN*(x,β1) in UN(x,β1). Hence, this proposition holds. ■

Proposition 3 shows that the predicted optimal performance JN*(x) will be degraded when increas-
ing the value of β, which, on the other hand, speeds up the decaying of V(x) and hence improves
stability of the closed-loop system. In this sense, the loss of optimality of JN*(x) can be regarded
as a price that one has to pay for ensuring feasibility and stability of the EMPC controller. This
mechanism is the so-called Stability Price in [15].

Remark 5

It should be emphasized that JN*(x) is a measure of open-loop performance and generally
JN*(x)≠ JNcl(x) because of the receding horizon nature of MPC. Hence, Proposition 3 and Stability
Price may not hold for JNcl(x). Given that two different values of β will generate different closed-loop
trajectories, even if they start from the same initial state x0, it is a great challenge to theoretically
establish analogues of both Proposition 3 and Stability Price for JNcl(x). Nevertheless, in practice
Stability Price can provide guidance to tune the contractive factor β and this will be illustrated by
a numerical example.
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4. NUMERICAL EXAMPLE

To illustrate the performance of the proposed EMPC scheme, we consider the isothermal chemical
reactor system [5]

dca
dt

¼ Qin

VR
cain � cað Þ � σc2a

dcb
dt

¼ Qin

VR
cbin � cbð Þ þ σc2a

(36)

where ca and cb are the molar concentrations of species ‘a’ and ‘b’, respectively, cain and cbin are the
feed concentrations of ‘a’ and ‘b’ and Qin is the flow through the reactor. The volume of the reactor
VR=10L and the rate constant σ =1.2L/(molmin). In this study, the concentrations ca and cb are the
states x1 and x2, respectively, and the flow Qin is the control u. The constraints are imposed on the state
and control variables by the form of xi∈[0, 1] for i=1, 2 and u∈[0, 15]. The process economics are de-
fined as the price of product b and a separation cost

Le x; uð Þ ¼ 0:5u� 2x2u: (37)

The optimal steady-state point for this cost is computed as (xs,us) = (0.5785, 0.4215, 9.5258). In or-
der to design the contractive constraint (7f), we define the following positive definite function

La x; uð Þ ¼ jjx� xsjj22 þ jju� usjj22: (38)

Let the system (A, B) be the linearized model of (36) at (xs,us). From the LQ optimal control ap-
proach, solving the Riccati equation PA+ATP�PBBTP+ I=0 leads to a positive definite matrix so-

lution P ¼ 0:3448 0:2213
0:2213 0:5248

� �
. Then we construct the triplet as Ea(x) = (x� xs)TP(x� xs), Xf=

{x∈R2: Ea(x)≤0.0613} and μf(x) = [�0.0052 0.0128](x� xs) +us, which satisfies Assumption 1 of
Section 3. Assumption 2 is also satisfied given the function forms of f and Le. Because it is hard
to directly validate Assumption 3 during numerical optimization, here we imposed the condition
||ui|k(x)�us||≤ σ||x� xs|| with σ =2000 for i∈I0:N�1 and x∈Xf on the optimization operation to fulfill
Assumption 3.
The system (36) is discretized with a sampling time 0.1min and the Euler’s first-order approxi-

mation is employed for all derivatives. Let the prediction horizon steps N=4 and the simulation
time steps be 70. The solution at time k was used as an initial guess for solving the optimization
problems at k+1. Moreover, all optimization problems had been solved by the fmincon function
with the SQP algorithm in MATLAB V7.1 on the computer of MS WINDOWS 7.0 Enterprise
and an Intel® Core i5 CPU with 2.3GHz and 4GB RAM.
We pick two initial states (I) (0.4, 0.1) and (II) (0.6, 0.6). Figures 1, 2 separately show the time

profiles of V(x) and the state trajectories for different values of the contractive factor β, where the
left plot is associated with the initial state (I) and the right the initial state (II). The profiles depicted

Figure 1. Time profiles of V(x) for different values of β. Left plot: initial state (I); right plot: initial state (II).
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in both figures are for β in the interval [0, 1] with increments of 0.2. It can be seen from both figures
that (i) for all 0<β ≤1, the value functions are strictly decreasing and thus stability of the closed-
loop system is established; (ii) for larger values of β, the value functions decay more quickly, which
implies that the closed-loop system approaches to the steady-state point (xs,us) more quickly. It
should be emphasized that the condition of 0< β ≤1 is sufficient but not necessary to guarantee sta-
bility of the closed-loop system, which can be illustrated by the profile of V(x) corresponding to
β=0 in the left subfigure.
We define a transient time window [0, T] of (36) such that the closed-loop state φ(T;x0,μN(�))

enters the range of ±5% the steady state xs. Denote by JTcl(I) and JTcl(II) the transient economic per-
formances obtained by applying Algorithm 1, starting from the initial states (I) and (II), respec-
tively. Table I presents these values for the different values of β. As can be seen, the transient
performance obtained by the proposed scheme is a decreasing function on β. That is, the transient
performance will be improved by reducing the value of β. This observation may be explained to
some extent by the Stability Price of the predicted performance because the constraint (7f) is relaxed
by reducing β and hence, the predicted performance can be improved. However, it is seen from
Figure 2 that the convergence speed of the closed-loop system gets slower as β becomes smaller.
In this sense, we can select the value of β to make a tradeoff between the economic performance
and stability of the closed-loop system.
Table II tabulates the transient economic performances and computational times by applying

Algorithm 1 for different lengths of the prediction horizon N under the fixed β=0.8. It is observed
that the obtained transient performance cannot be improved by only lengthening or reducing the
prediction horizon N. In other words, the obtained transient performance is not a monotone function
on N. However, the computational times for calculating control actions, over all sampling times of
all simulations, are reduced when we select a shorter N.

Table I. The transient economic performances for different values of β under N= 4.

β 0.2 0.4 0.6 0.8 1.0

JT
cl(I) �209.8552 �60.0956 �45.4511 �38.4738 �36.7232
JT
cl(II) �417.1054 �205.7893 �114.7035 �104.2869 �93.4900

Figure 2. Closed-loop state trajectories for different values of β. Left plot: initial state (I); right plot: initial
state (II).
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Table II. The transient economic performances and computational times for different values of N under
β = 0.8.

N 4 5 10 15 20

JT
cl(I) �38.4738 �42.0817 �40.3958 �38.3085 �32.0736
JT
cl(II) �104.2869 �85.6629 �81.8655 �99.9914 �107.4492
Tmax (ms) 446.1 554.4 735.4 957.7 2209
Tava (ms) 29.5 31.2 51.9 86.3 170.1

Table III. The transient economic performances and computational times for three controllers.

SC-EMPC (15,0.8) DC-EMPC (15,0.2) SD-EMPC (15,--) SC-EMPC (4,0.6)

JT
cl(II) �99.9914 �109.5727 �109.6129 �114.7035
Tmax (ms) 957.7 1254.9 498.8 508.2
Tava (ms) 86.3 186.1 40.6 32.1

Figure 3. Time evolutions of the closed-loop states starting from the initial state II, associated with three
controllers.

Figure 4. Time profiles of the inputs applied by three controllers, associated with the initial state II.
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In what follows, we consider the initial state (II) and assess the three controllers applied by the
single-layer contractive EMPC proposed here (SC-EMPC), the double-layer contractive EMPC in
[15] (DC-EMPC) and the single-layer dissipative EMPC in [6] (SD-EMPC). Note that the system
(37) is not dissipative w.r.t. the economic criterion (38). Hence the following regularized function
followed from [6] is used for SD-EMPC:

Le x; uð Þ ¼ 0:5u� 2x2uþ 0:1 u� usð Þ2 (39)

with a penalty function Vf(x) =Ea(x) + [�4.0541� 9.7533](x� xs) and the terminal region Xf. Moreover,
in order to guarantee initial feasibility of DC-EMPC, we select the prediction horizonN=15 for all three
controllers. It is noted that initial feasibility of DC-EMPC is ensured only if N≥ 10 but initial feasibility
of SC-EMPC and SD-EMPC is ensured for N=4 because of the terminal inequality constraint.
Table III gives the transient economic performances and computational times obtained by

separately applying the three controllers, respectively, where β=0.8 for SC-EMPC and a=0.2 for
DC-EMPC. From the first to third column of Table III, it is known that the transient economic per-
formance of DC-EMPC is almost equal to that of SD-EMPC, and both DC-EMPC and SD-EMPC
have better transient performances than SC-EMPC. This implies that the transient performance of
SC-EMPC admits no transient optimality in the sense of [11]. However, we have known from
Tables I and II that the transient economic performance of SC-EMPC has no monotonicity w.r.t.
N but it is a decreasing function on β. Furthermore, it is observed from the three columns that there
is significant difference in the computational time among three controllers. We can select a shorter
N and a smaller β, e.g. (N,β) = (4,0.6), to improve the transient economic performance of SC-EMPC
as well as reducing its computational times, as shown in the last column of this table.
Figures 3 and 4 show the time evolutions of the closed-loop states and control inputs by sepa-

rately applying the three controllers, where (N,β) = (4,0.6) for SC-EMPC. As expected, the three
closed-loop systems are asymptotically stable at xs in the presence of the state and control
constraints, but they approach the economic setpoint in different ways. In particular, comparing
the solid lines to the dashed and dotted lines in Figures 3 and 4, it is that both DC-EMPC and
SD-EMPC produce smoother closed-loop state responses and control signals than SC-EMPC. Note
that one can adjust β to mitigate the oscillatory behavior resulted from SC-EMPC (see Figure 2).

5. CONCLUSIONS

This paper proposed a contractive EMPC scheme with guaranteed asymptotic stability for constrained
nonlinear systems. By imposing a special contractive constraint, based on the terminal region and termi-
nal penalty, into the EMPC optimization problem, we derived the sufficient conditions for guaranteeing
recursive feasibility and stability of EMPC.Moreover, we analyzed the transient economic performance
and established the relation of the predicted performance to the contractive factor. The example of an
isothermal chemical reactor demonstrated the effectiveness of the EMPC scheme proposed here.
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