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In a practical classifier design problem, the true population is generally unknown and the available
sample is finite-sized. A common approach is to use a resampling technique to estimate the perfor-
mance of the classifier that will be trained with the available sample. We conducted a Monte Carlo
simulation study to compare the ability of the different resampling techniques in training the
classifier and predicting its performance under the constraint of a finite-sized sample. The true
population for the two classes was assumed to be multivariate normal distributions with known
covariance matrices. Finite sets of sample vectors were drawn from the population. The true per-
formance of the classifier is defined as the area under the receiver operating characteristic curve
�AUC� when the classifier designed with the specific sample is applied to the true population. We
investigated methods based on the Fukunaga–Hayes and the leave-one-out techniques, as well as
three different types of bootstrap methods, namely, the ordinary, 0.632, and 0.632+ bootstrap. The
Fisher’s linear discriminant analysis was used as the classifier. The dimensionality of the feature
space was varied from 3 to 15. The sample size n2 from the positive class was varied between 25
and 60, while the number of cases from the negative class was either equal to n2 or 3n2. Each
experiment was performed with an independent dataset randomly drawn from the true population.
Using a total of 1000 experiments for each simulation condition, we compared the bias, the vari-
ance, and the root-mean-squared error �RMSE� of the AUC estimated using the different resampling
techniques relative to the true AUC �obtained from training on a finite dataset and testing on the
population�. Our results indicated that, under the study conditions, there can be a large difference in
the RMSE obtained using different resampling methods, especially when the feature space dimen-
sionality is relatively large and the sample size is small. Under this type of conditions, the 0.632 and
0.632+ bootstrap methods have the lowest RMSE, indicating that the difference between the esti-
mated and the true performances obtained using the 0.632 and 0.632+ bootstrap will be statistically
smaller than those obtained using the other three resampling methods. Of the three bootstrap
methods, the 0.632+ bootstrap provides the lowest bias. Although this investigation is performed
under some specific conditions, it reveals important trends for the problem of classifier performance
prediction under the constraint of a limited dataset. © 2008 American Association of Physicists in
Medicine. �DOI: 10.1118/1.2868757�
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I. INTRODUCTION

Computer-aided diagnosis �CAD� continues to be an active
area of research. Regardless of whether one considers the
more established areas, such as lesion detection and charac-
terization for mammography, or newer areas such as lesion
detection in thoracic CT volumes or CT colonography, the
performances of the CAD systems are not ideal. One major
roadblock for CAD development in medical applications is
the limited patient samples with ground truth available for
training the CAD systems.

Classifiers are used in most CAD applications. In
computer-aided characterization of lesions as malignant or
benign, the classifier is the main component of the CAD
system. In computer-aided lesion detection, a common strat-
egy is to first prescreen for regions of interest �ROIs� that
may contain a lesion, and then to employ a classifier to char-

acterize the ROI as a real lesion or a false-positive. To un-
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derstand how finite sample size affects CAD development, it
is important to analyze the effect of sample size on classifier
performance.

An important question in CAD is what kind of penalty
one has to pay for the finite sample size. To answer this
question in the context of classifier design, one may investi-
gate the difference between the mean performance of a clas-
sifier designed with a finite training set and tested using the
true population and the optimal performance that may be
obtained using an infinite training set. In this type of com-
parison, the reference is the ideal classifier performance that
is obtained by training and testing with infinite sample sets
drawn from the true population. We have previously investi-
gated this topic.1

In practical situations, the CAD developer not only has to
design a classifier with a finite sample size of N cases, but
also has to provide an estimate as to how the designed clas-

sifier will generalize to the true population. In other words,
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the developer needs to indicate the level of performance that
a user may expect from the classifier when the system is
applied to the population at large. Since a larger sample is
more representative of the population, it is preferable to de-
sign the classifier with all the available cases N. When all
cases are used for classifier design, one has to use a resam-
pling technique to estimate the performance of the designed
classifier when it is applied to the true population. A resam-
pling technique essentially has to �i� use part of the available
sample to design a classifier, �ii� use part of the available
sample to test the performance of the classifier designed in
�i�, and �iii� estimate the generalization ability of the classi-
fier that is designed using the entire available sample of N
cases. Thus, the finite sample of size N needs to be used not
only for training the classifier, but also to predict its perfor-
mance in unknown cases from the true population. This
“problem of predicting classifier performance under the con-
straint of a limited dataset” is the focus of the current study.
Note that in this problem, the true performance is that of the
classifier trained with the given set of N cases and applied to
the true population. In other words, the goal in performance
prediction with a limited dataset is to inform the users of the
performance level of a specific classifier, the one designed
given the specific sample when it is applied to unknown test
cases, and not the average performance of classifiers that
might be designed using different samples of size N.

Classifier performance estimation has been addressed for
many decades in a number of contexts. The most commonly
used measure for classifier performance estimation is the er-
ror rate, i.e., the percentage of misclassified cases. Estima-
tion of the error rate of a classifier was described as one of
the most important problems in pattern recognition more
than three decades ago,2 and continues to be an active area of
research today. Earlier methods of error rate estimation pri-
marily relied on classical resampling techniques such as re-
substitution, hold-out, leave-one-out �LOO�, and
cross-validation,2 while later work has seen an explosion of
bootstrap methods.3,4 Two review articles summarize the re-
search that has been devoted to classifier error rate estima-
tion using a variety of estimators and resampling methods.5,6

In the context of CAD, and more generally that of medi-
cal decision making, error rate is frequently an inadequate
performance measure. For example, a classifier that is use-
less for diagnosing a disease can have near zero error rate if
it is applied to a population in which the prevalence of the
disease is very low. To avoid the dependence of the perfor-
mance measure on the prevalence, one may consider the mis-
classification percentages for the two classes separately, or,
equivalently, as is commonly done in medical applications,
use sensitivity and specificity as the measure. However, as-
signing a case into one of the two classes by a decision
threshold usually requires knowledge of the costs of different
classification errors, and the costs are often difficult to deter-
mine. The area under the receiver operating characteristics
�ROC� curve, AUC, is a commonly used performance mea-
sure under this type of conditions. AUC can be interpreted as
the average sensitivity over all specificities, and therefore

does not evaluate the classifier at a single decision threshold.
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Despite the popularity of AUC as a performance measure,
only a few studies to date have investigated the effect of
different resampling schemes for the prediction of the AUC
of a classifier under the constraint of a limited dataset.

Tourassi et al.7 investigated the use of cross validation,
LOO and bootstrap methods on limited clinical datasets to
develop and predict the AUC of artificial neural networks
�ANNs� for the estimation of the likelihood of breast cancer
and pulmonary embolism. Arana et al.8 used cross-
validation, LOO, and bootstrap methods on a limited clinical
dataset of calvarial lesions to develop and predict the AUC
of ANNs and logistic regression �LR� models in the task of
differentiating malignant and benign lesions. Although these
two studies compared the relative means and standard devia-
tions �or confidence intervals� of three different resampling
methods, no assessment could be made as to which of the
three methods was more accurate because the true population
performance was not known. Steyerberg et al.9 used a large
dataset of 40 830 patients with acute myocardial infarction to
predict 30-day mortality using an LR model. Random sub-
sets were selected from the large dataset to serve as the
“available sample,” and the remaining cases constituted an
independent test set, which presumably was large enough to
represent the general population. Hold-out, cross-validation,
and bootstrapping methods were used with the available
sample to predict the AUC and other performance measures,
which were then compared to the performance of the LR
classifier designed on the available sample and applied to the
independent test set. Yousef et al.10 investigated the effec-
tiveness of different bootstrap techniques in a Monte Carlo
simulation study. Neither of the last two studies systemati-
cally investigated the effect of feature space dimensionality,
class separability, or the performance of LOO and
Fukunaga–Hayes �F–H� resampling methods. The study by
Sahiner et al. covered some of the latter conditions on a
limited scale.11 The current study extends this previous work
by including the 0.632+ and F–H resampling methods and
additional feature spaces.

As indicated before, studies conducted so far to investi-
gate resampling techniques for prediction of the AUC under
the constraint of a finite sample size have been limited. The
purpose of this study was to perform a Monte Carlo simula-
tion experiment to compare the behavior of five types of
resampling methods under different conditions for class dis-
tributions, class separability, number of available samples
from each class, and feature space dimensionality.

II. METHODS

Five resampling methods were compared, including three
variations of the bootstrap method, namely, the ordinary,
0.632 and 0.632+ bootstrap, the �F–H�, and the LOO meth-
ods. In the following, each of these methods is briefly dis-

cussed.
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II.A. The ordinary bootstrap

The bootstrap technique is a data-based simulation ap-
proach to estimate some unknown quantity from the avail-
able data. It is completely data-driven, and does not use any
a priori information about the true distribution F of the data.
Given a random sample x= �x1 ,x2 , . . . ,xN� of size N from the

true distribution F, an empirical distribution F̂ is defined as
the discrete distribution that assigns a probability of 1 /N to
each data vector �or case� xi, i=1, . . . ,N, where the boldface
letter x denotes a set of cases �i.e., a sample�, and the italic
letter x denotes a data vector �i.e., a case�. In a CAD prob-
lem, for example, the data vector xi can be a feature vector
associated with an ROI that needs to be evaluated for its
likelihood of being a lesion, and x is the set of feature vec-
tors from all available ROIs.

An important concept in the bootstrap technique is the
bootstrap sample, which is defined as a sample x*

= �x1
* ,x2

* , . . . ,xN
*� randomly drawn from the empirical dis-

tribution F̂. From the definition of F̂, it is seen that the boot-
strap sample is nothing but a random sample of size N drawn
with replacement from the available dataset x. Some of the
original data vectors xi may appear 0 times in x*, some of
them may appear once, some may appear twice, etc. The
bootstrap sample can be thought of as a simulated dataset,
and a large number of such bootstrap samples can be drawn

from F̂ to estimate the quantity of interest.
In classifier performance evaluation, the common use of

the bootstrap method involves the estimation of the bias of
the resubstitution method, and the removal of this bias from
the resubstitution performance to get an estimate of the true
performance.3 Application to the estimation of the test AUC
is described next.

Let AUC�Strain ,Stest� denote the test AUC value, obtained
when the classifier trained on the set Strain is applied to the
test set Stest. Let w denote the bias of the resubstitution
method. Using the bootstrap technique, one generates B

bootstrap samples, x*
1
,x*

2
, . . . ,x*

B
, where each sample x*

b

= �x1
*

b

,x2
*

b

, . . . ,xN
*

b

� is obtained by randomly drawing N
data vectors, with replacement, from the original dataset x.
In the ordinary bootstrap method, the bias of the resubstitu-

tion method is estimated from the bootstrap sample x*
b

as

ŵord
b = AUC�x*b,x*b� − AUC�x*b,x� . �1�

In this equation, AUC�x*
b
,x*

b
� can be thought of as the re-

substitution AUC value in the so-called “bootstrap world,”12

whereas AUC�x*
b
,x� can be thought of as the test AUC

value in the bootstrap world. Hence, their difference, aver-
aged over B bootstrap samples, will provide an estimate for

the bias of the resubstitution method:
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ŵord =
1

B
�
b=1

B

ŵord
b . �2�

This estimate is then subtracted from the true resubstitution
AUC value, obtained by training and testing on the set of all
available data, to correct for the bias

AUĈord = AUC�x,x� − ŵord. �3�

II.B. The 0.632 bootstrap

The reasoning behind the 0.632 bootstrap estimator pro-
posed by Efron3 can be explained as follows for our appli-
cation where the AUC is used as the performance measure.
The resubstitution estimate AUC�x ,x� is biased because it is
the area under the ROC curve for data that are at a zero
distance from the training set x, whereas the true AUC is the
area under the curve for testing the classifier on the entire
population, where many of the data are at some distance
away from x. As discussed before, when a bootstrap sample

x*
b

is drawn, some of the original data vectors xi may not

appear in x*
b
. Let x*

b
�0� denote this set of original data

vectors that do not appear in x*
b
. Using a probabilistic argu-

ment, Efron demonstrates that AUC�x*
b
,x*

b
�0�� is pessimis-

tically biased, because x*
b
�0� are farther away from x than a

typical test sample randomly drawn from the true population.
On the average, the ratio of the distances from these two

groups �i.e., x*
b
�0� and a sample randomly drawn from the

true population� to x is 1 / �1−e−1�=1 /0.632. The bias of the
resubstitution method is estimated from the bootstrap sample

x*
b

as

ŵ0.632
b = 0.632�AUC�x,x� − AUC�x*b,x*b�0��� . �4�

The estimate for the bias for the 0.632 method, ŵ0.632, is
found by averaging Eq. �4� over B bootstrap samples. The
AUC value estimated from the 0.632 method is then given
by

AUĈ0.632 = AUC�x,x� − ŵ0.632 = �1 − 0.632�AUC�x,x�

+
0.632

B
�
b=1

B

AUC�x*b,x*b�0�� . �5�

II.C. The 0.632+ bootstrap

The 0.632+ estimator was designed by Efron to address
the issue of the bias of the 0.632 estimator. Starting with the
example of a classification problem in which the classifier is
useless �AUC=0.5�, Efron shows that for overtrained classi-
fiers, the 0.632 estimator for the classifier performance can
be optimistically biased. The original definition of the
0.632+ estimator can be found in the literature.4 In this study,
the AUC value estimated from the 0.632+ method is defined

as
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AUĈ0.632+ =
1

B
�
b=1

B

��1 − ��b��AUC�x,x�

+ ��b�AUC��x*b,x*b�0��� , �6�

where
sification performance.
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AUC��x*b,x*b�0�� = max�0.5,AUC�x*b,x*b�0��� , �7�

��b� =
0.632

1 − 0.368 · R�b�
, �8�

and
R�b� = �
1 if AUC�x*b,x*b�0�� � 0.5

AUC�x,x� − AUC�x*b,x*b�0��
AUC�x,x� − 0.5

if AUC�x,x� � AUC�x*b,x*b�0�� � 0.5

0 otherwise.
	 �9�
Notice that the 0.632 estimate �Eq. �5�� can be thought of as
a special case of the 0.632+ estimate with �=0.632 and

AUC��x*
b
,x*

b
�0��=AUC�x*

b
,x*

b
�0��. This definition is

slightly different from that used by Efron and Tibshirani4 in
that the relative overfitting rate R and the weight � are cal-
culated for each bootstrap replication. Also, the definition in
Eq. �9� for the overfitting rate contains an additional condi-

tion related to whether AUC�x*
b
,x*

b
�0�� is smaller than the

chance �no-information� AUC value of 0.5, which was not
included by Efron and Tibshirani.4

II.D. The Fukunaga–Hayes method

One method to estimate the performance of a classifier
that can be designed with N cases is to partition them into a
training group of Ntrain cases and a test group of Ntest=N
−Ntrain cases. One can repeat the partitioning process P
times, and use the average test AUC as the performance es-
timate. One disadvantage of this method is that since Ntrain

�N, the designed classifier may have a lower performance
than one trained with N cases. Fukunaga and Hayes studied
the dependence of the classifier performance on the training
sample size Ntrain, and showed that under a wide range of
conditions, the probability of misclassification �PMC� error
varies linearly with 1 /Ntrain.

13 Based on this observation,
they suggested that one can vary Ntrain�N in a range of
values, obtain a linear regression to the PMC, and then ex-
trapolate to find the PMC for Ntrain�N. In our previous
work, we applied this method for performance estimation
using the AUC. For various classifiers and Gaussian sample
distributions, it was observed that the dependence of the
AUC value can be closely approximated by a linear relation-
ship in a sample size range where higher-order terms 1 /Ntrain

can be neglected.1 The implementation in the current study
uses four values of Ntrain�N for finding the linear regression,
and P training-test partitioning sets at each of these values to

obtain the F–H prediction of AUĈFH at Ntrain=N for the clas-
II.E. The LOO method

In the LOO technique, given a sample x= �x1 ,x2 , . . . ,xN�,
one designs N classifiers; in the design of the ith classifier,
all cases are used except case xi, which is reserved as a test
case. Since each classifier is designed using N−1 cases, the
number of trainers is very close to the number of available
cases. In our application, we accumulated all N test results

and computed the predicted AUĈLOO for the LOO method.

II.F. Classifier

Many types of classifiers have been used in CAD. Be-
cause the focus of this study is to compare different resam-
pling methods in classifier training and performance predic-
tion, we chose only one commonly used classifier, the
Fisher’s linear discriminant analysis �LDA�, for the evalua-
tion. Let �̂1 and �̂2 denote the mean vectors of Class 1 �the
negative, or normal, class in ROC analysis� and class 2 �the
positive, or abnormal, class in ROC analysis�, estimated

from the training set, respectively. Let �̂1 and �̂2 denote the
estimated covariance matrices, and n1 and n2 denote the
number of cases from Class 1 and Class 2, respectively. Us-

ing the pooled covariance matrix Ŝ,14 the LDA output for
data vector x is defined as15

D�x� = �x − 1
2 ��̂1 + �̂2��TŜ−1��̂2 − �̂1� , �10�

where

Ŝ =
1

n1 + n2 − 2
��n1 − 1��̂1 + �n2 − 1��̂2� . �11�

II.G. Summary measures of prediction accuracy

As discussed in the introduction, our goal is to predict the
performance of the classifier trained with the given set of N
cases when it is applied to the true population. The true
performance is therefore AUC�x ,F�. In a real CAD problem,
F is not available and thus AUC�x ,F� is unknown. In our

study, we simulated different class distributions F, as dis-
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cussed next. We define one experiment E as the selection of
a sample x from F. The true performance AUCj�x ,F� for the
jth experiment is obtained by training the classifier with x,
drawing an additional random test sample of 5000 cases
from the distribution of each class, and testing the designed
classifier with this data set of 10 000 test cases. The number
of test cases, 10 000, is chosen to be large enough so that its
distribution is essentially F. The AUC is calculated using the
LABROC program,16 which uses a maximum likelihood es-
timation algorithm to fit a binormal ROC curve to the clas-
sifier output after proper binning. Note that the true perfor-
mance AUCj�x ,F� depends on x, and therefore changes in
each experiment. The prediction error for a resampling
method for the jth experiment was then defined as

Ej,r = AUĈj,r − AUCj�x,F� , �12�

where r stands for one of the five different sampling meth-
ods, i.e., the ordinary bootstrap, 0.632 bootstrap, 0.632+

bootstrap, F–H, or LOO, and AUĈj,r denotes the predicted
AUC for experiment j using the resampling method r. For
each condition discussed next, we performed J=1000 experi-
ments.

We are interested in how different the predicted and true
performances are when a sample x is drawn from F. To
quantify this difference over J experiments, we used the
root-mean-squared error �RMSE�

RMSEr =
1

J
�
j=1

J

Ej,r
2 . �13�

We also found the mean, standard deviation, and the bias of
the predicted AUC:

Avg�AUĈr� =
1

J
�
j=1

J

AUĈj,r, �14�

SD�AUĈr� =
 1

J − 1�
j=1

J

�AUĈj,r − Avg�AUĈr��2, �15�

Biasr = Avg�AUĈr� − Avg�AUC�x,F�� =
1

J
�
j=1

J

Ej,r. �16�

Note that the bias provides an indication of the average de-
viation of the predicted from the true performance, whereas
the RMSE provides an indication about the squared differ-
ence between the predicted and true performances. A large
RMSE for a resampling method indicates that this difference
is large for a given sample x and, therefore, the resampling
method may be inappropriate, even if the bias is small.

II.H. Feature spaces and sample sizes

The probability density functions of the data vectors were
assumed to follow multivariate normal distributions. We in-
vestigated two conditions: in the first condition the two
classes are different only in their means �the equal covari-

ance �EqC� condition� and in the second condition the two
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classes are different both in their means and the covariance
matrices �the unequal covariance �NEqC� condition�. It has
been shown in the literature17 that for both conditions, the
covariance matrices can be simultaneously diagonalized
without affecting the analysis. We therefore used an identity
matrix for the covariance of both classes in the EqC condi-
tion. In the NEqC condition, the covariance matrix of Class 1
was the identity matrix, and the covariance matrix of Class 2
was a diagonal matrix, where the first diagonal entry was 1,
the last diagonal entry was 10, and the remaining entries
were equally spaced between 1 and 10 with an increment of
9 /k, where k denotes the dimensionality of the feature space.
We assumed that the mean difference in each feature be-
tween the two classes was equal, i.e., ��= ��1−�2�
= �c1 ,c2 , . . . ,ck�T, where c1=c2= ¯ =ck=c. Two different
values were investigated for c, corresponding to a medium
and a medium-high separation between the two classes, re-
spectively. For medium separation, the value of c was chosen
such that the AUC of an LDA classifier designed and tested
with an infinite sample size, referred to as AUC�	� next, was
approximately 0.8, and for medium-high separation, c was
chosen such that AUC�	� was 0.89. The dimensionality of
the feature space, k, was varied from 3 to 15. These specific
class distributions are chosen to be demonstrative, with a
dimensionality and an AUC in the range that may be encoun-
tered in CAD applications. The relative effectiveness of the
resampling methods can then be compared under these rep-
resentative conditions.

Two conditions of the sample sizes from the two classes
were studied: EqS n1=n2 and NEqS n1�n2. Under both con-
ditions, the number of cases from the positive class, n2, was
varied between 25 and 60, simulating conditions in which a
classifier is designed using a relatively small dataset. Under
the NEqS condition, we assumed that n1=3 ·n2, approxi-
mately simulating the proportion of malignant and benign
lesions recommended for biopsy in breast imaging.

III. RESULTS

III.A. Equal covariance matrices and equal class
sample sizes

Figure 1 shows the results obtained with the five different
resampling methods and five sample sizes �n2=25, 30, 40,
50, and 60� for the EqC and EqS conditions, k=15 �15-
dimensional feature space�, and medium class separation
�AUC�	�=0.80�. Figure 1�a� shows the dependence of
RMSE on the number of cases in class 2. In Fig. 1�b�, the

error bars indicate 
SD�AUĈ�, and the data points and error
bars are slightly offset, for a given value of n2, to prevent
them from overlapping with each other. The solid line is the
average of AUC�x ,F� over J=1000 experiments. The stan-
dard deviation of AUC�x ,F� is not shown for clarity. From
Fig. 1�b�, it is observed that the F–H and the 0.632+ boot-
strap methods have the lowest bias for this condition. How-
ever, the 0.632+ bootstrap performs substantially better than
the F–H method in terms of RMSE, as shown in Fig. 1�a�.

This is explained partly by noting that the 0.632+ bootstrap
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has a lower variance than the F–H method �Fig. 1�b��. A
more detailed analysis of the relationship between RMSE,

Avg�AUĈ�, and SD�AUĈ� is provided in the Discussion sec-
tion. Figure 1�a� also indicates that for small n2, the ordinary
bootstrap has the highest RMSE. This may be attributed
partly to the fact �Fig. 1�b�� that the ordinary bootstrap has
the highest bias under these conditions.

Figure 2 shows the results for EqC, EqS, AUC�	�=0.80,
but for k=9. Under these conditions, the three bootstrap
methods outperform the LOO and F–H methods in terms of
the RMSE �Fig. 2�a��. The mean and standard deviation of

the estimated AUC over 1000 experiments, Avg�AUĈ� and

SD�AUĈ�, for the five resampling methods are plotted in

Fig. 2�b�. Figures 3�a� and 3�b� show the RMSE, Avg�AUĈ�,
and SD�AUĈ� for EqC, EqS, AUC�	�=0.80, and k=3. A
comparison of Figs. 1�a�, 2�a�, and 3�a� indicates that if the

EqC, EqS, k=15
AUC(∞∞∞∞)=0.80
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FIG. 1. Simulation results for the condition of 15-dimensional feature space,
equal covariance matrices, equal sample sizes from both classes, and
AUC�	�=0.80. �a� The root mean-squared error �RMSE� of the AUC esti-
mated with the five resampling techniques, using 1000 independent experi-
ments. �b� The mean of the AUC and 
�standard deviation�, shown as error
bars. The solid line is the average of the true AUC, the standard deviation of
which is not shown for the clarity of the figure. The symbols are plotted
slightly offset, centered around a given value of n2 to prevent the marks and
error bars from overlapping with each other. F–H: Fukunaga–Hayes method,
LOO: Leave-one-out, Ord. boot.: ordinary bootstrap, 0.632: 0.632 bootstrap,
and 0.632+: 0.632+ bootstrap.
feature dimensionality is increased while all other conditions
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are unchanged, the RMSE increases for all resampling meth-
ods. We therefore plot only the two extremes �k=3 and k
=15� for the remaining discussions.

As discussed in the Methods section, our definition of the
0.632+ bootstrap is slightly different from that used in the
literature4,10 in that we calculate the relative overfitting rate R
and the weight � for each bootstrap replication. Figure 4
compares the RMSE results using our definition to those of
the conventional method that first computes the average re-
sult from B bootstrap replications and then uses a nonlinear
equation similar to Eq. �8� to define the overfitting rate R.10

Two pairs of curves are shown �k=3 and k=15� for EqC,
EqS, AUC�	�=0.80. The difference between the two meth-
ods is small for this condition. There is a small but consistent
difference at k=3 in favor of the method used in the litera-
ture, while there is a relatively larger difference at low
sample size at k=15 in favor of the method used in our study.
Comparisons for other conditions �NEqC and NEqS� also
showed a small difference between the two techniques.

Figures 5�a� and 5�b� show results parallel to Fig. 1 �EqC,
EqS, k=15� but with a medium-high class separation
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FIG. 2. Simulation results for the condition of nine-dimensional feature
space, equal covariance matrices, equal sample sizes from both classes, and
AUC�	�=0.80. Results shown in �a� and �b� correspond to those in Figs.
1�a� and 1�b�, respectively.
�AUC�	�=0.89�. Compared to Fig. 1�a�, the trends in Fig.
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5�a� are similar, except that the order of 0.632 and 0.632+
bootstrap are reversed for small sample size, i.e., for
medium-high class separation, 0.632 bootstrap has the lowest
RMSE and 0.632+ has the second lowest RMSE.
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FIG. 3. Simulation results for the condition of three-dimensional feature
space, equal covariance matrices, equal sample sizes from both classes, and
AUC�	�=0.80. Results shown in �a� and �b� correspond to those in Figs.
1�a� and 1�b�, respectively.
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FIG. 4. Comparison of the RMSE of the 0.632+ bootstrap version used in
our article �0.632+C� and that used in the literature �0.632+L� for EqC,
EqS, AUC�	�=0.80. Two feature space dimensionalities, k=3 and k=15,

are shown.
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In terms of the closeness of the average of the resampling
method to the true mean, 0.632+ bootstrap again performs
better than other bootstrap methods. The corresponding re-
sults for k=3 are shown in Figs. 6�a� and 6�b�. It can be
observed that all three bootstrap methods have a similar
RMSE under this condition, while the F–H method has a
slight advantage over the bootstrap methods. Since the trends
for medium-high and medium class separation were similar,
only results for medium class separation are shown in the
remaining discussions.

III.B. Equal covariance matrices and unequal class
sample sizes

Figures 7�a� and 7�b� show the RMSE, Avg�AUĈ�, and

SD�AUĈ� for EqC, NEqS, k=15, and AUC�	�=0.80. The
values of n2 are kept the same as those studied for Figs. 1–6,
while n1 are increased, n1=3 ·n2. Because of the larger num-
ber of cases from Class 1, the magnitudes of bias of the
resampling methods are lower than those observed in Fig.
1�b�. Figure 7�a� indicates that the three bootstrap methods
outperform the LOO and F–H methods in terms of the
RMSE, similar to the observation from Fig. 1�a�. The results
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FIG. 5. Simulation results for the condition of 15-dimensional feature space,
equal covariance matrices, equal sample sizes from both classes, and
AUC�	�=0.89. Results shown in �a� and �b� correspond to those in Figs.
1�a� and 1�b�, respectively.
for EqC, NEqS, and k=3 are shown in Fig. 8. The RMSE
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and Avg�AUĈ� of all resampling methods are very close to
one another, although the LOO method is slightly inferior to
the other four methods.

III.C. Unequal covariance matrices and equal class
sample sizes

Figures 9�a� and 9�b� show the RMSE, Avg�AUĈ�, and

SD�AUĈ� for NEqC, EqS, k=15, and AUC�	�=0.80. The
relative trends of the performance measures are similar to
those in Figs. 1�a� and 1�b�, although the magnitude of the
RMSE is generally larger in Fig. 9�a� compared to Fig. 1�a�
and the bias is slightly larger for some resampling methods
�e.g., the ordinary bootstrap� in Fig. 9�b� compared to Fig.
1�b�. Figures 10�a� and 10�b� show the comparisons for k
=3. Similar to the results for k=3 under the other conditions,
the RMSE of all resampling methods in Fig. 10�a� are very
close to each other

IV. DISCUSSION

In the range of the variables investigated in our simulation
study, the difference in the RMSE obtained using different
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FIG. 6. Simulation results for the condition of three-dimensional feature
space, equal covariance matrices, equal sample sizes from both classes, and
AUC�	�=0.89. Results shown in �a� and �b� correspond to those in Figs.
1�a� and 1�b�, respectively.
resampling methods can be large, especially when the feature
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space dimensionality is large and the number of available
samples is small. Examples of these can be found on the left
portions of Figs. 1�a�, 5�a�, 7�a�, and 9�a�. Under this type of
conditions, the 0.632 and 0.632+ bootstrap methods have the
lowest RMSE. A smaller RMSE means that, when only one
sample set is available, one has a higher chance to obtain an
estimate that is closer to the true performance. It therefore
appears that given a small sample with high feature space
dimensionality, it may be advantageous to use the 0.632 or
0.632+ bootstrap method to estimate the performance of the
classifier designed using the available sample. When the fea-
ture space dimensionality is small, or when the available
sample size is relatively large, most of the resampling meth-

ods result in a similar RMSE and Avg�AUĈ�. This can be
observed from the right portions of Figs. 3, 6, 8, and 10,
where k=3 and N is large. For n2=60, the largest difference
of the RMSE values obtained using different resampling
methods under these three conditions was 0.002 �Fig. 10�a�,
between LOO and ordinary bootstrap�.

When all other variables were held constant, the true AUC
value, AUC�x ,F�, decreased when the sample size de-
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FIG. 7. Simulation results for the condition of 15-dimensional feature space,
equal covariance matrices for both classes, and AUC�	�=0.80. The number
of cases from the negative class, n1, was three times that from the positive
class, n2. Results shown in �a� and �b� correspond to those in Figs. 1�a� and
1�b�, respectively.
creased. The dependence of classifier performance on design
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sample size has been discussed in the literature,1,13 and is
demonstrated by the positive slope of the solid line in the
plots of AUC in the figures. As also expected, a higher fea-
ture space dimensionality resulted in a stronger dependence
�larger slope�. All resampling methods, except for the ordi-
nary bootstrap, followed the trend that the estimated AUC
value decreases with decreasing sample size. The AUC val-
ues estimated using the ordinary bootstrap method showed
relatively small variation with n2, and under a few condi-
tions, such as those for Figs. 1�b�, 7�b�, and 9�b�, increased
slightly when n2 decreased. The AUC estimated from the
ordinary bootstrap method had a positive bias in high dimen-
sional feature spaces, even for the largest sample size studied
�n2=60�, and the bias increased when the sample size
decreased.
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FIG. 8. Simulation results for the condition of three-dimensional feature
space, equal covariance matrices for both classes, and AUC�	�=0.80. The
number of cases from the negative class, n1, was three times that from the
positive class, n2. Results shown in �a� and �b� correspond to those in Figs.
1�a� and 1�b�, respectively.
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Figures 1�b�, 2�b�, 5�b�, 7�b�, and 9�b� also demonstrate
that the bias of the 0.632 bootstrap method can be similar to
that of the ordinary bootstrap but higher than those of the
other resampling methods. The bias of the 0.632+ method,
on the other hand, seems to be lower than those of the other
bootstrap techniques, and had the smallest RMSE under a
large number of conditions.

Despite its relatively large bias, the 0.632 bootstrap
method had a smaller RMSE than the F–H and LOO meth-
ods under most conditions. To investigate the relationship
between RMSE and the bias, one can make use of the iden-
tity

E��x − y�2� = var�x� + var�y� + �x̄ − ȳ�2 − 2 cov�x,y� , �17�

where x and y are random variables, x̄=E�x�, cov�x ,y�
=E��x− x̄��y− ȳ��, and var�x�=E��x− x̄�2�. We therefore can
express the RMSE of the resampling method r as
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FIG. 9. Simulation results for the condition of 15-dimensional feature space,
unequal covariance matrices for the two classes, equal class sample sizes
from both classes, and AUC�	�=0.80. Results shown in �a� and �b� corre-
spond to those in Figs. 1�a� and 1�b�, respectively.
RMSEr = 
SD2�AUĈr� + SD2�AUC�x,F�� + biasr
2 − 2 cov�AUĈr,AUC�x,F�� . �18�
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Equation �18� indicates that both the bias and the standard
deviation of the resampling method contribute to the RMSE.
SD2�AUC�x ,F�� is a constant term that is independent of the
resampling method. For the 0.632 bootstrap method, the
small standard deviation of the estimated AUC value, shown
as error bars in the graphs, is one of the factors contributing
to the small RMSE.

A comparison of parts of Figs. 1�a� and 7�a� provides
information on the effect of the ratio of cases from the two
classes. The right-most point on Fig. 1�a� is obtained using a
total of 120 cases, with 60 cases from each class. The RMSE
for this condition is between 0.050 and 0.055, depending on
the resampling method used. The conditions used for Fig.
7�a� are identical to those in Fig. 1�a�, except that n1=3 ·n2.
A total of 120 cases thus correspond to n2=30, for which
RMSE is between 0.055 and 0.065 �Fig. 7�a��, depending on
the resampling method used. The true and the estimated av-
erage AUC obtained with n1=n2 �Fig. 1�b�� are also higher
than the corresponding AUCs obtained with n1=3 ·n2 �Fig.
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FIG. 10. Simulation results for the condition of three-dimensional feature
space, unequal covariance matrices for the two classes, equal class sample
sizes from both classes, and AUC�	�=0.80. Results shown in �a� and �b�
correspond to those in Figs. 1�a� and 1�b�, respectively.
7�b�� for a total of 120 cases. Therefore, under this simula-
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tion condition, using equal sample sizes from the two classes
provides a slight advantage in performance estimation. This
appears to be consistent with the recommendation for design
of observer experiment in ROC studies that, in the absence
of any prior knowledge about the difference in variability
within the positive and negative groups, using an approxi-
mately equal number of positive and negative cases may
achieve a higher statistical power for a given total number of
cases to be used in the experiment. The effect of the ratio of
cases from the two classes will be an interesting topic of
future study.

In a previous study, Steyerberg et al.9 used a large clinical
dataset to study the performance of different resampling
schemes for AUC estimation. They found that the ordinary
bootstrap method performs similarly to the 0.632 and 0.632
+ bootstrap methods, and described this finding as puzzling
in their Discussion section. In our study, we found that these
three methods perform similarly for small feature space di-
mensionality, e.g., k=3, whereas the performance of the or-
dinary bootstrap method is substantially poorer for k=15. We
believe that this difference can be explained by considering
the amount of bias in the resubstitution estimate. In the study
of Steyerberg et al., the bias of the resubstitution estimate
was small, e.g., between 0.01 and 0.02 for the examples
shown. In our simulation studies, the bias of the resubstitu-
tion estimate �not shown in the graphs� was also small for
k=3, e.g., between 0.04 and 0.02 for the conditions in Fig. 3
and between 0.02 and 0.01 for the conditions in Fig. 6. For
k=15, on the other hand, the bias of the resubstitution esti-
mate was large, e.g., between .10 and .21 for the conditions
in Fig. 1 and between 0.07 and 0.15 for the conditions in Fig.
5. Efron observed that ordinary bootstrap gives an estimate
of the misclassification rate with a possibly large downward
bias, particularly in highly overfitted situations.3 A down-
ward bias for the error rate will typically correspond to an
upward bias for the AUC, which is observed for the ordinary
bootstrap method in Figs. 1�a� and 5�a�. Our observations are
therefore consistent with Efron’s finding for highly over-
trained classifiers, as well as the observation by Steyerberg et
al. that, when the overtraining is small, the three bootstrap
methods perform similarly, as shown in Figs. 3�a� and 6�a�.

Although the AUC has been described as one of the best
summary measures to evaluate a classifier’s performance,18

we believe that it would be interesting to evaluate the effect
of different resampling schemes for the prediction of other
summary measures. The AUC measure uses only the relative
ranks of the classifier scores, as implied by the Mann–
Whitney statistics. Other measures that not only use the
ranks but also the values of the classifier scores may be of
particular interest. Two such measures are the Brier score,19

which uses a quadratic loss function to penalize large devia-
tions of the classifier score from the desired class label, and
the scored AUC method, which combines the rankings with
the actual classifier scores.20 The previous study by Steyer-

9
berg et al. indicated that for both the AUC and Brier score
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measures, the bootstrap techniques were more accurate than
twofold cross-validation.

We have used the LABROC method, which is a paramet-
ric maximum likelihood technique, to estimate the AUC in
this investigation. Another widely used technique to estimate
the AUC is the Mann–Whitney statistic, which is nonpara-
metric. An extensive simulation study21 indicated that the
biases in both the LABROC and the Wilcoxon–Mann–
Whitney estimates of the AUC were for all practical pur-
poses negligible, and concluded that concern about bias or
precision of the estimates of the AUC should not be a major
factor in choosing between the nonparametric and parametric
approaches. However, the numbers of positive and negative
cases used in some of our simulation conditions are smaller
than those used in the previous study. Whether the relative
performances of the resampling methods would change if the
Wilcoxon–Mann–Whitney estimate of the AUC was
used instead of LABROC estimate may warrant further
investigations.

The conditions included in our simulation study were lim-
ited. The data vectors from the two classes were assumed to
follow multivariate normal distributions, which is often vio-
lated in classification problems encountered in CAD. Only
the LDA classifier was used, and feature selection was not
included as a part of the classifier design problem. The larg-
est feature space dimensionality in our simulations was k
=15. The ratio of the number of cases from the two classes
was either 1 or 3, which may be a realistic assumption for
some lesion characterization problems, but may be too low
for lesion detection problems. Finally, while the variability of
the AUC estimate was investigated using a Monte Carlo
method, our study does not answer the question of how this
variability may be estimated in a practical situation. Yousef
et al. have been developing methods to estimate this variabil-
ity based on the available dataset.22 Despite these limitations,
we believe that our study reveals important trends for the
problem of classifier performance prediction under the con-
straint of a limited sample.

V. CONCLUSION

We compared the effectiveness of using different resam-
pling techniques for classifier performance estimation in
terms of the AUC, when a specific finite-sized sample is
available for classifier design. The question we are interested
in is “given a data sample x, what is the best method for
predicting the performance of the classifier designed using
x?”. We conducted a Monte Carlo simulation study and used
the RMSE to measure the prediction error for different re-
sampling techniques. Our results indicated that when the fea-
ture space dimensionality is relatively large �e.g., k=15�, and
the available sample size is small �e.g., total number of cases
around 60�, the difference in the RMSE obtained using dif-
ferent resampling methods can be large, indicating that the
choice of resampling technique is important in classifier per-
formance estimation. For the simulation conditions in our
study, the 0.632+ bootstrap technique appeared to be supe-

rior to the others because it had a small bias and RMSE
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under conditions in which there were large differences be-
tween different techniques. When the feature space dimen-
sionality was relatively small �e.g., k=3�, all resampling
techniques had a similar RMSE and relatively small bias in
the range of sample sizes studied, indicating that none of
them had a substantial advantage. The understanding of bias,
variance, and RMSE issues in classifier performance estima-
tion will provide us a useful guide to reduce errors in the
assessment of classifier performance.
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