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mammograms: Global and local multiresolution texture analysis
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We investigated the application of multiresolution global and local texture features to reduce false-
positive detection in a computerized mass detection program. One hundred and sixty-eight digitized
mammograms were randomly and equally divided into training and test groups. From these mam-
mograms, two datasets were formed. The first datamahual)contained four regions of interest
(ROIs) selected manually from each of the mammograms. One of the four ROIs contained a
biopsy-proven mass and the other three contained normal parenchyma, including dense, mixed
dense/fatty, and fatty tissues. The second daf@msdrid) contained the manually extracted mass
ROls, along with normal tissue ROIs extracted by an automated Density-Weighted Contrast En-
hancementDWCE) algorithm as false-positive detections. A wavelet transform was used to de-
compose an ROI into several scales. Global texture features were derived from the low-pass coef-
ficients in the wavelet transformed images. Local texture features were calculated from the
suspicious object and the peripheral subregions. Linear discriminant models using effective features
selected from the global, local, or combined feature spaces were established to maximize the
separation between masses and normal tissue. Receiver Operating Chara@R@i€tj@analysis

was conducted to evaluate the classifier performance. The classification accuracy using global
features were comparable to that using local features. With both global and local features, the
average ared),, under the test ROC curve, reached 0.92 for the manual dataset and 0.96 for the
hybrid dataset, demonstrating statistically significant improvement over those obtained with global
or local features alone. The results indicated the effectiveness of the combined global and local
features in the classification of masses and normal tissue for false-positive reductidi®97©
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[. INTRODUCTION masses and breast tissue. kedial. used template-matching
techniques to detect circumscribed masses after selective me-
Breast cancer is the second leading cause of cancer deaifyn filtering™® They found that the number of false positive
among American womehTreatment of the cancer while it getection was reduced by analyzing the cross correlation of
is still in its early stage is the most promising way t0 im- naighhoring pixels. Kegelmeyest al. used the analysis of
prove the chances of survival for patients with breast,q, grented edges and a subset of Laws' texture energy
cancer. Mammography_ is presently the mo_st effective features to detect spiculated masSe¥in et al. utilized the
method for early detection of breast caricand is recom- a{chitectural asymmetry between the right and left breasts to

mended as a routine procedure for the screening of brea {atect mass& Laine et al. proposed to use the wavelet

cancers. However, among those women who have breaﬁ nsform and thep transform for adaptive multiscale pro-
cancers and have undergone mammography, 10%—30% hale & P P

negative mammogranfs’ Approximately two-thirds of CcSSINg and contrast enhanceménBrzakovic et al. em-

these false negative diagnoses were due to missed lesions Bifyed @ hierarchical region growing with pyramidal multi-
the mammograms, which were evident retrospecti¢&f. re.solutlon. iimage representation in the segmentation of
The low conspicuity of the radiological findings, poor imagemlcrocalmﬁcatlons and nodulé8.The reported results of
quality, eye fatigue, or oversight are the common causes dhese studies varied. It is difficult to compare the perfor-
the missed detectiofsAlthough double reading by two ra- Mances of the different algorithms because they depend
diologists may increase sensitivity,it also increases the strongly on the datasets used.
cost in a mass screening program. As an alternative, CAD We are developing computerized methods to detect
may be used to provide a second opinion to reduce th&:asses on mammograms. In an early study, we used texture
missed detection rate of breast cantel? features of ROIs manually selected from digitized mammo-
The detection of masses is more difficult than the detecgrams and linear discriminant analysis to classify masses and
tion of microcalcifications due to the similarity between normal tissué/ Wei et al. used multiresolution texture
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analysi$® and Sahineret al. used a convolution neural sis. The mammograms were divided randomly into two sub-
network®2° with the same dataset and achieved improvedyroups: one for training and one for test. A limited study was
results. Adaptive density-weighted contrast-enhancemergerformed to evaluate the effect of the possible correlation
(DWCE) filtering with Laplacian—Gaussian edge detectionbetween films of the same patient on classifier performance.
was recently developed for the segmentation of low-contrast
objects from digitized mammogramy.?®

In this study, we introduced the use of local texture fea-1. Manually extracted ROIls

tures in combination with the global multiresolution texture .
vith the g We used manually extracted ROIs to study the feasibility
features for the classification of masses and normal breas

) . . .0f using the extracted features for the classification task and
tissue. The new feature extraction approach was applied to : : . .

. 10 compare with our previous studisFour different ROIs,
the same set of manually extracted ROIls in order to compare

: X . - each with 256&256 pixels, were selected by a radiologist
with our previous results. In addition, false-positive ROIseX erienced in mammoaranhy from each mammoaram. One
automatically extracted by the DWCE algorithm were com- b grapny gram.

bined with the mass ROIs to examine the effectiveness o'f:eOI contained a true mass, and the other three were normal

these features in reducing the number of false-positive deteg_arenchyma, containing dense tissue, mixed dense/fatty fis-

tions. The classification accuracy was evaluated by Receiver <! and fatty tissue, respectively. The dataset was divided

Operating Characteristic/OC) analysis and the improve- randomly and eq_ually into two, with _the constraint that ROIs
: " from the same film were grouped into the same subgroup.
ment in accuracy due to the additional local texture feature

was examined. We also evaluated the robustness of the clagghere were 84 true mass ROIs and 252 nonmass ROIs for

e N . -~ _each of the subgroups. In the following analysis, we denote
sification model by studying its performance with various X
- L the whole set with manually extracted ROIs Ms and the
feature set and training/test set combinations.

two subgroups aM; andM,.

Il. MATERIALS AND METHODS
A. Dataset 2. Hybrid dataset

The mammograms used in this study were randomly se- In the manually extracted ROIs, the normal tissue regions
lected from the patient files in the Department of Radiologywere identified by radiologists according to certain criteria
at the University of Michigan. The selection criteria were for the feasibility studies. The number and tissue type might
that there was a biopsy-proven mass on the mammogram ar different from those extracted by a computer algorithm.
there were no visible grid lines. The mammograms were acfo obtain a more realistic evaluation of our false-positive
quired using a Kodak MinR/MRE screen/film system with reduction method, we applied it to false positive ROIs ex-
extended cycle processing. The mammographic systentsacted automatically by the DWCE procedure. The detailed
have a 0.3-mm focal spot, a molybdenum anode, a 0.03-mndescription of the DWCE method can be found elsewfR&re.
thick molybdenum filter and a 5:1 reciprocating grid. All Briefly, each mammogram was processed in two stages. In
systems have been certified by the American College of Rathe first stage, the entire mammogram with reduced spatial
diology (ACR) and the image quality is monitored according resolution was globally filtered with a DWCE adaptive filter
to the ACRs recommended guidelines. to enhance the local contrast of the image based on its local

The films were digitized with a laser film scanner mean pixel values. A Laplacian—Gaussiat) edge detec-
(LUMISYS DIS-1000)at a pixel size of 0.1 mmw0.1 mm  tion procedure was then used to segment the image into iso-
with 12-bit gray level resolution. The optical density rangelated objects. In the second stage, the DWCE filter and the
of the digitizer was 0—3.5. The light transmission through theLG edge detector were applied locally to the isolated object
mammographic films was amplified logarithmically before regions detected in the first stage. The morphological fea-
digitization. The pixel values were calibrated such that theytures of the segmented objects were extracted and used to
were linearly proportional to the optical density in the rangereduce the number of objects in both stages. The ROIs of the
of 0.1-2.8 optical density units. remaining objects were extracted from the full resolution im-

The 168 case samples in the dataset contained a mixtusges centered at the centroid locations of the detected ob-
of benign (o = 85) and malignant{ = 83) masses. Forty-five jects.
of the malignant masses and six of the benign masses were The analysis of dataset containing automatically extracted
spiculated. The visibility of the masses was ranked by expemass and normal tissue ROIs was more complicated than the
rienced radiologists on a scale of 1-1D=most obvious, manually extracted one due to the possible overlap of the
10=most subtle), which corresponded to the range of massesass and normal tissue RGfSFor our purpose of evaluat-
seen on clinical mammograms. The length of the long axisng the effectiveness of different feature spaces in reducing
(size) of the masses was also measured by the radiologisthie number of false positives, we formed a hybrid dataset by
and ranged from 5 to 26 mm with a mean size of 12.2 mmusing the 168 biopsy-proven masses that were manually ex-
Some of the mammograms were different views obtainedracted (as discussed previouglyand 1001 false-positive
from the same patient. A total of 72 different patients wasROIs containing only non overlapping normal tissue ex-
included in the dataset. Different views of the same patientsracted by the DWCE algorithm. In the following analysis,
were treated as different case samples in most of the analyve denote this dataset as H and the two subgroups, and
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H,. There were 84 true masses in each subgroup, and 5@udy, we used 13 texture measures described by Haralick
and 498 non overlapping ROIs with normal tissuddipand et al?* The definitions of these texture features are summa-

H,, respectively. rized in the Appendix. We have described the methods for
the extraction of multiresolution features previouly.
3. Adaptive background correction Briefly, the wavelet transform was employed to decompose

. .an ROI into three levels. Daubechies’ filter with four
Masses are superimposed on normal breast structure N Befficient2® was used as the wavelet filter. The SGLD ma-
detected ROI. The gray level characteristics of the back: :

) : trices were constructed dt= 1 for the original imagéscale
ground structures are basically independent of those of th? o
) and the subsampled approximation images from the low-

masses but they will offset some of the extracted propertlesass quadrants in the wavelet coefficients of the next two

based on gray level analysis. Therefore, it is necessary tevels (scales 2 and 4pfter the wavelet transform. The
remove the low-frequency background so that different - : :
avelet coefficients at scale 8 were obtained with wavelet

masses can be compared on a common background level. n[ering, but no down-sampling was performed. Additional

X . ) il
our previous study? we su_nply substituted the mean gray SGLD matrices were constructed from the approximation
level value of each ROI with a constant value that was the

. : image in the wavelet coefficients at scale 8 withranging
same for the entire dataset. An adaptive background correc- . .
. . 9 . : rom 2 to 12. These distances corresponded to distances be-
tion method was since developtd® The algorithm esti-

mates the background level based on the image intensity intgveen pixel pairs of 8-48 pixels in the original image. Thir-

. : ) téen texture features were calculateddat0®, 45°, 90°, and
band of pixels surrounding the ROI. The first step was th 35° for each distance. The features at 0° and 90° were av-
calculation of a moving average of the pixel values along theeraged <o were those.at 45° and 135°. There was a total of
perimeter of the ROI. A box f||_ter of size 3216, whose 364 feature413 texture measures 14 distances<2 angles)
longer S.'de was par_allel o the side of the R.OI’ was used fOlrn the global texture feature space. A binwidth of 16 gray
S%lggliﬂgget;?mn;?géngivker;%i dThiexng T;xglg :I\é?]ra%ﬁz prél"_évels for the 12-bit image was chosen that corresponded to a

: . 9 P 9 "€ P&equction to eight-bit gray level resolution, as described
rimeter (four sides)of the ROI. The background level inside reviouslvi8
the ROI was estimated using a weighted linear combinatiml? y

of these background perimeter pixels. The background level

B(i,j) of a pixel (i,j) was calculated as 2. Local texture features
B(i )= P1/dy+pa/dy+ps/d3+p,/dy 1 Global texture features described above summarize the
()= 1/d,+1/d,+ 1/d;+1/d, (@) general textural information of an entire ROI. Since the ROI

contains both the suspicious mass object and its peripheral
ackground, the global SGLD matrices formulated above re-
ect the average properties of the two regions. To further

wherep1, P2, P3, P4 are the background perimeter pixel
values at the intersection between the four sides of the ROR

and the normal directions from pixel,{) to each side, and describe the information specific to the mass and the back-

di, dz, ds, d.“ are the distances between the pme]X and round normal tissue, we calculated local texture features
the intersections. The background corrected image was ol?—

tained as the difference between the original ROl and th fom the local region containing a detected objéabject

) - ) ?egion)and the peripheral regions within each ROI.
background imag@(i,j). An example of the effects of this For this study, we assumed that the mass or the mass-like
background correction method on an ROI can be found i :

17 r’bbject in the false-positive ROI is an object of maximum

Chanet al. intensity near the central area of the ROI. The search for this
_ _ maximum intensity was accomplished by low-pass filtering
B. Multiresolution texture features and by locating the maximum pixel value in the low-pass

Texture features were calculated from the spatial grayiltered image. The low-pass filtering was implemented as a
level dependencéSGLD) matrix24?°The (,j)th element of two-stage convolution with box filters of different kernel
the SGLD matrix,pg 4(i,j), is the joint probability that the ~sizes. The kernel size was 860 pixels for the first stage
gray levelsi andj occur in directiond and at a distance of and 15x15 pixels for the second. The maximum pixel value
d pixels apart over the entire ROI. The SGLD matrix is ain the central 128128 pixel area in the low-pass filtered
two-dimensional histogram based on image pixel values. ItROl was assumed to be the center of the object region
size depends on the gray level resolution of the digitized90x<90 pixels). The peripheral regiof®4x64 pixels)were
image and the bin width used in determining the histogramlocated at the four corners of the ROI. This segmentation
By changing the distance between the pixel pairs in definingvas applied to all ROIs, including mass and normal tissue.

the spatial relationship, different SGLD matrices can be conFigure 1 illustrates the local regions in four ROIls extracted
structed. manually from a mammogram.

Since the size of the object region was sm@&0x90
pixels), we did not employ the wavelet transform for multi-

Our previous studif demonstrated the feasibility of using resolution analysis. As found in our previous studies, several
eight texture measures calculated from the entire ROl in &GLD matrices with different distances could be used as an
multiresolution framework for the classification. In this alternative. Therefore, the object region and the peripheral

1. Global texture features
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The predictor variables used in the discriminant model
directly affect the effectiveness and the accuracy of the clas-
sification. Each of the global, local, and combined feature
spaces was used as a pool of predictor variables. A stepwise
feature selection proceddfawith the maximization of Ma-
halanobis distance as the optimization criterion was used to
select effective predictor variables from each feature pool.
We have described the application of the stepwise feature
selection procedure to our classification task previotist.

The stepwise feature selection procedure was performed over
the entire datasgiM or H) so that the selection would be
based on feature distributions that have better statistical
properties than those for the subgroups. For model coeffi-
cient optimization, theM; and M, (or H; and H,) sub-
groups were alternately used as training and test sets. The
coefficients of the linear discriminant function were opti-
mized based on the feature values in the training group. The
training cases were then classified with the linear discrimi-
nant function as a verification of consistency. The other
group was used for testing the accuracy of the classifier and
the discriminant score of each test case was calculated based

Fic. 1. The segmentation of subregions in the ROIs manually extracted fronon the linear discriminant function.
a mammogram. Upper left: the ROI with a mass; upper right: an ROI with
mixed dense/fatty tissue; lower left: an ROI with dense tissue; lower right:
an ROI with fatty tissue.

D. Statistical analysis of classification accuracy

Receiver Operating CharacteristROC) analysi¢®*° was
regions in the original images were used for the SGLD maused to evaluate the overall performance of the linear dis-
trix formulation. An SGLD matrix of the peripheral region criminant models. The distribution of the discriminant scores
was formed by the accumulation of pixel pair information of the ROIs in the training or the test group was input into
from all four peripheral subregions. For each region, SGLDthe LABROC1 program:* which provided a maximum likeli-
matrices were calculated froth= 1, 2, 4, 8 and¥=0°, 45°,  hood estimation of a binormal ROC curve for training or
90°, 135°. Again, features fof=0°, 90° and for#=45°,  testing, respectively. The area under the fited ROC curve,
135° were averaged separately. Different bin widths of thea,, was used as a performance index for the evaluation of
SGLD matrices were evaluated. The local feature space conhe different sets of features selected from the multiresolu-
sists of 104 features in the object regidi8 texture measures tion feature pools. TheLABROC program was employed to
X4 distancesx2 anglesind 104 features obtained from the test the statistical significance of the difference between the
difference of corresponding features in the object and the, values of different sets of selected featute3he two-
peripheral regions. tailed p values were reported in the following comparisons.

C. Classification method The statistical significance level was chosenvat0.05.

The classification of mass and normal tissue is a typical sta-

tistical problem: there are both between-class and withintll. RESULTS
class differences. The masses encountered in mammogran&s
vary in shape, size, contrast, and projection, so does the nor-
mal tissue. It is extremely difficult, if not impossible, to con-  From the manually extracted ROls, 11 features were se-
struct an analytical model to describe the whole class of madected from the global feature spgddeble I(a)]. When train-

or normal tissue. Therefore, we adopted a linear statisticahg was performed wittM ;, the A, for testing withM, was
model to describe the difference between the masses and tBe86+0.02(Table Il). When training was performed with
normal breast tissues. Linear discriminant anafysisa sys- M,, the A, for testing withM; was 0.88+0.02. These re-
tematic statistical technique to classify individuals or casesults are slightly better than tho9©.85+0.03 and 0.86
into one of several mutually exclusive classes. For a two<0.02) in the previous stud}® where 8 of the 13 texture
class problem, feature variables are linearly combined teneasures were calculated at several resolutions and/or dis-
form a canonical discriminant function. The coefficients oftances. However, the improvement Ay is not statistically

the discriminant function are optimized on the basis of feasignificant. Table I(aplso shows the 19 features previously
ture values of the training group to maximize the separatiorselected® It can be seen that some of the additional five
of the two classes. There are two issues involved in théexture measures were selected at various distances, indicat-
model building process: the determination of the model coming that these texture measures contained useful information
ponents and the optimization of the model coefficients. for the classification.

Manually extracted ROls
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TaBLE |. Texture features selected from the different feature spaces by stepwise linear discriminant anadys#.feature(average of features at 0° and
90°); a: diagonal featuréaverage of features at 45° and 139: manual M) datasetA: hybrid (H) dataset.0: manual (M) dataset in our previous study
(Ref. 18). The top eight features are the features used in our previous study and the bottom five are the new features evaluated irF tjs stijgyct
texture featureF gy~ Fperipnery difference in texture featuréa) Global feature spacéb) local feature spaceg) combined feature space.

scale 1 2 4 8
Distance I 2 4 8 12 16 20 24 ;28 32 36 40 i 44 48
5] z z a 4 a z a a z a z a z z 4 a z a z a z a
correlation . A Al <
dif. entropy | ¢ 4 $iaA Aia oA <* o>
energy A A
entropy A ¢ leA A <
inertia A A <A
inv. dif. moment ALY h'g Ai¥iaA
sum average & Cie it idi.
sum entropy A < ¢ i A <&
sum variance
dif. variance | A i A A
dif. average A A A A
info. meas. cor. 1 oA A
info. meas. cor. 2| A A A . A .
(a)
Fobjecr Fobject - Fperiphery
Distance 1 24 8 1 2 4 8
[} z a a z z a z a z a z a z a
correlation A
dif. entropy o i A A . A
energy A A A A .
entropy A . .
inertia
inv. dif. moment *Ai e *A
sum average Al e A oA
sum entropy
sum variance .
dif. variance .
dif. average oA A A
info. meas. cor. 1 A o i A eAi e ieA
(b) info. meas. cor. 2 A
Global feature space Local feature space
Fob'ecl Fobject' periphery
Distance 1121 4 18} 12 | 16 [20j 24 { 28 {32 | 36 40 | 44 | 48 1 2 4 8 1 2 4 8
0 ziaizZialajziajzjalZjzj{aizZjajZjajzZia{zZjajZia;jziajZijajzjajz;ajlzjalz;aizZia;jzjialza
correlation . . A A
dif. entropy A A A oA . A
energy . . . 3 3 .
entropy A Ale * Ale .
inertia A A ofeAl [Aieje A
inv. dif. moment Al e ole . A A ofe .
sum average A A . A A Al e
sum entropy A * . A
sum variance A
dif. variance . . ol A Ale .
dif. average . . AlA A . o .
info. meas. cor. 1 Ao . . A sAl A oA A A
finfo. meas. cor. 2 . o A

{c)
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TABLE II. Comparison of the area under the ROC curves, obtained from  TasLE lll. (a) A, values with features from local feature space with different

different feature spaces for the set of manually extracted RiIset). bin widths for the manual dataséh) A, values with features from different

combined feature spacélecal feature space with different bin widjhor
Feature space Global Local Combined the manual dataset.
Number of features 11 17 45 (a)

Training set Test set
Bin width (pixel value) 32 16 8 4

M;+M, M;+M, 0.89+0.02 0.89+0.01 0.95+0.51 Equivalent bit depth 7 8 9 10

M, M, 0.90+0.02 0.88+0.02 0.96+0.01 Number of features 19 18 17 7

M, M, 0.86+0.02 0.84+0.03 0.92+0.52 Training set  Test set

M, M, 0.88+0.02 0.88+0.02 0.95+0.52

M, M, 0.88+0.02 0.87+0.02 0.91+0.02 M;+M, M;+M, 0.87+0.02 0.89+0.01 0.89+0.02 0.85+0.02
M, M, 0.91+0.02 0.91+0.02 0.88%+0.02 0.89+0.02

&The improvement is statistically significant at=0.05, comparing com- M, M, 0.86+0.02 0.86+0.02 0.84+0.03 0.80+0.03

bined to global feature space. M, M,  0.88+0.02 0.89+0.02 0.88+0.02 0.81+0.03

PThe improvement is statistically significant at=0.05, comparing com- M, M, 0.88+0.02 0.88+0.02 0.87+0.02 0.87+0.02

bined to local feature space.
(b)

It d onlv the local f L1 in width (pixel value) 32 16 8 4
we used only the local feature space as a pool, 1&g valent bit depth 7 8 9 10
features were selected by the stepwise procedlieble  Number of features 31 38 45 42

I(b)]. From Table I, theA, for testing withM, was 0.84  Training set Test set
+0.03, while that for testing wittM; was 0.87+0.02. Sta-

M;+M, M;+M, 0.94x0.01 0.95*x0.01 0.95*+0.01 0.95*0.01

tistical tests showed that the diﬁerenceﬁigwages between M,  0.95+001 0.96=0.01 0.96+0.01 0.97+0.01
the local and global spaces were not significant. Thereforer, M,  0.92+0.02 0.91+0.02 0.92+0.02 0.90+0.02
the effectiveness of the local feature space was comparabh¢: M,  0.94+0.02 0.95+0.01 0.95+0.02 0.95+0.01
to that of the global feature space. M, My 0.93+0.02 0.91+0.02 0.91*+0.02 0.91*+0.02

When we combined the local and global feature spaces as
a single pool of 572 features, 45 features were chosen by the
stepwise procedure. Tabléc) illustrates the distribution of
the selected features in the combined feature space. Tablevblues for the two test groups were 029002 and 0.90
demonstrates the improvementAg values in both the train- *=0.02, respectively(Table 1V). The 22 features selected
ing and the test groups. The, for testing withM, improved ~ from the local feature space alone is shown in Talfis. |
to 0.92+0.02. The improvement was statistically significantThe A, values for the two test groups were 029202 and
compared to that with either the global or local feature spac®.95+0.01, respectivelgTable IV). When we combined the
alone. TheA, for testing withM, reached 0.91+0.02, al- global and local feature spaces, 41 features were selected
though the improvement did not achieve statistical signifi{Table I(c)]. TheA, values improved to 0.960.01 and 0.97
cance for this condition. The improvements Ay for the  £0.01, respectively. The improvements in thgvalues for
training groups were statistically significant, over either thethe test groups with the combined feature space were statis-
global or local features alone. The effect of bin widths of thetically significant compared to those with either the global or
SGLD matrices on classification accuracy in the global fealocal feature space alone.
ture space was evaluated in previous stulie®ve per- Figure 2 shows the distribution of the discriminant scores
formed a similar comparison in the local feature space. Tabléor the test groups in the hybrid dataset. Figure 3 shows the
lll(a) summarizes thé, values for different bit depthe/ar- ROC curves for the global, local, and the combined feature
ied from seven to ten bitsised in the construction of SGLD
matrices, where the local feature space alone was used for
C!aSS|flcat'0n' Table Ilb) lists theA, values with the com- TasLE IV. Comparison of the area under the ROC curv&s, obtained
bined feature space, where the global texture features wekgm dgiferent feature spaces for the hybrid dataset.
calculated at eight bits while the bit depth of the local texture
features was varied from seven to ten bits. Although there  Feature space Global Local Combined

was a drop imA, values at ten bits for the local feature spaceTrai'r\]‘i‘r‘]’;Zeert of fe"ﬁ‘;rsetsset 32 22 4l

alone, the dependence Af, on bit depth for the combined

feature space was not statistically significant. Considerind.tH: H;+H, 093001  0.96+0.01  0.97+001

these results, we chose nine iggjuivalent to a bin width of  H: Hy 0.93+0.01 096001  098=0M

eight gray levels for all local feature calculations in this Hy H. 091£002  092£002  0.96+001
H, H, 0.92+0.02  0.93+0.02 0.97+0®1

study. H, H, 0.90+0.02 0.95+0.01  0.97+0.01

aThe improvement is statistically significant at=0.05, comparing com-
bined to global feature space.
The improvement is statistically significant at=0.05, comparing com-

For the manually extracted mass ROIs and automaticallybine d to local feature space

extracted normal tissue ROls, the 32 features selected fromLABROC did not converge when comparing combined to global feature
the global feature space are shown in Takllg).l The A, space.

B. Hybrid dataset
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spaces, illustrating the improvement in the classification acFic. 3. Comparison of ROC curves for test groups using features from the
curacy. global, local, and the combined feature spa¢asTest withH,. (b) Test

with H; .

V. DISCUSSION

We demonstrated previously that texture features in dhat some of these additional texture measures were chosen
multiresolution framework could be used to classify masse&t various scales and distances by the stepwise feature selec-
and normal breast tissue on mammograms. The objectives tbn procedure. Under similar conditions to the previous
this study are to expand the feature pool for the linear disstudy, the number of features selected from the global feature
criminant model, and to evaluate the effectiveness of globaspace decreased from 19 to 11, but the classification results
and local multiresolution texture features for the reduction offor the test groups were slightly better than those obtained
false-positive ROIls. In the following, we will discuss the previously[Table I(a)]. These new features therefore appear
relations and differences among the global and local featurto include useful information for the differentiation between
pools, their underlying physical meaning, and the robustnes®asses and normal tissue. However, many features in the
issue of the discriminant model and our approach. global space are related to each other. The different texture
measuregsee the Appendjxessentially describe the shape
of the same two-dimensional histograior SGLD matrix)

Compared with our previous study, we included five morefrom different perspectives. For example, the two informa-
texture measures in the feature pool as potential candidatéi®n measures of correlation selected in the global feature
in the linear discriminant model. Our results demonstratedpacd Table I(a)]are nonlinear functions of entropy texture

A. Inclusion of more texture measures
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(see the Appendjx On the other hand, the reason that theerences for the details are different. For radiologists, the ref-
multiresolution(essentially multidistancdfamework in our  erences are changes in the tissue structures and appearance
previous studi€€ provided statistically better results than of suspicious objects in the same breast; or asymmetry of
the single distancéone SGLD matrix’ is the availability of  tissue distribution in the left and right breasts. For the wave-
several SGLD matrices that describe the images from differtet transform, the references are related to the different fre-
ent spatial relationships. In order to significantly improve thequency bands, where the spatial relationships between pixels
classification accuracy, it seems to be more important to proare defined. By partitioning an ROI into object and periph-
vide additional and complementary information to the mul-eral regions and using these regions as input to the feature
tiresolution feature space than to summarize the informatiomnalysis, we are changing our reference point and examining
with more texture measures from different perspectives. the variations of the objects with respect to peripheral re-
gions. Some local features are related to image details, par-
ticularly those features extracted from SGLD matrices with
d = 1. The spatial relationship between pixel pairs at this dis-
In this section, we try to examine the difference in thetance is defined at the highest possible spatial resolution.
information contained in the global and local features. In the=rom Table (b) we can see that several texture features in
following discussion, “detail” is relative and used as a gen-the local feature space were selected at 1. We can also
eral term that can be defined from different perspectives. examine the features from the way they are extracted. In
Although the same texture measures and similar multiglobal feature extraction, the pixels in the object and its sur-
resolution(or multidistancemethod are used, the emphasesrounding background of an input ROl are accumulated in the
of the global and local feature spaces are different. The mulsame SGLD matrices, resulting in an averaging of the object
tiresolution analysis with global features summarizes theand its background information. The smaller the object, the
overall (or “structural”) information of mass and normal stronger is the influence of the background. For local feature
tissue ROIs, since the original image and the low-pass verextraction, the averaging effect becomes relatively small
sions of an ROI are the input images to the feature analysisince the object region size ix® mm, smaller than the size
and the extracted global features are directly related to thessf most of the masses in our database. The pixels in the
images. Although the original image contains compl@te  object region are used to construct SGLD matrices for the
cluding overall and detgiinformation of an ROI, only three object, thereby providing features that are more specific to
features from the original image were selected for the hybridhe individual objects than the global features. The periphery
dataset and none for the manual datg$eble I(a)]. There- SGLD matrices are based on the pixels at the four corners of
fore, the emphasis of the linear combination of the selectethe ROI, so that they provide an estimate of the average
global features is on the overall, rather than detail, informaproperties of the normal tissue background in an ROI. The
tion due to the features that are extracted from the low-passesulting texture features for the periphery region are less
images at larger scales and distances. sensitive to the variations in the tissue background than those
It is well known that detailed information plays an impor- for each individual subregion. Along with the features for the
tant role in the classification of masses by radiologists inobject subregion, the differences in the corresponding fea-
mammographic reading. In order to improve the classificatures between the object subregion and its peripheral subre-
tion accuracy, it is necessary to extract features that can dgions (i.e., the difference featurgare included in the local
scribe image details. The different perspectives and referfeature space. These features emphasize the difference be-
ences from which radiologists summarize the detailtween the object and its surrounding tissue background and,
information, however, remain to be explained. For exampletherefore, are related to the change in texture in the object
the details revealed from the comparison of mammograms afgion. They also normalize, to some extent, the change in
the same breast obtained at different times are usually diffetexture by providing the same reference point, i.e., the fea-
ent from the details by the asymmetry analysis of the rightures of their own background, in the comparison of different
and left breasts. They are also different from the detailedbjects. Local feature extraction cannot be considered a spe-
information contained in the high-pass quadrants of thecial case of global feature extraction, since there is no
wavelet coefficients. Although the wavelet transform pro-equivalence in the global feature space to the difference fea-
vides a detailed analysis in a multiresolution framework, wetures in the local space.
have not found a statistically significant difference in the Like “detail” or local, the term “global” is also relative.
individual texture features of the high-pass wavelet coeffi-The current global feature space is “global” with respect to
cients between mass and normal tissue ROIs. This might bihe extracted ROI. If we examine the whole mammogram,
due to the difficulty in separating the detailed informationthis “global” feature space becomes “local.” Radiologists
between the mass and tissue in the high-frequency domain imsually analyze a suspicious object in the context of breast
the presence of image noise. On the other hand, the refeanatomy in their detection process. This anatomical informa-
ences from past mammograms or bilateral mammograms at®n is more ‘“global” than those global features that we
not available for the current analysis of single-view mammo-extracted. There is no doubt that this kind of structural infor-
grams. mation at a higher level will provide additional and comple-
If we examine carefully the detailed analyses by the radi-mentary information in the classification of mass and normal
ologists and the wavelet transform, we can find that the reftissue. The inclusion of this kind of information, however, is

B. Difference between global and local features
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beyond the scope of the present study and deserves furtheot use the automatically extracted mass ROIs and overlap-
investigation in the process of improving the classificationping normal tissue ROfS in this study. Since our DWCE

accuracy and intelligence of CAD algorithms. algorithm at present did not detect all the masses, this would
reduce the size of our dataset and the results could not be
C. Segmentation of suspicious object compared to those for the manual dataset. Our goals in this

. study were to compare the classification accuracy of the glo-

With features from the local space alone, we haveyy| Jocal, and combined feature spaces, and to demonstrate
achieved statistically similar classification accuracy to thatyst the classifier can distinguish masses from normal tissue
with thg global fegtures. This implies that the. local featuregng thus can be used to reduce FPs detected by an automated
space is as effective as the global space. Evidently, the efyqorithm. The effectiveness of the classifier as an FP reduc-
fectiveness of the local feature space depends on the accurgjg, technique in an automated mass detection program has
segmentation of the suspicious object in the ROI. This may,aen evaluated in a different stutfy.
become difficult when a subtle mass is adjacent to a struc- Tne difference in, values between the manual and hy-
tured background tissue. For our feasibility studies, we usegl;iq gatasets can be explained by the difference in the com-
a low-pass filter to identify an object based on the mean pixebosition of the FP ROIs. In thel set, the FPs segmented by
intensity. This technique proved to be effective for most ofihe pWCE algorithm mainly consisted of dense tissue rather
the masses in our database, except for one mass that hagian, fatty tissue. For thél set, the dense and dense/fatty
piece of dense tissue in the proximity. More sophisticatedio|s were extracted for their similarity in appearance to a
methods may be necessary to identify subtle masses neigfptential mass, and they were generally different from the
boring dense tissue structure in order to further improve thefatty tissue ROIZ78Although it was much easier to classify
classification accuracy. It may also be helpful if the size ofyy455 and fatty tissue ROIs than to classify mass and dense or
the object regions is varied according to the size of the indiyense/fatty ROIs separately, the inclusion of the three differ-

vidual masses rather than fixed, as used in this study. Thgnt types of FPs together in the normal tissue class increased
DWCE algorithm can provide the location and the size of ahe \ithin-class variability. Since the FPs in tHeset were

bounding box for a suspicious objéttWe also used this more homogeneous than those in thie set, it would be

information in our extraction of local texture features. The gasier and more effective for the discriminant model to maxi-
preliminary results demonstrated a similar level of classifi-yize the ratio of the between-class variation and the within-
cation accuracy, suggesting that for the dataset used in thi§ass variation for thed set than for theM set. This maxi-
study, our object identification and the feature extractionyization is the essence of the linear discriminant analysis in
methods can identify the object location correctly in mosty,e separation between mass and normal tissue.

cases. There are two purposes for including the manual dataset:

(1) The manual dataset was used in our previous study be-
D. Complementary information in the global and local fore the automated segmentation was developed. Therefore,
feature spaces in this paper, it served as a reference point on how the local

The statistically significant improvement in the classifica-2nd combined texture feature spaces improved the classifica-

tion accuracy with the combined feature space indicates thdfon- (2) The statistical modefincluding feature selection

the global and local features characterize different informa@nd model parameter optimizatiois data dependent, espe-

tion in an image. It is a result of the difference in the imageCially When'the pumber of cases is smgll. The apalysis of tvyo
regions subjected to SGLD formulation. It indicates that bothd""'[ase_tS with different FP characteristics prowdeq so'me In-
the structural information associated with the global featuredomation on the adaptivity of our approach. This will be
based on the entire ROI and the detail information associate@{Scussed in more detail in the following section.

with the local features based on subregions in the ROI are

necessary to distinguish masses _from normal tissue. Ale robustness of the discriminant model and the

though there may be some correlation between the two feaq el building procedure

ture spaces, the stepwise feature selection procedure can se- g . o

lect those important features that are complementary to each I robust statistics? one seeks effective prediction meth-
other. One would also expect that in addition to the globaIOdS t'hat are rather insensitive, or robust against, certain types
and local feature spaces described here, features that c&hfailures in the model, so that good answers are still ob-
effectively summarize the detail information embedded int@ined, even if some assumptions are only approximately
the high-frequency components of the wavelet coefficients, ifrue. The robustness of the classification model is an impor-

properly extracted, may be able to contribute to further im-{ant issue in computer-aided diagnosis. Whether an opti-
provement in the classification accuracy. mized model based on a limited dataset can achieve a rea-

sonable accuracy in the general patient population
determines the success or failure of that model.
The major issue of the classification model is the selection
Our hybrid dataset included manually extracted massesf model components, i.e., feature selection. To examine em-
and independent normal tissue ROIs that were detected gurically the robustness of a selected feature set, we applied
false positives in an automated detection program. We dithe features selected from the manual set to the hybrid set.

E. Hybrid dataset
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The resulting linear model using these feature variables isvhat different characteristics, demonstrates the robustness of
different from the optimal one. When the coefficients of theour model building approach in differentiating mass and nor-
classifier were trained on thd, subset, thed, values were mal tissue ROIs.

0.97+0.01 for the training sét; and 0.95+0.01 for the test

setH,. When the classifier was trained bhy, theA, values v, CONCLUSION

were 0.96+0.01 for the training set and 09501 for the
test set. Compared to Table IV, we can see thatthealues
obtained using this suboptimal feature set were only 0.01 t

0.02 lower than théA, values obtained by optimal featureh%i) classifying FPs extracted automatically from our com-

selection. We also applied the 41 features selected from t Uter segmentation program: afifl) evaluating the robust-
hybrid dataset to the manual set. When the classifier wal 9 program, 9

trained onM 4, the trainingA, reduced to 0.93+0.02 and the ness O.f ou_r cI§55|f|cat|pn model. Global features fro_m_ the
. approximation images in the low-pass wavelet coefficients
test A, reduced to 0.8%20.02. When the classifier was ) : .
i o . were used to describe the structural information about the
trained onM,, the trainingA, reduced to 0.930.02 while ; .
mass and normal tissue, while the local texture features were

the testA, reduced to 0.89+0.02. These were about 0.02— . : e ;
: . . used to differentiate the specific information of the mass and
0.05 lower than the corresponding optim&) values in

Table II. The slightly larger drop i, values may be due to mass-like normal tissue from their background tissue struc-

the fact that the characteristics of the EPs in the hybriqture. The classification capability of these two feature spaces

dataset are a subset of the characteristics of the FPs in tr‘%‘."r‘? stat|st|ca||y_ comparable on their own. Wh_e n the dis-
. . . . criminant model included features from the combined feature
manual set, as discussed in the previous section.

The consistently lowea, values, compared to those ob- pool, the improvement in the classification accuracy was, in
tained with the optimal fe;ture sei observed from these e>&general, statistically significgnt for both t_he manually ex-
periments confirm the fact that selection of a feature set fromraCte.d dataset and t.h € hybr_ld dataset. This dgmonstrates the
a different population is suboptimal, However, a more im_effecnveness of multiresolution feature analysis in the false-

portant observation is that the suboptimal feature sets Ca[:r)]osmve reduction for automated detection of masses.

consistently provide very high, values under all conditions
studied, which were better thaid5 out of 16 feature and ACKNOWLEDGMENTS
training/test set combinationsr equal to(1 out of 16 the This work is supported by USPHS Grant No. CA 48129
A, values obtained from the optimal global or local featureand USAMRMC Grant No. DAMD 17-96-1-6254. The con-
sets alone. This is a strong indication that the feature sets agent of this publication does not necessarily reflect the posi-
not very sensitive to the type of false positives in the hybridtion of the government and no official endorsement of any
or manual dataset. equipment or product of any companies mentioned in the
To explore empirically the robustness of the model withpublication should be inferred. The authors are grateful to
respect to training and test set partitioning, we repartitione@harles E. Metz, Ph.D., for providing th@sroc1 and the
the hybrid dataset into two subsets based on cases. In thgasroc programs.
new partitioning, all the ROIs belonging to the same patient
were gropped into the same subseither training or te$t  AppENDIX: DEFEINITION OF SGLD TEXTURE
The training and test procedures were the same as those qg
X X , , EASURES
scribed in Sec. Il C, except for the difference in the data ] o o ]
partitioning. The tes®\, values were 0.97+0.01 and 0.96 An SGLD matrix elementp,,q(ij), is the joint probabil-
+0.01 for the two subsets, respectively. The tastvalues Ity Of the gray level pairs andj in a given directiong
for this by-case partitioning were within 0.01 from those for Separated by a distance @pixels. For each ROI, 13 texture
the by-film partitioning(see last column of Table W The  Measures were derived from its SGLD matrix of a given
differences were not statistically significart & 0.48), as andd. The following provides a summary of the mathemati-
estimated from thez score. This suggests that, for our cal definitions of the texture measures used in our study. A
dataset, the effect of the possible correlation between theimplified notationp(i,j) will be used to denote the SGLD
different ROIs from the same patient partitioned into theMatrix elements.
training and test subsets was less important than the effect of (1) Energy.
feature selection on the classification accuracy. ne1n-1
It is i'mportant to recognize that our empirical analysis on ENERGYzz 2 p2(ij),
two limited dataset$the M andH sets)does not prove that i=0 j=0
either the featL_Jre sets or t_he trained class!flers are genera“&v‘heren is the number of gray levels of the image.
able to the patient population at large. It will be necessary to _
retrain the classifier when the characteristics of the false (2) Correlation.
positives change or when large and general datasets become SIS0 - (G = w)p(iyj)
available, as we discussed previously® However, the ef- CORRELATION=—1=0Z1=00 — AU 7ty /PL) ,
fectiveness of the classification for both the hybrid and
manual datasets, which contained false positives of someawvhere

This study significantly expanded our previous work by
g) introducing a new local texture feature pool to provide
additional discriminatory information to the existing model;

Ox0y
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