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size on the mean performance of classical and neural network classifiers
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Classifier design is one of the key steps in the development of computer-aided dia@®Bis
algorithms. A classifier is designed with case samples drawn from the patient population. Generally,
the sample size available for classifier design is limited, which introduces variance and bias into the
performance of the trained classifier, relative to that obtained with an infinite sample size. For CAD
applications, a commonly used performance index for a classifier is thefgreander the receiver
operating characteristid®ROC) curve. We have conducted a computer simulation study to investi-
gate the dependence of the mean performance, in termAs,obn design sample size for a linear
discriminant and two nonlinear classifiers, the quadratic discriminant and the backpropagation
neural networANN). The performances of the classifiers were compared for four types of class
distributions that have specific properties: multivariate normal distributions with equal covariance
matrices and unequal means, unequal covariance matrices and unequal means, and unequal cova-
riance matrices and equal means, and a feature space where the two classes were uniformly dis-
tributed in disjoint checkerboard regions. We evaluated the performances of the classifiers in
feature spaces of dimensionality ranging from 3 to 15, and design sample sizes from 20 to 800 per
class. The dependence of the resubstitution and hold-out performance on @esigng) sample

size (N;) was investigated. For multivariate normal class distributions with equal covariance ma-
trices, the linear discriminant is the optimal classifier. It was found thak itgersus-1/N curves

can be closely approximated by linear dependences over the range of sample sizes studied. In the
feature spaces with unequal covariance matrices where the quadratic discriminant is optimal, the
linear discriminant is inferior to the quadratic discriminant or the ANN when the design sample size

is large. However, when the design sample is small, a relatively simple classifier, such as the linear
discriminant or an ANN with very few hidden nodes, may be preferred because performance bias
increases with the complexity of the classifier. In the regime where the classifier performance is
dominated by the 1/Nierm, the performance in the limit of infinite sample size can be estimated as
the intercept (1/N=0) of a linear regression &, versus 1/N. The understanding of the perfor-
mance of the classifiers under the constraint of a finite design sample size is expected to facilitate
the selection of a proper classifier for a given classification task and the design of an efficient
resampling scheme. @999 American Association of Physicists in Medicine.
[S0094-2405(99)00212-6]
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[. INTRODUCTION mance of a classifier for unknown cases depends on the
sample size used for trainifgWhen a finite desigrtrain-
With the advent of digital imaging modalities, computer- ing) sample size is used, the performance is pessimistically
aided diagnosigCAD) is becoming an important area of hiased in comparison to that obtained from an infinitely large
research in medical imaging. A CAD algorithm can detectdesign sample. In order to design a classifier with a perfor-
abnormalities and classify disease or normal cases based @fance generalizable to the population at large, one has to use
image and/or patient information, and thus provide a second sufficient number of case samples that are representative of
opinion to the radiologist in the detection or diagnostic deci-the population. However, the availability of case samples is
sion making process. often limited in medical imaging research. It is therefore im-
Design of classifiers that can accurately distinguish norportant to study the sample-size dependence of different clas-
mal and abnormal features is a critical step in the developsifiers and determine the most efficient way of training a
ment of CAD algorithms. It has been shown that the perforclassifier, under the constraint of a finite sample size.
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We note that the concept of generalizability may be used / \
in several technical senses when assessing the performance| [random samping of:
. . g 1000 abnormals
of a classifier: one with respect to mean classifier perfor- 1000 normals

mance, the other with respect to the variance of classifier
performance. In many classifier design problems, one is most

interested in investigating if the mean performance of a clas- o | Indopendent tale
sifier estimated from a given set of finite design samples can Test:  2000-N, g sot sizes: v
be generalized to classification performance with unknown T por a given N:

test samples drawn from the same population of cases. The from pastvone
generalizability in this regard can be observed from the bi-

ases of the mean performances in the finite design set and in \ J
the test set in comparison to the optimal performance esti-
mated from an infinite design set. The bias in the mean per- Fie. 1. The sampling and evaluation scheme of the simulation study.
formance of different classifiers under various input condi-

tions is the subject of investigation in this study. We will

discuss further other interpretation of generalizability in thesample size requirements and the generalizability of the
Discussion section of this paper. trained classifier.

A number of investigators have studied the finite-sample- In this paper, we will describe the simulation studies and
size probleni® Fukunaga® derived a general formulation analyze the effects of sample size on classifier performance.
for the bias and variance of a functiof), which is to be Several commonly used classifiers, including the linear dis-
estimated from the available samples. Wliés a nonlinear ~ Criminant, the quadratic discriminant, and the back-
function of the mean vectors and covariance matrices of tw@ropagation neural network will be studied and compared
feature distributions, it has been shown that a bias resulténder different input conditions. Feature distributions with
from the nonlinear propagation of the finite-sample variancegnarkedly different characteristics will be used to represent a
in the estimates of the mean vectors and covariance matric&@riety of situations that may be encountered in classification
of the distributions through this function. For multivariate- Problems for many detection or diagnostic tasks.
normal data, these variances are proportional iy 1ivhere
N, is the design sample size, and this dependence propagateSpATERIALS AND METHODS

into the lowest-order terms in the bias. The bias is indepen- _ _ )

performance that count the fraction of times the decisiors@mple size on classifier design. Normal and abnormal case
value for an abnormal case exceeds that for a normal cag@mples were randomly drawn from known probability dis-
(independent of underlying distributipnand various mea- tributions of the two classes. These samples were then used
sures of error for normally distributed decision functions, arelo design classifiers for differentiation of normal and abnor-
nonlinear functions of the parameters of the underlying dismal cases. The simulation approach assures that any number
tributions. They are thus subject to this effect. Fukunaga an@f case samples can be obtained from populations with
Hayes analyzed the finite sample effects on the probabilityknown statistical properties. It thus allows evaluation of the
of misclassification(PMC) of a classifier and suggested a dependence of classifier performance on design sample size
technique that makes use of the linear dependence of PM&Nd comparison of the performance with theoretically pre-
on 1/N to estimate the performance l{— o with a finite dicted optimal classification based on the chosen probability
Samp|e set. distributions.

For the evaluation of medical diagnostic systems, thex simulation study
most commonly used performance index is the area under ) ) ) )
the receiver operating characteristROC) curve, A,. We The sampling and evaluation scheme of the simulation
have derived analytically that, for linear discriminant classi-Study is shown in Fig. 1. In this study, we considered only
fiers, the classifier performance in terms A&f can be ap- (he situation in which equal numbers-N;oo/2) of normal
proximated by a linear function in 4, under conditions a}nd abnormal cases randomly drawn from the clgss distribu-
when higher order terms iN, can be neglected. We have t|_on§ were ava|lablg in our data set. A resampling strategy
been investigating the dependencegfon sample size by similar tQ the technique suggested by Fukunaga and Hayes
simulation studie$-® Wagneret al1%!! have also analyzed Was devised to ggnerate thg-vs-1/N, curve. Subsets of
the effects of design and test sample sizes on the varianddtNis--- N, design samples were randomly drawn from
components of the classifier performance. Although thes¢he available sample set, again under the constraint that the
behaviors depend strongly on the class distributions and theumbers of normal and abnormal samples were equal in each
properties of the classifier, the studies will provide some in-subset, i.e.N¢ normar= Ny, abnormar Nt /2 (i=1,...]). A clas-
sight into the sample size requirements for the design o$ifier was designed by using each subset of samples. The
different classifiers. This work may eventually lead to therandom sampling of a given subset from the available set of
selection of an efficient resampling scheme for classifier deN,,, Samples was performed without replacement, whereas
sign, as well as the development of a statistical test of théhe random sampling of different subsets always started from

Aftrjvs 1/N
Afts)vs 1IN
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the same set oN,,, samples. Therefore, after drawing a By varying the number of design samples per cld$s,
given design subsell;, the remaining sampled\i,,—N; ~ overa large range from 20 to 800, the regime where thg 1/
were independent of the design samples and used as the té§Pendence dominated could be observed fromitHgopu-
samples. For simplicity, the number of design samples peI,atlon mean)-vs-1/N(or 1/N) curves. It is important to note
class is denoted as in the following discussion. that, although the number of test sampléée=2000
In general, there are two methods, resubstitution and hold= N, varied from point to point on both the resubstitution
out, for testing classifier performance. In the resubstitutiorand the hold-out curves, the bias Ay is independent of
method, the design sample set is resubstituted into thbltesrl The shape of thé\,-vs-1/N curve is independent of
trained classifier to test its performance, whereas in the hold\|tes¥ afterNIi is fixed. However, the variance of a givéy
out method, an independent test set is used. It has begyeg depend on the test sample size.
showrt that, for a Bayes classifier, if the classifier is trained For simplicity, we will refer to these estimates &,

estimate of the classifier performance is optimistically biasech (ts) for the hold-out performance in the following discus-
whereas the hold-out estimate is pessimisticaly biased igjgns.

comparison to that achievable with an infinite design sample

set. The mean performance obtained from the former estimay c|ass distributions

tion provides an upper bound and that from the latter pro- o o

vides a lower bound on the true classifier performance. Whert- Multivariate normal distributions

the design sample size is limited, it is important to evaluate For three of the four types of class distributions, we as-

the hold-out performance to avoid an overly optimistic pre-sumed that the normal and abnormal classes followed multi-

diction of the classifier performance. In the limit of very variate normal distributions in the feature space. The dimen-

large sample size, the upper and lower bounds converge tsionality of the feature spack, was varied from 3 to 15. The

wards the unbiased estimate. characteristics of the multivariate normal distributions can be
In this study, we evaluated the performance of the classicompletely specified by the multivariate mean vector of the

fier using both the resubstitution and the hold-out methods ath class, denoted gs, (r=1,2) and its covariance matrix,

a function of finite design sample sidg. In order to reduce denoted as.,. The separation of the normal and abnormal

the variances in the estimatesAf, we randomly resampled classes is measured by the Bhattacharyya disteBicele-

without replacement eac; from the sameN;q samples  fined as'?

N, times, trained and tfestgc_i the classifier, and (_astimated the 1 1 def(3,+3,)/2]

averageA, from the N, individual A,'s as shown in Fig. 1. B=-A+-In———,

The resubstitution or hold-out,-vs-1/N, curve was plotted 8 2" JdetS,dets,

from thej points and the unbiased estimate/gfin the limit  \yhere deE, denotes the determinant &f,, and A is the

of N;—oc could be extrapolated from either curve. squared Mahalanobis distanedefined as
This method of estimating classifier performance at large

-1
N; by generating a few data points at finite sample sizes is A=(up—p )T(21+22) (o= py). )
similar to the Fukunaga and Hayes technique. However, we 2 2 2 M

did not assume that thepoints were in the linear region of e pahalanobis distance is the Euclidean distance between
the A,-vs-1/N curve and we used resampling to reduce théhe means of the two distributions, normalized by the square
variances. In fact, one of the goals of this study was 10 inygot of the average of their covariance matrices. It can there-
vestigate the range of design sample size in which the pefyre he considered to be a measure of the signal-to-noise

formance curve was approximately linear for various classiygtig (SNR) between the abnormal and the normal distribu-
fiers and probability distributions of the class populations.iions. The second term @& is the contribution from the
Therefore, we used a much larger total number of samplegiference in the covariance matrices of the two class distri-
(Nitota=2000) in our simulation study than was generally j, fions. If the covariance matrices are equal, the second term
available for classifier design. We could then choligeover  ij| pe zero and the Bhattacharyya distance will be equal to
a wide range and study the behavior of the eniyevs-1/N 1/8 of the squared Mahalanobis distance.
curve. In the current study, three types of multivariate normal
To estimate the population mean Af at eachN;, we  class distributions were considered. In the following discus-
repeated the above experimeNt times, each with 2000 sion, we shall refer to the use of simultaneous diagonaliza-
independently drawn samples from the population. Theion for the two covariance matrices of the class distribu-
population mean ofA, was estimated by averaging tlhg  tions. This operation leaves the normal-based decision
values obtained from thbl, experiments. We did not ana- functions unchanged because the distance measures that arise
lyze the variances in this study because of the complicatioin these decision functions are invariant to any non-singular
in the correlation among th, values ofA, introduced by linear transformation.
resampling. A detailed analysis of the variances and its mod- (1) Equal covariance matrices and unequal meanstn
eling was performed in a separate study by Wagnei1°'?  this case, the covariance matrices of the normal and abnor-
in which a different study design was used. mal class distributions can be simultaneously diagonalized

@
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f2

f1

Fic. 2. A schematic illustration of the two class distributions with equal Fie- 3. A schematic illustration of the two class distributions with unequal

covariance matrices and unequal means in a 2D feature space. The circlé@variance matrices and unequal means in a 2D feature space. The closed
represent contours of equal probability in each distribution. curves represent contours of equal probability in each distribution.

and the variances of the individual feature components caMectors of the two classes were equah=pu,=0. In this

be scaled to unity. Therefore, without loss of generality, thecase, the discriminatory power of the two classes comes en-
covariance matrices of the two classes could be assumed ttiely from the difference in the covariance matrices. A sche-

be equal to identity matrice&,;=3,=1. The mean feature Mmatic of the two class distributions in a 2D feature space is

vector for the first class was assumed to be zgre=0, and ~ shown in Fig. 4.

the mean feature vector for the second classs M with all

components ol equal to a constamh. The magnitude ah 2. Checkerboard distributions

could be adjusted to obtain a desired separation of the two The fourth type of class distributions was a checkerboard
classes. For the purpose of this simulation study, we chose yhere the normal and abnormal classes were located in al-
such that the squared Mahalanobis distance was 3, i.e., thérnate square box regions of the feature space. Within each
Bhattacharyya distance was 3/8, for feature spaces of anyox of the checkerboard, the feature vectors were uniformly
dimensionality. As discussed below, this separation corregistributed. The two classes did not overlap with each other
sponds to a theoretica, of 0.89, which is in the perfor- g that they could be perfectly separated by an “ideal” clas-
mance range of many classification problems in CAD applisifier with A,=1. We considered a 2x3 checkerboard in a
cations. An example of the two class distributions in & 2D2p feature space and a 2x2x2 checkerboard in a 3D feature
feature space is shown schematically in Fig. 2. space. The example of a@ checkerboard in a 2D feature
(2) Unequal covariance matrices and unequal means: space is shown in Fig. 5. Such class distributions may not be
The covariance matrix of the first class was again diagonalcommon in actual classification problems encountered in
ized and scaled to be an identity mati, =1, and the mean  cAD. However, it was included in this study to demonstrate
feature vector for the first class was assumed to be zergne capability and limitations of the different classifiers when

n1=0. The covariance matrix of the second claSs, was  the class distributions were not multivariate normal.
simultaneously diagonalized to have eigenvalues i

=1,....,k For this study, we generated the values\ofwith

the simple relationship: C. Classifiers
(i— DA max— Amin) . We studied three types of classifiers: the linear discrimi-
Ni=Nmint k—1) , =1,k (3)  nants, the quadratic discriminants, and the back-propagation

neural networks. They represent a range of classifiers com-

and evaluated one condition whexg;,=1, and\ =2 for ~ monly used in the field of pattern recognition at present.
all dimensionalities of the feature spaces. We also assumed

that the components of the mean feature vegigrwere

equal, the values of which were adjusted to achieve a Bhat- 2
tacharyya distance of 3/8. For the purpose of demonstrating
the general trends of th&,-vs-1/N curves and comparing
the relative performance of the different classifiers under the
various conditions, the specific choices of these values are /\
not critical. Figure 3 illustrates an example of the two class f1
distributions in a 2D feature space. \J
(3) Unequal covariance matrices and equal means:
The covariance matrix of the first class was the same as that
in the first two cases described above. The covariance matrix

of the second class was proportlonal to the Idemlty mat”XFm;. 4. A schematic illustration of the two class distributions with unequal

3,= al., where the proportiqnality constantwas adjusted  coyariance matrices and equal means in a 2D feature space. The circles
to provide a Bhattacharyya distance of 3/8. The mean featurepresent contours of equal probability in each distribution.
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INPUT HIDDEN LAYER OUTPUT

Fic. 6. A schematic diagram of a backpropagation neural network with one

Fic. 5. An example of a 23 checkerboard in a 2D feature space. hidden layer.

error! The general properties of the linear and quadratic
(1) Linear discriminant classifier: The linear discrimi- ~ classifiers have been described in the literattweexample,

nant classifier can be derived from the means and the covaukunaga).
riance matrices of the class distributions as folldv3: (3) Back-propagation neural network: Many different
- o o architectures and training methods have been developed for

h(X)=(mo—pq) TS IX+ %(ﬂlzflm_ﬂnglﬂz), (4) artificial neural network$ANN)# in various applications. In

. this study, we considered only a three-layered neural net-
where 3 =(3,+3,)/2, and X is the feature vector to be Wwork trained with a feed-forward back-propagation method.
classified. The means and covariance matrices have to bEhe neural network hak input nodesn hidden nodes, one
estimated as the sample means and sample covariance mag#tput node, and a bias node in both the input and the hidden
ces from the available design samples. The sample meaf@yers. The ANN architecture is denoted kksn—1. The
and covariance matrices undergo a nonlinear transformationodes in the ANN are fully connected and are trained with a
to become the discriminant scores, which in turn are transminimum sum-of-squares-error criterion. The number of
formed nonlinearly into a measure of the performance. Thaveights to be estimated is equal tfk+1)+(n+1). A
variances in the estimated parameters propagate into tigghematic diagram of an ANN is shown in Fig. 6.
mean classifier performance and result in a bias through the
second derivative of the transformation function. I1l. RESULTS

It is known that, for multivariate normal distributions with . .
In our simulation study, we compared the performance of

equal covariance matrices, the linear discriminant classifier i§ne linear, quadratic, and backpropagation neural network

optlmal and the _classmer _performance in the I|m|_t Of.largeclassifiers for the different class distributions in the feature
design samples is determined by the Mahalanobis distance . . . ;
ven b Spaces of dimensionality ranging from 3 to 15. The number
9 y of repeated experimeni$, was chosen to be 20 for all cases
1 /A2 in the multivariate normal feature spaces and 100 in the
f e~ u24y. (5) checkerboard feature space. The number of data set partition-
e — 00

V2 ings N, in each experiment ranged from 1 to 20. These
. . s choices are a compromise between computation time and
For the class distributions with =3 to be used in this study, b P

. ! : estimation accuracy, especially for ANN classifiers with a
I can be_ derlveq frc_)m_ Eq5) that thg ma>_<|munA_z that the large number of hidden nodes in high dimensional feature
optimal linear discriminant can achieve in the limit of large

design samples is 0.89 spaces. As shown in the graph_s .discusseq below, some of the
(2) Quadratic disc.rim.inant classifier: The quadratic dis- performance curves may exhibit quctgaﬂons that could be
criminant classifier can be expressed .as reduced by a larger number of experiments. However, the
general trend of the performance curves should not be
1 changed by the statistical uncertainties.
ha(X) = E(X—Ml)Tiil(X—Ml) (1) Multivariate normal distributions—Equal covari-
ance matrices and unequal meansEor class distributions
1 S det>; with equal covariance matrices, the linear discriminant is
— 5 (X= ko) Zp (X— o)+ 5'”@- (6)  theoretically the optimal classifier when the design sample
size is large. However, when the design sample size is small,
When the class distributions are multivariate normal withthe performances of all classifiers are biased. Figutas-7
unequal covariance matrices, the quadratic discriminant clag:(c) show the dependence of tidg obtained from resubsti-
sifier is optimal in the limit of large training samples. The tution (training), A,(tr), and theA, obtained from the hold-
Bhattacharyya distance gives an upper bound on the Bayesit methodtesting),A,(ts), on 1/Nfor the linear, ANN, and

AZ:
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Fic. 7. The dependence of tidg obtained
from resubstitution(training-solid line$,
A,(tr), and theA, obtained from the hold-
out method (testing—dashed lings
A,(ts), on 1/Nfor the class distributions
with equal covariance matrices and un-
equal meanga) Linear, (b) ANN, and(c)
quadratic classifier. Legend: F3D fea-
ture space, etc.
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quadratic classifier, respectively. Two hidden nodes were (2) Multivariate normal distributions—Unequal cova-

used for the ANN k—2— 1) because it is the smallest num- riance matrices and unequal meansThe performances of

ber of hidden nodes in a nonlinear ANN. An ANN with only the classifiers for class distributions with unequal covariance
one hidden node will be a linear classifier and behave in anatrices are shown in Figs(&—8(b). The linear discrimi-
similar manner as the linear discriminant. On the other handpant and the ANN K—2—1) classifier (not shown)are
ANNSs with a large number of hidden nodést shown)will again approximately linear over the entire rangeNo$tud-
overfit the design samples and have poor generalizability teed. However, theA, at 1/N=0 decreases as the dimension-
the unknown cases, similar to the ANN curves to be dis-ality of the feature space increases. This is because both the
cussed below. All three classifiers can reach the optimal clagdinear discriminant and the near-linear ANK-{2—1) can-
sification accuracy ofA,=0.89 in the limit of largeN. The  not make use of the class separability due to the differences
curves for the linear classifier and the ANK-2—1) at in the covariance matrices which is the second term in the
400 training epochéterations)are approximately linear over Bhattacharyya distance. The second term increases relative
the entire range. The quadratic classifier does not reach the the first term, the squared Mahalanobis distance, when the
approximately linear region untl is greater than about 100 Bhattacharyya distance is fixed and the dimensionality of the
(1/N<0.01) in the higher-dimensional feature space. The bifeature space increases.

ases on both the resubstitution and hold-out curves for the The performance curves of the ANN at larjeimprove
quadratic classifier are greater than those for the linear clasvhen a greater number of hidden nodes and a sufficient num-
sifier and the ANN k—2—1). The large biases again indi- ber of training epochs are used. The number of hidden nodes
cate overfitting and poor generalization by the quadratic clasrequired to reach the optimal classification A&f=0.89 at
sifier in the equal-covariance-matrices situation. 1/N=0 increases with the dimensionality of the feature
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space. Figure 8(lshows the performance of the ANNs when approximation we observed that, inkadimensional feature
the number of hidden nodes is equal to the dimensionality irspace and with these class distributions, an ANN with ap-
each feature space. Since the number of weights to be trainguloximatelyk hidden nodes can approach the optimal perfor-
increases rapidly with increasing number of nodes in amrmance when the design sample size and the number of train-
ANN, the number of epochs required for training the ANN to ing epochs are sufficiently large, as shown in Figh)8

achieve a reasonable classification accuracy increases ac-To illustrate the training of an ANN with a large number
cordingly. The resubstitution and hold-out performanceof hidden nodes, we show the dependence of the resubstitu-
curves of each ANN shown in Fig. 8(bjere chosen at the tion and the hold-out curves on the number of training ep-
smallest number of training epoch that resulted in approxiochs for ANN(9—9—1)in Fig. 9. A number of commonly
mately the highesA, value when the hold-out curve was discussed problems of an ANN can be observed. In the small
extrapolated to 1/80. The number of training epochs re- N region below about 60 samples per class, over-
quired to reach the highest, increased as the dimensional- parametrization and over-training are obvious, i.e., near per-
ity and the number of hidden nodes in the ANN increased. Ifect classification during traininfA,(tr) greater than 0.95]
ranged from about 4000 to 10000 for the conditions showrand poor generalizatiofA,(ts) below about 0.8]. The prob-

in Fig. 8(b). We did not attempt to perform an exhaustivelem becomes more pronounced with an increasing number of
search for the “optimal” number of hidden nodes in eachtraining epochs. In the middle range of 200 to 400 samples
feature space because of the extensive computation time rper class where,(ts) increases to a maximum then de-
quired for the search. Instead, we evaluated ANNs with areases with further training, an “optimal” number of train-
few different numbers of hidden nodes in each feature spacieg epoch exists. Only in the region with a sufficiently large
and chose the “best” ANN within those studied. With this N (greater than about 500 per clas8)(ts) increases with
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increasing number of training epochs within the range studthe A, extrapolated to 1/ 0 is about 0.85 for ANN9—2

ied. TheA,(ts)-vs-1/N curve becomes linear fax greater —1), and is about 0.87 for ANN9—6—1). The ANN with

than about 200. This dependence of ANN on training epoctine hidden nodes appears to approach the optimabf

is generally observed for ANNs with a large number of hid-0.89 in the limit of 1/N=0. However, the ANN(9—-9-1)

den nodes and in high-dimensional feature spaces, althougioes not reach the approximately linear region uhtiis

the design sample size required in order to avoid overgreater than about 20@asier to see in Fig. 9). As can be

training and over-parametrization varies. It reinforces ourseen from the hold-out curves, increasing the number of hid-

general experience that the ANNs with a large number ofien nodes further will increase overfitting, reduce generaliz-

weights can overfit the design samples easily and providability, and increase train time without gaining true improve-

poor generalization when the sample size is small. ment in performance for classification of unknown case
The performance curves of ANNs with different numberssamples.

of hidden nodes in the 9D feature space are shown in Fig. 10. The quadratic classifier is the theoretically optimal classi-

The curves for a given ANN were again chosen at a trainindier for the class distributions with unequal covariance ma-

epoch in which the hold-out curve approached approximatelyrices. It can optimally utilize the class separability contrib-

the highest performance at 1#\D. The chosen training ep- uted by both the differences in the means and the covariance

och ranged from 600 to 12 000 for the 2- to 15-hidden-nodematrices. The performance curves for the quadratic classifier

ANNs shown. When the number of hidden nodes is small(not shown)in feature spaces of different dimensionalities

the highestA, obtained by extrapolation to N/&~0 appears are very similar to those obtained for the equal covariance

to be below the theoretical optimum of 0.89. For example matrices situatiofiFig. 7(c)]. TheA, of the quadratic classi-

1.0
0.9 1 i
® ] Fic. 11. Comparison of the performance
N % = = — curves of the linear, quadratic, ANBI-2
< 0.8 - \u ~a — T — L i —1), and ANN(9—9—1)classifiers in the
~ ~ — — —e— L-Az{tr) 9D feature space for class distributions
\E ~- ANN921 [ | —8— L-Az(ts) with unequal covariance matrices and
T — =~ —A— Q-Az(tr) unequal means. Legends: =linear;
0.7 1 T — = Q |~ g;‘l‘:‘zg;)_u(tr) Q=quadratic, ANN=neural network,
AE NN991 6— ANNS21-Az(ts) solid lines=A,(tr), dashed lines A,(ts).
19D [ | —m— ANN991-Az(tr)
06 Unequal Cov. Matrices —H— ANN9S1-Az(ts)
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fier reaches the optimal value of 0.89 in the limit of lalde random guessing in the hold-out situatioA,(ts)=0.5).

for all dimensionalities studied. However, it is somewhat surprising that the resubstitution
Figure 11 shows a comparison of the performance of th@rve can be biased to very high values, when the design

linear, quadratic, and the ANN classifiers with two and ninesample is small. The bias increases with increasing dimen-

hidden nodes. The biases on the resubstitution and the holdjo ity of the feature space because the severity of overfit-

out curves of the quadratlc_c_:las&ﬁer are ”Pt as Iarg(—;‘ as tho?ﬁlg to the design samples worsens with increased parameter-

of the ANN (9—-9—1) classifier. However, in the regime of , ation in the linear discriminant function. This indicates that

X : o

small design sample sizes, the hold-out curve of the optim lf] . o o
. o e predicted performance of a classifier can be unrealisti-

quadratic classifier can be much lower than the correspond-

ing curves of the linear classifier or ANN with one or two cally optimistic if the test samples are not independent of the

hidden nodes. This result indicates that the theoretically Opgesign samples.

timal classifier may not be the optimal choice when the FOr the class distributions with equal means, it is much
available design sample size is small and overMore difficult to train the ANN classifier. The number of
parametrization becomes an important consideration. hidden nodes and the number of training epochs required for
(3) Multivariate normal distributionS_Unequa| cova- the ANN to apprOXimate the decision surfaces, which are
riance matrices and equal meansFigure 12(a)shows the spherical hypersurfaces in thedimensional feature space,
dependence oA, on 1/N for the linear classifiers for the increase ak increases. Figure 12(lshows theA,-vs-1/N
class distributions with equal means. Since the Mahalanobieurves for the ANNs in which the number of hidden nodes is
distance is zero when the means of the two class distribu2 times the dimensionality of the feature space. The number
tions are equal, the linear classifier performs no better thaof training epochs required to approach the highest perfor-
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mance for a given ANN architecture ranges from about 1800nal classifier for the class distributions with unequal covari-
to 20000 in these cases. Again we did not attempt an exance matrices. Its performance curfest shown)are very
haustive search for the “optimal” number of hidden nodessimilar to those plotted in Fig.(€), except that the extrapo-
in each case. These ANNs were chosen because they appéatedA, values at 1/N=-0 do not reach as high as those in the
to approach the maximum performance Af=0.89 in the equal covariance matrices situation. By using the approxi-
limit of large N and their number of hidden nodes is a simplemately linear region of thé,-vs-1/Ncurve atN greater than
multiple of the dimensionality. Compared to the class distri-100, the extrapolated, ranges from about 0.873 to 0.885
butions with unequal means, for a given dimensionality, thefor the 3D to 15D feature spaces. In this case, it is much
number of hidden nodes and the number of training epochmore efficient to train a quadratic discriminant than the
required for achieving the near maximum performance atANN. Since the linear discriminant and ANNs with few hid-
largeN are greater in this equal-mean situation. Figuréal3 den nodes cannot provide effective classification regardless
shows an example of the dependence of the performana# the design sample size, the quadratic discriminant is ob-
curves on the number of hidden nodes in the 9D featureiously the optimal classifier both in terms of performance
space. Figure 13(ki$ an enlarged view of the curves in Fig. and training efficiency.
13(a)in the range where the sample size is greater than 200 (4) Checkerboard distributions: In a feature space with
per class. The hold-out performance of AlN-9—1) at  checkerboard class distributions, classification is difficult for
1/N=0 reaches about 0.85. When the number of hiddemmany classifiers because of the disjoint clusters of samples
nodes is greater than nine, the performances of the ANNs dtelonging to the same class. We compared the three classi-
1/N=0 are similar and approach the optinfgl. fiers in such a situation by two examples. Figure 14 shows
The quadratic discriminant is again the theoretically opti-the performance curves of the three classifiers in a 2D feature
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space with a 2X3 unit checkerboard distribution. Both theor quadratic classifiers for class distributions that are very
linear and the quadratic discriminants perform poorly everdifferent from the idealized multivariate normal distribu-
for the resubstitution method whew®, values are in the tions.
range of 0.6 to 0.7. However, the ANR—3—1)can achieve
an A, of 0.96 (not shown)and the ANN(2—5—1)a near-
perfect classification at a training epoch of about 1200. IV. DISCUSSION

In a 3D feature space with a 2xX2Xx2 unit checkerboard Classifier design is an important field of research in
distribution, the difficulty in classification experienced by the computer-aided diagnosis. Yet many of the issues related to
linear and quadratic discriminants is even more apparentlassifier design have not been explored systematically. This
Figure 15 shows that the hold-out curve of the linear classisimulation study is a part of our on-going investigation of the
fier is basically the same as random guessing. The hold-osample size effects on classifier desfgh-*°In this study,
curve of the quadratic classifier is slightly higher than 0.5 atwe evaluated classifier performance for three multivariate
small design sample sizes but approaches 0.5 as the desigarmal class distributions with specific properties: equal co-
sample increases. On the other hand, the ANNB—1)can  variance matrices, unequal covariance matrices, and equal
attain a tesf\, of 0.9 (not shown)and the ANN(3—5—1fan  means. These distributions are idealized but they do approxi-
reach near-perfect classification at large design sample sizesate a range of situations that may occur in real classifica-
after about 1500 training epochs. These two examples dention problems. Since the optimal classifier and the upper
onstrate that an ANN classifier can be superior to the lineabound of classification accuracy in the limit ofNI=0 are
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known for each of these cases, we can compare the perfoentire range of design sample sizes, the classifier perfor-
mances of the classifiers under each condition with the optimance at very largeN can be estimated from the small
mum. In addition, a checkerboard class distribution was insample size performance by linear interpolation, as sug-
cluded in the study. A comparison of the performances of thgjested by Fukunaga and Hayesd demonstrated previously
different classifiers for this class distribution can illustrateby Wagneret al®

their effectiveness when the distributions are very different With the unequal-covariance-matrices and equal-mean
from multivariate normal. class distributions, the linear discriminant and the back-

For all three classifiers, th&,(tr) obtained by resubstitu- propagation neural network with one hidden layer are infe-
tion is biased optimistically while thé\,(ts) obtained by rior to the quadratic classifier when the design sample size is
testing with an independent test set is biased pessimisticallyarge. The linear discriminant cannot utilize the difference in
relative to theA, in the limit of N—oo, except for the situ- the covariance matrices and underestimates the class separa-
ations whenrA,(tr) is bounded from above by perfect classi- bility even when an infinite number of design samples is
fication (A,=1) or whenA,(ts) is bounded from below by available. The ANN needs a relatively large number of hid-
random guessingA,=0.5). The magnitude of the biases den nodes and a large number of training epochs in order to
increases as the design sample size decreases and as thereach the optimal performance. Its hold-out performance and
mensionality of the feature space increases. In the caseke computation efficiency are both inferior to those of the
where a given classifier has no discriminatory power for aquadratic classifier. However, for the unequal-covariance-
given class distribution, for example, the linear discriminantmatrices and unequal-mean case and a small design sample
for the equal-mean or checker-board class distributions, asize, the linear classifier or an ANN with very few hidden
the quadratic discriminant for the 3D checker-board classodes, e.gn=2, provides better hold-out performance than
distribution, the tes®\,(ts) remains almost constant at 0.5, the more complex ANNs or the optimal quadratic classifiers.
independent of the design sample size. In many cases, tliéhese results indicate that the bias on classifier performance
A,-vs-1/N curve cannot be approximated by a straight lineincreases with increasing complexitiposely related to the
that extrapolates to th&, at 1/N=0 until the design sample number of parameters to be estimatefithe classifier. The
sizes are very large, beyond the range of sample sizes thitear classifier containk(+ 1) independent parameters and
are generally available for CAD classifier design. To esti-the quadratic classifier containk« 1) (k+2)/2 independent
mate the performance of a classifier at lafgeunder the parameters in their formulations. The number of weights to
constraint of a small design sample, one may use the Fukle estimated for the ANN depends on the number of hidden
naga and Hayes resampling schéneederive several points nodes as(k+1)+(n+1). The number of weights in an
along theA,-vs-1/N curves in the small sample size region. ANN can therefore easily exceed that of a quadratic classi-
If the extrapolated resubstitution and hold-out curves do nofier, although the estimation of the mean and covariance ma-
converge to approximately the sarAg at 1/N=0, an aver- trices for the linear and quadratic discriminants may contrib-
age of the points on the two curves which correspond to theite additional “complexity” to the classifier design. Two
same desigh sample size may be a closer estimake tifan ~ observations can be made. First, when the available sample
eitherA,(tr) or A,(ts). It may be noted that the resubstitution size is small, a simple classifier will have better generaliza-
and the hold-out curves are not biased symmetrically fromion than a more complex classifier. Second, a complex ANN
the A, at infinite N, the average thus obtained will only be a or a quadratic classifier trained with an insufficient number
rough estimate. It is also not valid in cases when the classief design samples generalizes poorly, even if it is the optimal
fier has no discriminatory power with,(ts) constant at classifier for the class distributions. It is therefore important
about 0.5 or when the resubstitution curve is overly optimisto select an appropriate classifier by taking into consideration
tic with A,(tr) constant at about 1. the design sample size.

In any case, caution should be taken in estimating classi- A further problem in classifier design is that the true
fier performance by extrapolation toNl#0 or by averaging population distributions of the classes in the feature space are
the resubstitution and hold-out performance as discussegenerally unknown. It was suggested that the quantile—
above. The estimated performance contains variances thgtiantile(Q—Q) plot and the chi-square plot may be used for
have to be estimated using further tools. One such attempt iimvestigating the normality of univariate and multivariate
estimating the components of variance by a bootstrappingample distributions, respectively However, it is still un-
resampling scheme has been studied recently by Wagné&nown under what criteria the chi-square plot will indicate
et al!! These estimates reveal the amount of bias and varithat it is optimal to use a classifier designed under the nor-
ance in the classifier performance obtained with the finitenality assumption. For any measure of goodness-of-fit, when
design samples, thus allowing estimation of the sample sizhe sample size is small, only the most aberrant deviations
required to achieve a desired degree of generalizabilityfrom the normal distribution can be identified as a lack of fit
rather than replacing the need for a larger sample set arftom these plots® Therefore, there is often na priori
further studies. knowledge to select an “optimal” classifier or to predict

With the equal-covariance-matrix class distributions, thewhether the observed performance is caused by the sample
linear discriminant is the optimal classifier as expected. Theize, the choice of an overly complex classifier, or by an
biases are low and the computation is efficient. Moreoveractual poor separation of the classes in the feature space. If
since theA,-vs-1/N relationship is linear over almost the one observes poor generalization of a trained classifier in a
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truly independent test set, it will be important to take intoof uncertainty that are generalizable to a population of test
consideration all these factors and redesign the classifier. samples.

In this study, we assumed that the best features have al- In this investigation, we have limited our study to only
ready been determined for the classification task. In a gener#liree types of classifiers: the linear discriminant, the qua-
classifier design problem, the best set of features usually ha#atic discriminant, and the backpropagation ANNs with one
to be selected based on the available design samples. Thidden layer. There are, of course, many other variations of
feature selection step will introduce additional biases to théhe ANN architecture and other parametric or non-parametric
classifier performance. The number of features selected algdassifiers available for feature classification tasks. The pur-
has a strong influence on the classifier design, as can be seBfse of our work is not to exhaustively evaluate all possible
from the dependence of the bias on the dimensionality of theombinations of class distributions and classifiers. Rather, by
feature space. The investigation of this more complex situalimiting our investigation to some well-known situations, we
tion including both the feature selection and classifier train£&n perform systematic analyses and gain some insights into
ing steps is underway. the CI_aSSIfle_r design problems. Furthermore, we have I|m|'re_d

The term generalizability is nonspecific and needs to b&@Ur discussion here to thlet)’lelstlmate_s of t_he mean clas_smer
qualified here. The present paper is concerned with the geférformance. Wagneet al.™™ have investigated the vari-
eralizability of the mean performance of classifiers to un-2nces of classifier performance estimated from a finite
known test samples drawn from the same population 0isample set and developed models to study the relative im-

cases. We have shown in this paper that the mean perfo _ortarljce of thte flzdetshoi the training ztandftest _samples.dltlhas
mance of a classifier depends on the number of samples us en gemonstrated that a components-ol-variance modet can

to train the classifier, the architecture of the classifier, and—° estimated with a finite sample set by using a bootstrap

S ; r}nethod. More importantly, the analysis of variances can re-
for multivariate-normal data—the means and covariances o

the population distributions. Suppose in this context that a\l/eal the generalizability of the performance estimates to

A . . o - other training and test sample sets in the population. Our
classifier is trained on a given finite number of design g P pop

samples(patients). The mean performance of the classifierIong term goals are to find some guidelines for designing
v rpind b nd nt'r lication 5vith th me number of d efficient resampling schemes that can minimize the bias and
ove ependent replications € Same number of &, iance of a trained classifier using the available samples,

sign samplgs 1S fgineralrzable tlo StTd'ethharane”Ztid by ﬂ?a%d to provide a quantitative design tool that can estimate the
same number of design samples. In other words, the me sign sample size requirement for a larger “pivotal” study

resubstitution or hold-out performance is an unbiased estifrom the results of a smaller “pilot” study in order to

mate for repeated sampling of independent design and 3thieve a desired precision #&, and the desired generaliz-
sample sets, respectively, when the same number of desigﬂ)i”ty_

samples is used. The classifier performance may not, how-

ever, be generalizable to studies characterized by a different

number of design samples. In particular, when a very large

and representative design sample size is used, the mean per-

formance may be very different from the mean performancédCKNOWLEDGMENTS
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