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Purpose: In digital breast tomosynthesis �DBT�, quasi-three-dimensional �3D� structural informa-
tion is reconstructed from a small number of 2D projection view �PV� mammograms acquired over
a limited angular range. The authors developed preliminary computer-aided diagnosis �CADx�
methods for classification of malignant and benign masses and compared the effectiveness of
analyzing lesion characteristics in the reconstructed DBT slices and in the PVs.
Methods: A data set of MLO view DBT of 99 patients containing 107 masses �56 malignant and 51
benign� was collected at the Massachusetts General Hospital with IRB approval. The DBTs were
obtained with a GE prototype system which acquired 11 PVs over a 50° arc. The authors recon-
structed the DBTs at 1 mm slice interval using a simultaneous algebraic reconstruction technique.
The region of interest �ROI� containing the mass was marked by a radiologist in the DBT volume
and the corresponding ROIs on the PVs were derived based on the imaging geometry. The subse-
quent processes were fully automated. For classification of masses using the DBT-slice approach,
the mass on each slice was segmented by an active contour model initialized with adaptive k-means
clustering. A spiculation likelihood map was generated by analysis of the gradient directions around
the mass margin and spiculation features were extracted from the map. The rubber band straight-
ening transform �RBST� was applied to a band of pixels around the segmented mass boundary. The
RBST image was enhanced by Sobel filtering in the horizontal and vertical directions, from which
run-length statistics texture features were extracted. Morphological features including those from
the normalized radial length were designed to describe the mass shape. A feature space composed
of the spiculation features, texture features, and morphological features extracted from the central
slice alone and seven feature spaces obtained by averaging the corresponding features from three to
19 slices centered at the central slice were compared. For classification of masses using the PV
approach, a feature extraction process similar to that described above for the DBT approach was
performed on the ROIs from the individual PVs. Six feature spaces obtained from the central PV
alone and by averaging the corresponding features from three to 11 PVs were formed. In each
feature space for either the DBT-slice or the PV approach, a linear discriminant analysis classifier
with stepwise feature selection was trained and tested using a two-loop leave-one-case-out resam-
pling procedure. Simplex optimization was used to guide feature selection automatically within the
training set in each leave-one-case-out cycle. The performance of the classifiers was evaluated by
the area �Az� under the receiver operating characteristic curve.
Results: The test Az values from the DBT-slice approach ranged from 0.87�0.03 to 0.93�0.02,
while those from the PV approach ranged from 0.78�0.04 to 0.84�0.04. The highest test Az of
0.93�0.02 from the nine-DBT-slice feature space was significantly �p=0.006� better than the
highest test Az of 0.84�0.04 from the nine-PV feature space.
Conclusion: The features of breast lesions extracted from the DBT slices consistently provided
higher classification accuracy than those extracted from the PV images. © 2010 American Asso-
ciation of Physicists in Medicine. �DOI: 10.1118/1.3432570�
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I. INTRODUCTION

In mammography, the presence of overlapping dense fibro-

glandular tissue not only reduces the sensitivity of cancer
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detection, but also the conspicuity of the features of a lesion.
Digital breast tomosynthesis mammography �DBT� is a new
imaging modality that may alleviate this problem. DBT is a

limited-angle tomographic technique in which a series of
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projection view �PV� images is acquired as the x-ray source
is rotated over a limited angular range or moved over a lim-
ited distance about the breast. Tomographic slices of the im-
aged volume from the series of PV images are then generated
by a tomosynthesis reconstruction technique.1–5 Although
DBT can only provide quasi-three-dimensional �3D� struc-
tural information due to the limited-angle information, it can
reduce the camouflaging effects of fibroglandular tissues.
The advantages of DBT are that the in-plane spatial reso-
lution is similar to that of digital mammograms and, with a
detector of high detective quantum efficiency, the total dose
required for a DBT scan can be kept at nearly the same or
only slightly higher than that of a regular mammogram. DBT
is one of the promising methods that may improve the detec-
tion and characterization for breast lesions.6

DBT has not been approved for routine clinical use. De-
velopment of computer-aided detection �CADe� and
computer-aided diagnosis �CADx� systems for DBT is still at
an early stage and no studies have been reported to date on
its effects on radiologists’ interpretation of DBT. CADe for
mammography has been shown to improve breast cancer de-
tection in laboratory observer studies and prospective clinical
trials. Although lesions may be more easily visualized in
DBT, the number of images in a DBT exam is much larger
than that in a mammographic exam. With the help of a well-
designed DBT display workstation, the radiologist’s effi-
ciency in reading each slice can be much higher than that in
reading a regular mammogram, due to the correlation be-
tween adjacent DBT slices and the less complex background.
However, an initial study showed that the time required for
interpretation of a DBT case was still substantially longer
than that for mammograms.7 With the increase in radiolo-
gists’ workload, the chance for oversight of subtle lesions
may not be negligible. It is expected that CADe will play an
important role in DBT, especially for detection of microcal-
cifications. CADx for mammography has not been imple-
mented in clinical practice. However, laboratory observer
studies have demonstrated that CADx can provide significant
improvement in radiologists’ characterization of masses and
microcalcifications.8–12 Computerized image analysis can ex-
tract diagnostic information that may not be perceived easily
or consistently by human readers.

Efforts are underway to develop computerized detection
systems for DBT, but most of the studies are still
preliminary.13–18 Very few studies have been conducted for
computerized lesion characterization in DBT to date. Chan et
al.19,20 investigated the feasibility of classification of malig-
nant and benign masses using the reconstructed DBT slices
as input. Palma et al.21 performed mass segmentation on PV
images and merged the extracted information from all PVs
for classification using a fuzzy decision tree. A pilot data set
of 23 lesions was classified into spiculated and circum-
scribed masses using a leave-one-out method. Chan et al.22

conducted a pilot study to compare the accuracy of classify-
ing malignant and benign masses when feature analysis was
performed on one and five DBT slices or PV images.

In DBT, computerized lesion detection or characterization

can be performed in several ways. One common approach is
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to perform image analysis in the individual 2D PV images
and then combine the information from the multiple PVs.
The advantage of the PV approach is that it is independent of
the reconstruction method. The subsequent fusion of infor-
mation from the multiple PVs takes advantage of the corre-
lation among the images to reduce noise and false positives.
The second approach is to combine the information in the
PVs first by tomosynthesis reconstruction and then perform
image analysis in the individual DBT slices. This approach
takes advantage of the image reconstruction technique in
combining the spatial information accurately before image
analysis. The signal-to-noise ratio in the reconstructed im-
ages may be improved due to the reduction in both the ran-
dom noise and the structured background. Other approaches
include performing image analyses on the PVs, the DBT
slices, or the 3D volume at the various processing steps in
combination. In this early study with a limited data set, we
focused on the development of machine learning techniques
using the first two approaches and the comparison of the
dependence of their classification performance on the utili-
zation of multiple images.

II. MATERIALS AND METHODS

II.A. Data set

The DBT mammograms used in this study were collected
by the Breast Imaging Research laboratory at the Massachu-
setts General Hospital �MGH� with the approval of the Insti-
tutional Review Board. Patients with suspicious breast le-
sions were recruited with written informed consent. The
DBT system was a first-generation GE prototype. The system
had a flat panel CsI/a:Si detector with a pixel pitch of 0.1
�0.1 mm2. It acquired 11 PVs in 5° increments over an arc
of 50° degrees. The breasts were imaged in the mediolateral
oblique �MLO� view. The total dose for the 11 PVs of a DBT
scan was designed to be about 1.5 times that of a single
standard film mammogram. We reconstructed the DBTs us-
ing a simultaneous algebraic reconstruction technique.5 The
reconstructed slices had a pixel size of 0.1�0.1 mm2 and a
slice interval of 1 mm.

In each DBT volume, the volume of interest �VOI� con-
taining the mass was identified by a Mammography Quality
Standards Act-approved radiologist. A data set of 107 masses
from 99 patients and 102 breasts was used. Fifty-six malig-
nant masses were obtained from 55 patients, one of whom
had bilateral malignant masses. Fifty-one benign masses
were obtained from 44 patients; five breasts had two benign
masses and two patients had bilateral benign masses. All
malignant masses were biopsy-proven. The benign masses
were biopsy-proven or by follow-up. The VOI was marked
as a rectangular region of interest �ROI� on the “central”
slice which was defined as the slice where the mass was best
visualized, and bounded from the top and bottom by the first
and last slice where the mass became almost invisible. The
mass ROI was extracted from each DBT slice with a margin
of about 4 mm around the bounding box. For a given mass,
the corresponding ROIs on the PVs were located by forward

projection of the central slice of the mass to the PVs using
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the known geometry of the DBT system. This ensured that
the corresponding ROIs on the PVs would be analyzed for
each mass. The longest diameter of the mass on the central
DBT slice was estimated by the radiologist using an elec-
tronic caliper. Figure 1 shows the histogram of the longest
diameter of the masses in the data set.

II.B. Image analysis

The automated mass classification scheme used for analy-
sis of both DBT slices and PV images consists of several
steps: Segmentation of the mass within the ROI, feature ex-
traction, and feature classification. For the mass segmenta-
tion and feature extraction steps, we applied our algorithms
previously developed for digitized film mammograms di-
rectly to the DBT slices and PVs without retraining the pa-
rameters. The details of the methods can be found in the
literature.23–25 The training cases of film mammograms used
in the previous studies were obtained from patient files at the
University of Michigan and were completely independent of
the DBT cases recruited at the MGH. For the feature classi-
fication step, a linear discriminant analysis �LDA� classifier
with stepwise feature selection was designed using a two-
loop leave-one-case-out resampling method, as described be-
low.

II.B.1. Mass segmentation

In this study, we used a two-dimensional approach to im-
age analysis in DBT so that the DBT slices or the PV images
were treated similarly. The mass segmentation method23,24 is
summarized below. The mass ROI from an individual DBT
slice or PV was used as input. Background correction25 was
applied to the ROI by first estimating a low frequency back-
ground image. The gray level of a given pixel in the back-
ground image was estimated as the inverse-distance
weighted average of the mean pixel values from four small
regions on the four sides of the mass ROI. The estimated
background image was then subtracted from the ROI to re-
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FIG. 1. Histogram of the longest diameter of the masses in the data set. The
longest diameter was measured at the central slice where the mass was best
visualized as determined by radiologist.
duce the low frequency intensity variation in the ROI. An
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adaptive K-means clustering algorithm26 was applied to the
background-corrected ROI to segment the pixels into two
classes: The mass and the surrounding tissue. A feature vec-
tor composed of the gray level values of the original image
and its median-filtered image was used for characterizing
each pixel in the ROI. The clustering algorithm estimated
whether a pixel would belong to the mass class or the back-
ground class based on the ratio of the Euclidean distances
from the pixel to the mass and the background cluster centers
in the feature space. If the clustering extracted more than one
object from the ROI, the largest connected object near the
center of the ROI was chosen as the mass. Rows 1 and 2 of
Figs. 2 and 3 show examples of the original image and seg-
mentation with clustering for a spiculated mass on PVs and
DBT slices, respectively. The selected object was filled and
its border was eroded by using a morphological erosion op-
eration with a circular mask of 15 pixels in diameter. The
boundary of the eroded object was then used as the initial
contour for an active contour �AC� model. The initial contour
was iteratively deformed to push the contour toward the
mass boundary by minimization of a cost function with five
energy terms, namely, curvature, continuity, image gradient,
object homogeneity, and a balloon force, which represented
the internal and external forces for segmentation of breast
masses on mammograms. The parameters of the segmenta-
tion algorithms were chosen in our previous studies23,24 such
that the segmented object included mainly the body of the
mass without the potential spiculations. Row 3 of Figs. 2 and
3 show examples of the AC segmentation results.

After AC segmentation, we used a spiculation extraction
technique developed previously to enhance structures that
might represent spiculations, and segment the spiculations if
they were determined to be present.23,24 Briefly, image analy-
sis was performed in a 30-pixel wide band surrounding the
segmented mass. At each pixel p in the band, the mean of the
gradient directions for the pixels within a neighborhood was
calculated. The neighborhood was defined as a sector cen-
tered at the pixel p, and bounded by an arc of 4 mm radius
and two radii at angles of �45° about the normal from the
pixel to the mass border. Since the spiculations were extend-
ing from the mass approximately in the radial direction and
normal to the mass border, if the pixel p lay on the path of a
spiculation, then the gradients in the sector would have a
dominant direction close to 90° relative to the normal, and
hence the mean of the spiculation measure would be high.
After spiculation analysis was performed over the entire
band, the mean spiculation measures computed at the pixels
of the band formed a spiculation likelihood map, as shown in
row 4 of Figs. 2 and 3. The approximately radial line struc-
tures with high pixel values in the spiculation likelihood map
indicated the possible locations of spiculations along the
mass border. A threshold was then applied to the spiculation
likelihood map to segment possible spiculations. Based on
the number and size of the segmented possible spiculations,
the mass in a given image was classified either as spiculated

or nonspiculated. If the mass in the image was classified as
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spiculated, then the spiculations segmented with the thresh-
old described above were joined to the body of the mass
segmented with the AC method. Examples of this final seg-
mentation are shown in the last row of Fig. 2, in which all
different projection views of the mass were classified as
spiculated. The last row of Fig. 3 shows the final segmenta-
tion results of the same mass in the reconstructed DBT vol-
ume.

II.B.2. Feature extraction

Three types of image features, namely, spiculation, tex-
ture, and morphological features, were extracted from the
segmented mass to describe the size, shape, margin charac-
teristics, and texture in the breast tissue surrounding the
mass. A total of 40 features were extracted from the DBT
slices or from the PVs of each mass. The features were sum-
marized in Table I and described below.

II.B.2.a. Texture features. Important texture information
exists in the tissue surrounding the mass margin. Malignant
masses are more likely to have spiculated and ill-defined
borders and the texture in the surrounding tissue may be
different from that of benign masses. To facilitate the extrac-
tion of texture features that radiate from the borders of the

PV2 PV4 PV6 PV8 PPV2 PV4 PV6 PV8 P

PV2 PV4 PV6 PV8 PPV2 PV4 PV6 PV8 P

PV2 PV4 PV6 PV8 PPV2 PV4 PV6 PV8 P

PV2 PV4 PV6 PV8 PPV2 PV4 PV6 PV8 P

PV2 PV4 PV6 PV8 PPV2 PV4 PV6 PV8 P
mass, we previously developed a transformation, referred to
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as the rubber band straightening transform �RBST�, that
maps the pixel values in a band of pixels surrounding the
mass onto the Cartesian plane.23 The RBST produces a rect-
angular image of the margin region, in which moving along
a row of the image approximately corresponds to traversing a
closed path at a constant distance from the segmented mass
border in the original image, and moving along a column of
the image approximately corresponds to traveling in a direc-
tion normal to the segmented mass border in the original
image. The possible spiculations in the radial directions,
therefore, align approximately in the vertical direction in the
RBST image. The mass border is obtained by applying a
morphological opening operation to the AC segmentation re-
sults described in Sec. II B 1. Circular structuring elements
with diameters of 9 and 3 pixels were used for the erosion
and dilation operations, respectively. The band surrounding
the mass margin for RBST was chosen to be 40 pixels wide,
as determined in previous studies. Examples of the RBST
images for a mass on a DBT slice and on a PV image are
shown in Figs. 4�a� and 4�b�, respectively.

Sobel filtering was applied to the RBST image in both the
horizontal and vertical directions to enhance the gradients,
resulting in horizontal and vertical gradient magnitude im-
ages. The vertical and horizontal gradient magnitude images

FIG. 2. Projection view images of a spiculated mass.
The DBT scan had 11 PVs but only five are shown.
PV6 is the central PV at a projection angle of 0°. Row
1: PVs. Row 2: Binary images obtained by adaptive
K-means clustering. Row 3: Mass boundaries seg-
mented by the AC method. Row 4: Spiculation likeli-
hood map. Row 5: Segmented mass boundary and
spiculations.
V10V10
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corresponding to the examples of RBST images were also
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shown in Fig. 4. The run-length statistics �RLS� matrix27 that
described the statistics of runs of consecutive, collinear im-
age pixels having the same gray level value was extracted
from each of the gradient magnitude images in two direc-
tions �0° and 90°�. Five texture features including the short-
runs emphasis, long runs emphasis, gray level nonuniformity,
run-length nonuniformity, and run percentage were calcu-
lated from each of the matrices. A total of 20 RLS features
were thus obtained for each image.

II.B.2.b. Spiculation features. We previously developed
image analysis methods for extracting spiculation informa-
tion surrounding the mass margin on mammograms.24,28

Based on these methods, we extracted a total of eight spicu-
lation features from each image. The first three features were
related to the spiculation measure at the pixels along the
border of the mass body, as segmented by the AC method.
These were the average spiculation measure �AVG�, percent-
age of border pixels with a spiculation measure larger than
45° �PERC_ABV�, and the average of the spiculation mea-
sure for those pixels with a spiculation measure larger than
45° �AVE_ABV�. The remaining five features were related to
the information extracted from the thresholded spiculation
likelihood map. The first feature was the number of con-
nected objects determined to be spiculations in the spicula-

S22 S24 S26 S28 S3S22 S24 S26 S28 S3

S22 S24 S26 S28 SS22 S24 S26 S28 S

S22 S24 S26 S28 SS22 S24 S26 S28 S

S22 S24 S26 S28 S30S22 S24 S26 S28 S30

S22 S24 S26 S28 SS22 S24 S26 S28 S
tion likelihood map �NObj�. The second feature was the
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number of spiculations normalized by the number of border
pixels of the mass body �N2E�. The third feature was the
total area of the suspected spiculations in the spiculation
likelihood map normalized by the area of the mass body
�SRatio�. The fourth feature was the product of NObj and the
total area of the suspected spiculations in the spiculation
likelihood map normalized by the area of 30-pixel wide band
�NSpic2�. The last feature was the product of NObj and the
third feature �NSpic�. The analysis was applied to the DBT
slices and PVs.

II.B.2.c. Morphological features. In addition to the texture
and spiculation features, 12 morphological features were ex-
tracted to characterize the shape and size of the mass. These
included the Fourier descriptor, rectangularity, circularity,
perimeter-to-area ratio, contrast, perimeter, area, and five
features derived from the normalized radial length �NRL�
measure �mean, standard deviation, area ratio, zero crossing
count, and entropy�. The detailed description of these fea-
tures can be found elsewhere.24

II.B.2.d. Feature spaces. In this study, image features
were extracted from either the individual PVs or recon-
structed DBT slices. Each mass was therefore characterized
by multiple sets of features, each obtained from an individual
image in one of the approaches. There can be numerous

FIG. 3. Five DBT slices of a spiculated mass. S26 is the
central slice identified by an experienced radiologist.
Row 1: DBT slices. Row 2: Binary images obtained by
adaptive K-means clustering. Row 3: Mass boundaries
segmented by the AC method. Row 4: Spiculation like-
lihood map. Row 5: Segmented mass boundary and
spiculations.
00

3030

3030

3030
ways to merge the information from the multiple images
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within each approach or merge information from the
two approaches. However, since the data set was relatively
small, we focused on combining the feature information
extracted within each approach. The corresponding features
extracted from the multiple images were simply combined
by averaging to avoid the need to train additional para-
meters.

In DBT, the spatial resolution in the direction perpendicu-

TABLE I. Three types of features extracted from the DBT slices or the proje

aThe run-length statistics texture features were extracted from the horizonta
90°� from each image.
bSLM=spiculation likelihood map.
cNRL=normalized radial length measures.

(a)

(b)

FIG. 4. Transformation of the mass margin to an image in rectangular coor-
dinates using the RBST method. �a� RBST image of mass in PV6 of Fig. 2
and its vertical and horizontal gradient magnitude images. �b� RBST image
of mass in S26 of Fig. 3 and its vertical and horizontal gradient magnitude
images. In the RBST image, moving along a row approximately corresponds
to traversing a closed path at a constant distance from the segmented mass
border and moving along a column approximately corresponds to traveling
in a direction normal to the segmented mass border in the original image.
The radially oriented spiculations are therefore approximately aligned in the

vertical direction of the RBST image.
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lar to the plane of the DBT slices, or the depth direction, is
very low. There is no clear boundary of the mass in the depth
direction. As a result, it was not known how many slices
should be used for analysis of the mass features. We inves-
tigated the dependence of the classification accuracy on the
number of slices over which the corresponding features were
averaged. The range was varied from one to 19 slices cen-
tered about the central slice of the mass, resulting in eight
different feature spaces �i.e., one, three, five, seven, nine, 11,
15, and 19 slices�. Each feature space contained the same 40
feature descriptors but a feature in a given feature space was
obtained by averaging over the specific number of slices for
that feature space. For a given mass, if the radiologist-
marked VOI enclosing the mass contained fewer than the
number of slices on either side of the central slice required
for a given feature space, the features would be averaged up
to the maximum number of slices on either side in the VOI.
Therefore, the number of slices included in the averaging
could be asymmetric about the central slice, which was de-
fined in Sec. II A.

For the PV approach, there were 11 PVs in each scan for
this data set. Each PV was acquired with a fraction of the
x-ray exposure of a mammogram. In this DBT system, the
incident exposure was equally divided among the PVs. How-
ever, the primary beam exposure to the detector decreased as
the projection angle increased due to the increased path
length in the breast tissue. The image quality of the PV im-
ages would decrease as the projection angle increased. The

view images after segmentation of the mass.

and vertical �V� gradient magnitude images, and in two directions �0° and
ction

l �H�
dependence of the classification performance on the number
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of PVs over which the corresponding features extracted from
the individual PVs were averaged was studied. The range
was varied from one to 11 PVs centered about the central PV
at 0° incident angle, resulting in six different feature spaces
�i.e., one, three, five, seven, nine, and 11 PVs�.

II.C. Feature selection and classifier design

In each feature space, an LDA classifier was trained with
stepwise feature selection to find the most effective features
from the available feature pool as input predictor variables.
The LDA classifier was chosen because we have found in a
previous study29 that the LDA classifier is better generalized
to unknown cases than other more complex classifiers when
the training sample size is limited. A two-loop leave-one-
case-out resampling procedure was designed to train the
LDA classifier and test its performance using N available
cases,30 where N=99 in the current study. The procedure
contained two leave-one-case-out loops as shown in Fig. 5.
In each cycle of the “outer” loop, one case including all mass
ROIs from the same patient was left out as the independent
test case. The remaining �N−1� cases served as the training
set to determine the best parameters for stepwise feature se-
lection in an “inner” leave-one-case-out loop and to deter-
mine the LDA classifier weights. In each cycle of the inner
loop, one case was left out for validation and �N−2� cases
were available for training. Simplex optimization was used
to automatically search for the best set of parameters �Fin and
Fout thresholds for the F-statistics to determine if a feature
should be included or removed from the selected feature
pool, and the tolerance threshold on the correlation of the
selected features� for the stepwise feature selection proce-
dure. In the simplex search process, for a given set of param-
eters, stepwise feature selection and LDA were performed
with the �N−2� cases and applied to the left-out case for
testing; after the inner loop was cycled through the �N−1�
cases, the area under the receiver operating characteristic
�ROC� curve Az�i� was estimated. The Az�i� was used as a
figure-of-merit for guiding the simplex search. The param-
eters that could select a set of features to reach the highest

Outer leave-one-case-out loop
N cases

Outer leave-one-case-out loop
N cases

Features selected with (N-1) cases

LDA trained with (N-1) cases

1 left-out
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1 left-out
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FIG. 5. A two-loop leave-one-case-out scheme for design of classifier.
Az�i� within the search space was taken as the best set of
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parameters, which was then applied to the entire training set
of �N−1� cases to select the features and formulate an LDA
classifier. The LDA classifier was tested with the left-out
case in the outer loop to obtain a test discriminant score for
each mass in the case. The left-out case in the outer loop was
not involved in feature selection or LDA formulation and
was thus independent of training. The same process was re-
peated for all N cases in the outer loop in a round-robin
manner. After the two-loop resampling procedure was com-
pleted, the test scores for all masses in the N cases were
collected and evaluated by ROC analysis using the software
developed by Metz et al.31 The classification accuracy of the
classifier was estimated as the test Az.

The two-loop leave-one-case-out feature selection and
classification procedure was performed in each of the feature
spaces for either the PV or the DBT-slice approach. The test
ROC curves and the Az values were then compared.

III. RESULTS

In each feature space, a set of features was selected for
each of the outer leave-one-case-out cycle, resulting in 99
sets of features. For the DBT approach, the average number
of features selected in the eight feature spaces ranged from
3.46 to 4.00, and the overall average was 3.80 features. The
four most consistently selected features included two spicu-
lation features �AVG, NSpic2�, one RLS texture feature
�short-runs emphasis in the 90° direction extracted from the
vertical gradient magnitude image�, and one morphological
feature �rectangularity�. The percentage of times that a given
feature was selected relative to the 99 sets of selected fea-
tures in each feature space and in the eight DBT feature
spaces was plotted in Fig. 6�a�. The four most frequently
selected features corresponded to the four named above. The
dependence of Az on the number of DBT slices used in the
feature spaces is shown in Fig. 7. The classification accuracy
was relatively constant over the range of three to nine slices
�Az=0.92 to 0.93� and fell off when more slices were in-
cluded in the feature averaging. The central slice was quite
efficient in capturing the image information. Although its Az

was about 0.02 lower than the highest value, the difference
did not achieve statistical significance. The test ROC curves
for the LDA classifiers in the feature spaces using the infor-
mation from one DBT slice and nine slices are compared in
Fig. 8.

The average number of features selected in the PV feature
spaces ranged from 1.77 to 2.71, and the overall average was
2.1 features. The two most consistently selected features
were both spiculation features �NSpic2, AVG�, which were
the same as the top two features in the DBT feature spaces
although the order was reversed. The percentage of times
that a given feature was selected relative to the 99 sets of
selected features in each feature space and in the six PV
feature spaces was plotted in Fig. 6�b�. The two most fre-
quently selected features corresponded to the two named
above. The dependence of the classification performance on
the number of PVs used in the feature spaces is also shown

in Fig. 7. There was an increasing trend of Az from
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0.79�0.04 at one PV to 0.84�0.04 at nine PVs and fell off
slightly to 0.83�0.04 when the features were averaged over
11 PVs. The difference in Az between one PV and nine PVs
did not achieve statistical significance �p=0.28�, however.
The test ROC curves for the LDA classifiers in the central
PV and nine-PV feature spaces are also compared in Fig. 8.
The classification accuracy in the nine-DBT-slice feature
space �Az=0.93�0.02� was significantly better �p=0.006�
than that in the nine-PV feature space �Az=0.84�0.04�.

IV. DISCUSSION

Studies have shown that the characteristics of mass mar-
gins can be visualized much more easily in DBT than in
mammography6,32 The current study showed that the image
features extracted from the reconstructed DBT slices could
provide significantly higher accuracy than those from the
PVs for classification of malignant and benign masses, and
the most useful features were those from the mass margin.
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This result indicates that the reduction in tissue overlap also
facilitates machine learning of mass characteristics.

The information content in the reconstructed DBT images
is, in principle, the same as that in the set of PVs because
postprocessing does not create new information but only
helps bring out the information already recorded in the im-
ages. The result in this study that the features extracted from
the DBT slices are more effective than those from the PVs
may be attributed to the accurate fusion of the information in
the individual PVs by the tomosynthesis reconstruction pro-
cess using the known geometry of the DBT system. The
reconstruction effectively utilizes the dose from all PVs to
reduce the random noise and enhances the correlated struc-
tures in the DBT slices, which facilitate image analysis and
efficient utilization of the information content. In the PV
approach, the image features are extracted from very noisy
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images, each of which only utilizes about 9% of the total
dose. The subsequent fusion of information by averaging the
features extracted from the individual PVs is relatively glo-
bal and cannot recover the information that may have been
masked by the noise in the feature extraction process.

In either the PV or the DBT-slice approach, the averaging
of features from multiple PVs or DBT slices improved the
classification accuracy over that from a single image al-
though the improvement did not achieve statistical signifi-
cance. The averaging over multiple images reduces the vari-
ance of the features and increases class separation, which is
especially important for the PV approach because of the high
noise in the individual PVs. This effect can be observed from
the stronger dependence of the classification accuracy on av-
eraging over multiple images in the PV approach �Fig. 7�.
However, for both approaches, the performance eventually
decreased when the number of images increased beyond cer-
tain values. As demonstrated in Fig. 4, the DBT slices far
from the central slice will contain mainly residual density
from the mass without detailed structures due to the poor
depth resolution in limited-angle reconstruction. Averaging
the features extracted from these slices with those from the
slices intersecting the main body of the mass will introduce
incorrect information and thus degrade the classification per-
formance of the features. This effect is somewhat masked in
Fig. 7 because small masses for which the VOI encompassed
a small number of slices would reach the maximum Az per-
formance at a smaller number of slices, whereas large masses
would reach the maximum at a larger number of slices. With
a data set that contained masses of a range of sizes as in this
study, the overall curve would be an average from many
curves, each of which had a maximum occurring at a differ-
ent number of slices so that observed trend might not be as
strong as what would be observed if all masses were the
same size. It is not practical in this study to train classifiers
for subgroups of masses of similar sizes because of the lim-
ited number of samples. Nevertheless, the trend in Fig. 7 still
indicates that the number of DBT slices of a mass over
which feature information is analyzed should be properly
adapted to the mass size.

For image analysis performed directly on the PVs, the
signal-to-noise ratio in a PV will depend on the incident
angle of the x-ray beam to the breast; the larger the angle, the
longer the path length in the breast tissue. The longer path
length will result in greater beam hardening, more scattered
radiation, and less transmitted photons incident on the detec-
tor, and thus lower signal-to-noise ratio. The longer x-ray
path traversing the breast will also intercept more breast
structures, resulting in more complex structured noise. The
information from the PVs at large projection angles is thus
not as reliable as those from the PVs at small angles. There is
a tradeoff, therefore, between reducing the variance and re-
ducing the quality of the feature information when more
large-angle PVs are included in the averaging. It is possible
that a weighted averaging or more sophisticated fusion
method can better utilize information from all PVs. How-

ever, these methods will introduce additional parameters to
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be trained and thus require a larger set of training samples.
This and other improvements in the CADx methods will be
pursued in future studies.

Because of the relatively limited DBT data set available in
this study, we applied mass segmentation and feature extrac-
tion algorithms previously developed for digitized film mam-
mograms directly to the DBT slices and PVs without retrain-
ing the methods or parameters. The mass segmentation and
spiculation extraction algorithms appeared to adapt well to
the digital images having different signal and noise charac-
teristics, as demonstrated in the examples shown in Figs. 2
and 3. The overall classification performance in terms of Az

was also reasonably high. The results indicate that CAD al-
gorithms developed with film mammograms can be adapted
to digital mammograms and DBT slices without excessive
effort if the methods and parameters are designed to be adap-
tive. We will further optimize the algorithms for each type of
image when large data sets become available and compare
the classification performance with and without retraining. In
addition, we used radiologist-marked VOI as input to the
system in this study. The impact of the variations in the VOI
and central slice location, either determined by radiologists
or by an automated detection algorithm, on the classification
performance will have to be investigated in the future.

In this study, we focused on comparison of the PV ap-
proach and the DBT-slice approach, and the effectiveness of
fusing multiple-image information in each approach. There
can be numerous variations to these approaches such as per-
forming the PV and DBT approaches in parallel and then
combine the information from the two approaches, or per-
forming image analyses on the PVs, DBT slices, or the 3D
volume at different processing steps in combination. Al-
though the information content in the original PV images is
the same, the PV and DBT processing analyze the informa-
tion in different ways; the extracted information may repre-
sent different characteristics of the lesions and provide
complementary information to improve the overall accuracy,
as demonstrated in our previous mass detection study.18

Although development of CAD for DBT is similar to that
for mammography to a certain extent, the additional 3D in-
formation and the flexibility of using different approaches
pose greater challenges as well as opportunities for designing
computerized lesion detection and characterization algo-
rithms. Many different computer-vision techniques can be
designed at each step in each approach. In particular, the
design and application of 3D segmentation and feature ex-
traction techniques to the DBT image volume might be a
promising approach. In addition, the image quality of DBT
depends on the image acquisition parameters such as the to-
mographic angle and the angular increment in the scan, and
the reconstruction technique used for tomosynthesis. The
best combination of techniques and parameters will depend
not only on the approach taken, but also on the DBT image
quality. Studies to date have only explored very limited areas
of image analysis in DBT. Much more efforts will be needed
to design effective computer-vision methods that can fully

exploit the image information in DBT.
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