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We investigated the application of multiresolution global and local texture features to reduce false-
positive detection in a computerized mass detection program. One hundred and sixty-eight digitized
mammograms were randomly and equally divided into training and test groups. From these mam-
mograms, two datasets were formed. The first dataset~manual!contained four regions of interest
~ROIs! selected manually from each of the mammograms. One of the four ROIs contained a
biopsy-proven mass and the other three contained normal parenchyma, including dense, mixed
dense/fatty, and fatty tissues. The second dataset~hybrid! contained the manually extracted mass
ROIs, along with normal tissue ROIs extracted by an automated Density-Weighted Contrast En-
hancement~DWCE! algorithm as false-positive detections. A wavelet transform was used to de-
compose an ROI into several scales. Global texture features were derived from the low-pass coef-
ficients in the wavelet transformed images. Local texture features were calculated from the
suspicious object and the peripheral subregions. Linear discriminant models using effective features
selected from the global, local, or combined feature spaces were established to maximize the
separation between masses and normal tissue. Receiver Operating Characteristic~ROC! analysis
was conducted to evaluate the classifier performance. The classification accuracy using global
features were comparable to that using local features. With both global and local features, the
average area,Az , under the test ROC curve, reached 0.92 for the manual dataset and 0.96 for the
hybrid dataset, demonstrating statistically significant improvement over those obtained with global
or local features alone. The results indicated the effectiveness of the combined global and local
features in the classification of masses and normal tissue for false-positive reduction. ©1997
American Association of Physicists in Medicine.@S0094-2405~97!01406-5#
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I. INTRODUCTION

Breast cancer is the second leading cause of cancer d
among American women.1 Treatment of the cancer while
is still in its early stage is the most promising way to im
prove the chances of survival for patients with bre
cancer.2 Mammography is presently the most effecti
method for early detection of breast cancer3 and is recom-
mended as a routine procedure for the screening of br
cancers. However, among those women who have br
cancers and have undergone mammography, 10%–30%
negative mammograms.4–7 Approximately two-thirds of
these false negative diagnoses were due to missed lesio
the mammograms, which were evident retrospectively.4,8,9

The low conspicuity of the radiological findings, poor ima
quality, eye fatigue, or oversight are the common cause
the missed detections.4 Although double reading by two ra
diologists may increase sensitivity,10 it also increases the
cost in a mass screening program. As an alternative, C
may be used to provide a second opinion to reduce
missed detection rate of breast cancer.11,12

The detection of masses is more difficult than the det
tion of microcalcifications due to the similarity betwee
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masses and breast tissue. Laiet al. used template-matching
techniques to detect circumscribed masses after selective
dian filtering.13 They found that the number of false positiv
detection was reduced by analyzing the cross correlation
neighboring pixels. Kegelmeyeret al. used the analysis o
local oriented edges and a subset of Laws’ texture ene
features to detect spiculated masses.12 Yin et al. utilized the
architectural asymmetry between the right and left breast
detect masses14 Laine et al. proposed to use the wavele
transform and thef transform for adaptive multiscale pro
cessing and contrast enhancement.15 Brzakovic et al. em-
ployed a hierarchical region growing with pyramidal mul
resolution image representation in the segmentation
microcalcifications and nodules.16 The reported results o
these studies varied. It is difficult to compare the perf
mances of the different algorithms because they dep
strongly on the datasets used.

We are developing computerized methods to det
masses on mammograms. In an early study, we used tex
features of ROIs manually selected from digitized mamm
grams and linear discriminant analysis to classify masses
normal tissue.17 Wei et al. used multiresolution texture
90303/12/$10.00 © 1997 Am. Assoc. Phys. Med.
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analysis18 and Sahineret al. used a convolution neura
network19,20 with the same dataset and achieved improv
results. Adaptive density-weighted contrast-enhancem
~DWCE! filtering with Laplacian–Gaussian edge detecti
was recently developed for the segmentation of low-cont
objects from digitized mammograms.21–23

In this study, we introduced the use of local texture fe
tures in combination with the global multiresolution textu
features for the classification of masses and normal br
tissue. The new feature extraction approach was applie
the same set of manually extracted ROIs in order to comp
with our previous results. In addition, false-positive RO
automatically extracted by the DWCE algorithm were co
bined with the mass ROIs to examine the effectiveness
these features in reducing the number of false-positive de
tions. The classification accuracy was evaluated by Rece
Operating Characteristics~ROC! analysis and the improve
ment in accuracy due to the additional local texture featu
was examined. We also evaluated the robustness of the
sification model by studying its performance with vario
feature set and training/test set combinations.

II. MATERIALS AND METHODS

A. Dataset

The mammograms used in this study were randomly
lected from the patient files in the Department of Radiolo
at the University of Michigan. The selection criteria we
that there was a biopsy-proven mass on the mammogram
there were no visible grid lines. The mammograms were
quired using a Kodak MinR/MRE screen/film system w
extended cycle processing. The mammographic syst
have a 0.3-mm focal spot, a molybdenum anode, a 0.03-m
thick molybdenum filter and a 5:1 reciprocating grid. A
systems have been certified by the American College of
diology ~ACR! and the image quality is monitored accordin
to the ACRs recommended guidelines.

The films were digitized with a laser film scann
~LUMISYS DIS-1000!at a pixel size of 0.1 mm30.1 mm
with 12-bit gray level resolution. The optical density ran
of the digitizer was 0–3.5. The light transmission through
mammographic films was amplified logarithmically befo
digitization. The pixel values were calibrated such that th
were linearly proportional to the optical density in the ran
of 0.1–2.8 optical density units.

The 168 case samples in the dataset contained a mix
of benign (n5 85) andmalignant (n5 83) masses. Forty-five
of the malignant masses and six of the benign masses
spiculated. The visibility of the masses was ranked by ex
rienced radiologists on a scale of 1–10~15most obvious,
105most subtle!, which corresponded to the range of ma
seen on clinical mammograms. The length of the long a
~size! of the masses was also measured by the radiolog
and ranged from 5 to 26 mm with a mean size of 12.2 m
Some of the mammograms were different views obtain
from the same patient. A total of 72 different patients w
included in the dataset. Different views of the same patie
were treated as different case samples in most of the an
Medical Physics, Vol. 24, No. 6, June 1997
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sis. The mammograms were divided randomly into two s
groups: one for training and one for test. A limited study w
performed to evaluate the effect of the possible correlat
between films of the same patient on classifier performan

1. Manually extracted ROIs

We used manually extracted ROIs to study the feasibi
of using the extracted features for the classification task
to compare with our previous studies.18 Four different ROIs,
each with 2563256 pixels, were selected by a radiologi
experienced in mammography from each mammogram. O
ROI contained a true mass, and the other three were no
parenchyma, containing dense tissue, mixed dense/fatty
sue, and fatty tissue, respectively. The dataset was div
randomly and equally into two, with the constraint that RO
from the same film were grouped into the same subgro
There were 84 true mass ROIs and 252 nonmass ROIs
each of the subgroups. In the following analysis, we den
the whole set with manually extracted ROIs asM , and the
two subgroups asM1 andM2 .

2. Hybrid dataset

In the manually extracted ROIs, the normal tissue regio
were identified by radiologists according to certain crite
for the feasibility studies. The number and tissue type mi
be different from those extracted by a computer algorith
To obtain a more realistic evaluation of our false-positi
reduction method, we applied it to false positive ROIs e
tracted automatically by the DWCE procedure. The detai
description of the DWCE method can be found elsewher23

Briefly, each mammogram was processed in two stages
the first stage, the entire mammogram with reduced spa
resolution was globally filtered with a DWCE adaptive filt
to enhance the local contrast of the image based on its l
mean pixel values. A Laplacian–Gaussian~LG! edge detec-
tion procedure was then used to segment the image into
lated objects. In the second stage, the DWCE filter and
LG edge detector were applied locally to the isolated obj
regions detected in the first stage. The morphological f
tures of the segmented objects were extracted and use
reduce the number of objects in both stages. The ROIs of
remaining objects were extracted from the full resolution i
ages centered at the centroid locations of the detected
jects.

The analysis of dataset containing automatically extrac
mass and normal tissue ROIs was more complicated than
manually extracted one due to the possible overlap of
mass and normal tissue ROIs.23 For our purpose of evaluat
ing the effectiveness of different feature spaces in reduc
the number of false positives, we formed a hybrid datase
using the 168 biopsy-proven masses that were manually
tracted ~as discussed previously! and 1001 false-positive
ROIs containing only non overlapping normal tissue e
tracted by the DWCE algorithm. In the following analysi
we denote this dataset as H and the two subgroups asH1 and



5

in
ck
th
tie
y
en
el.
y
th
re

in
th
th

fo
pr
p
e
tio
v

el
RO

o
th

i

ra

f
a
. I
e
m
in
on

g
n
is

lick
a-
for
.
se
r
a-

w-
two
e
let
al
ion

be-
ir-

av-
al of

ay
to a
ed

the
OI
eral
re-
her
ck-
res

-like
m
this
ng
ss
s a
el

lue
d
ion

ion
ue.
ed

ti-
eral
an

eral

905 Wei et al. : False-positive reduction with global and local texture features 905
H2 . There were 84 true masses in each subgroup, and
and 498 non overlapping ROIs with normal tissue inH1 and
H2 , respectively.

3. Adaptive background correction

Masses are superimposed on normal breast structure
detected ROI. The gray level characteristics of the ba
ground structures are basically independent of those of
masses but they will offset some of the extracted proper
based on gray level analysis. Therefore, it is necessar
remove the low-frequency background so that differ
masses can be compared on a common background lev
our previous study,18 we simply substituted the mean gra
level value of each ROI with a constant value that was
same for the entire dataset. An adaptive background cor
tion method was since developed.17,19 The algorithm esti-
mates the background level based on the image intensity
band of pixels surrounding the ROI. The first step was
calculation of a moving average of the pixel values along
perimeter of the ROI. A box filter of size 32316, whose
longer side was parallel to the side of the ROI, was used
calculating the moving average. These moving averages
vided the estimated background pixel values along the
rimeter~four sides!of the ROI. The background level insid
the ROI was estimated using a weighted linear combina
of these background perimeter pixels. The background le
B( i , j ) of a pixel (i , j ) was calculated as

B~ i , j !5
p1 /d11p2 /d21p3 /d31p4 /d4

1/d111/d211/d311/d4
, ~1!

wherep1 , p2 , p3 , p4 are the background perimeter pix
values at the intersection between the four sides of the
and the normal directions from pixel (i , j ) to each side, and
d1 , d2 , d3 , d4 are the distances between the pixel (i , j ) and
the intersections. The background corrected image was
tained as the difference between the original ROI and
background imageB( i , j ). An example of the effects of this
background correction method on an ROI can be found
Chanet al.17

B. Multiresolution texture features

Texture features were calculated from the spatial g
level dependence~SGLD!matrix.24,25The (i , j )th element of
the SGLD matrix,pd,u( i , j ), is the joint probability that the
gray levelsi and j occur in directionu and at a distance o
d pixels apart over the entire ROI. The SGLD matrix is
two-dimensional histogram based on image pixel values
size depends on the gray level resolution of the digitiz
image and the bin width used in determining the histogra
By changing the distance between the pixel pairs in defin
the spatial relationship, different SGLD matrices can be c
structed.

1. Global texture features

Our previous study18 demonstrated the feasibility of usin
eight texture measures calculated from the entire ROI i
multiresolution framework for the classification. In th
Medical Physics, Vol. 24, No. 6, June 1997
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study, we used 13 texture measures described by Hara
et al.24 The definitions of these texture features are summ
rized in the Appendix. We have described the methods
the extraction of multiresolution features previously18

Briefly, the wavelet transform was employed to decompo
an ROI into three levels. Daubechies’ filter with fou
coefficients26 was used as the wavelet filter. The SGLD m
trices were constructed atd 5 1 for the original image~scale
1! and the subsampled approximation images from the lo
pass quadrants in the wavelet coefficients of the next
levels ~scales 2 and 4!after the wavelet transform. Th
wavelet coefficients at scale 8 were obtained with wave
filtering, but no down-sampling was performed. Addition
SGLD matrices were constructed from the approximat
image in the wavelet coefficients at scale 8 withd ranging
from 2 to 12. These distances corresponded to distances
tween pixel pairs of 8–48 pixels in the original image. Th
teen texture features were calculated atu50°, 45°, 90°, and
135° for each distance. The features at 0° and 90° were
eraged, so were those at 45° and 135°. There was a tot
364 features~13 texture measures314 distances32 angles!
in the global texture feature space. A binwidth of 16 gr
levels for the 12-bit image was chosen that corresponded
reduction to eight-bit gray level resolution, as describ
previously.18

2. Local texture features

Global texture features described above summarize
general textural information of an entire ROI. Since the R
contains both the suspicious mass object and its periph
background, the global SGLD matrices formulated above
flect the average properties of the two regions. To furt
describe the information specific to the mass and the ba
ground normal tissue, we calculated local texture featu
from the local region containing a detected object~object
region!and the peripheral regions within each ROI.

For this study, we assumed that the mass or the mass
object in the false-positive ROI is an object of maximu
intensity near the central area of the ROI. The search for
maximum intensity was accomplished by low-pass filteri
and by locating the maximum pixel value in the low-pa
filtered image. The low-pass filtering was implemented a
two-stage convolution with box filters of different kern
sizes. The kernel size was 60360 pixels for the first stage
and 15315 pixels for the second. The maximum pixel va
in the central 1283128 pixel area in the low-pass filtere
ROI was assumed to be the center of the object reg
~90390 pixels!. The peripheral regions~64364 pixels!were
located at the four corners of the ROI. This segmentat
was applied to all ROIs, including mass and normal tiss
Figure 1 illustrates the local regions in four ROIs extract
manually from a mammogram.

Since the size of the object region was small~90390
pixels!, we did not employ the wavelet transform for mul
resolution analysis. As found in our previous studies, sev
SGLD matrices with different distances could be used as
alternative. Therefore, the object region and the periph
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906 Wei et al. : False-positive reduction with global and local texture features 906
regions in the original images were used for the SGLD m
trix formulation. An SGLD matrix of the peripheral regio
was formed by the accumulation of pixel pair informatio
from all four peripheral subregions. For each region, SG
matrices were calculated fromd 5 1, 2, 4, 8 andu50°, 45°,
90°, 135°. Again, features foru50°, 90° and foru545°,
135° were averaged separately. Different bin widths of
SGLD matrices were evaluated. The local feature space
sists of 104 features in the object region~13 texture measure
34 distances32 angles!and 104 features obtained from th
difference of corresponding features in the object and
peripheral regions.

C. Classification method

The classification of mass and normal tissue is a typical
tistical problem: there are both between-class and with
class differences. The masses encountered in mammog
vary in shape, size, contrast, and projection, so does the
mal tissue. It is extremely difficult, if not impossible, to co
struct an analytical model to describe the whole class of m
or normal tissue. Therefore, we adopted a linear statist
model to describe the difference between the masses an
normal breast tissues. Linear discriminant analysis27 is a sys-
tematic statistical technique to classify individuals or ca
into one of several mutually exclusive classes. For a tw
class problem, feature variables are linearly combined
form a canonical discriminant function. The coefficients
the discriminant function are optimized on the basis of f
ture values of the training group to maximize the separa
of the two classes. There are two issues involved in
model building process: the determination of the model co
ponents and the optimization of the model coefficients.

FIG. 1. The segmentation of subregions in the ROIs manually extracted
a mammogram. Upper left: the ROI with a mass; upper right: an ROI w
mixed dense/fatty tissue; lower left: an ROI with dense tissue; lower ri
an ROI with fatty tissue.
Medical Physics, Vol. 24, No. 6, June 1997
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The predictor variables used in the discriminant mo
directly affect the effectiveness and the accuracy of the c
sification. Each of the global, local, and combined featu
spaces was used as a pool of predictor variables. A step
feature selection procedure28 with the maximization of Ma-
halanobis distance as the optimization criterion was use
select effective predictor variables from each feature po
We have described the application of the stepwise fea
selection procedure to our classification task previously.17,18

The stepwise feature selection procedure was performed
the entire dataset~M or H! so that the selection would b
based on feature distributions that have better statist
properties than those for the subgroups. For model coe
cient optimization, theM1 and M2 ~or H1 and H2! sub-
groups were alternately used as training and test sets.
coefficients of the linear discriminant function were op
mized based on the feature values in the training group.
training cases were then classified with the linear discri
nant function as a verification of consistency. The oth
group was used for testing the accuracy of the classifier
the discriminant score of each test case was calculated b
on the linear discriminant function.

D. Statistical analysis of classification accuracy

Receiver Operating Characteristic~ROC! analysis29,30 was
used to evaluate the overall performance of the linear
criminant models. The distribution of the discriminant scor
of the ROIs in the training or the test group was input in
the LABROC1 program,31 which provided a maximum likeli-
hood estimation of a binormal ROC curve for training
testing, respectively. The area under the fitted ROC cu
Az , was used as a performance index for the evaluation
the different sets of features selected from the multireso
tion feature pools. TheCLABROC program was employed to
test the statistical significance of the difference between
Az values of different sets of selected features.32 The two-
tailed p values were reported in the following comparison
The statistical significance level was chosen ata50.05.

III. RESULTS

A. Manually extracted ROIs

From the manually extracted ROIs, 11 features were
lected from the global feature space@Table I~a!#. When train-
ing was performed withM1 , theAz for testing withM2 was
0.8660.02~Table II!. When training was performed with
M2 , theAz for testing withM1 was 0.8860.02. These re
sults are slightly better than those~0.8560.03 and 0.86
60.02! in the previous study,18 where 8 of the 13 texture
measures were calculated at several resolutions and/or
tances. However, the improvement inAz is not statistically
significant. Table I~a!also shows the 19 features previous
selected.18 It can be seen that some of the additional fi
texture measures were selected at various distances, ind
ing that these texture measures contained useful informa
for the classification.

m
h
t:



907 Wei et al. : False-positive reduction with global and local texture features 907
TABLE I. Texture features selected from the different feature spaces by stepwise linear discriminant analysis.z. axial feature~average of features at 0° and
90°!; a: diagonal feature~average of features at 45° and 135°!. d: manual (M ) dataset;n: hybrid (H) dataset.L: manual (M ) dataset in our previous study
~Ref. 18!. The top eight features are the features used in our previous study and the bottom five are the new features evaluated in this study.Fobject: object
texture feature;Fobject2Fperiphery: difference in texture feature.~a! Global feature space,~b! local feature space,~c! combined feature space.
Medical Physics, Vol. 24, No. 6, June 1997
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908 Wei et al. : False-positive reduction with global and local texture features 908
If we used only the local feature space as a pool,
features were selected by the stepwise procedure@Table
I~b!#. From Table II, theAz for testing withM2 was 0.84
60.03, while that for testing withM1 was 0.8760.02. Sta
tistical tests showed that the differences inAz values between
the local and global spaces were not significant. There
the effectiveness of the local feature space was compar
to that of the global feature space.

When we combined the local and global feature space
a single pool of 572 features, 45 features were chosen by
stepwise procedure. Table I~c! illustrates the distribution of
the selected features in the combined feature space. Tab
demonstrates the improvement inAz values in both the train-
ing and the test groups. TheAz for testing withM2 improved
to 0.9260.02. The improvement was statistically significa
compared to that with either the global or local feature sp
alone. TheAz for testing withM1 reached 0.9160.02, al
though the improvement did not achieve statistical sign
cance for this condition. The improvements inAz for the
training groups were statistically significant, over either t
global or local features alone. The effect of bin widths of t
SGLD matrices on classification accuracy in the global f
ture space was evaluated in previous studies.17 We per-
formed a similar comparison in the local feature space. Ta
III~a! summarizes theAz values for different bit depths~var-
ied from seven to ten bits! used in the construction of SGLD
matrices, where the local feature space alone was used
classification. Table III~b! lists theAz values with the com-
bined feature space, where the global texture features w
calculated at eight bits while the bit depth of the local textu
features was varied from seven to ten bits. Although th
was a drop inAz values at ten bits for the local feature spa
alone, the dependence ofAz on bit depth for the combined
feature space was not statistically significant. Consider
these results, we chose nine bits~equivalent to a bin width of
eight gray levels! for all local feature calculations in thi
study.

B. Hybrid dataset

For the manually extracted mass ROIs and automatic
extracted normal tissue ROIs, the 32 features selected f
the global feature space are shown in Table I~a!. TheAz

TABLE II. Comparison of the area under the ROC curves,AZ , obtained from
different feature spaces for the set of manually extracted ROIs~M set!.

Feature space Global Local Combined
Number of features 11 17 45

Training set Test set

M 11M 2 M 11M 2 0.8960.02 0.8960.01 0.9560.01a,b

M 1 M 1 0.9060.02 0.8860.02 0.9660.01a,b

M 1 M 2 0.8660.02 0.8460.03 0.9260.02a,b

M 2 M 2 0.8860.02 0.8860.02 0.9560.02a,b

M 2 M 1 0.8860.02 0.8760.02 0.9160.02

aThe improvement is statistically significant ata50.05, comparing com-
bined to global feature space.
bThe improvement is statistically significant ata50.05, comparing com-
bined to local feature space.
Medical Physics, Vol. 24, No. 6, June 1997
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values for the two test groups were 0.9160.02 and 0.90
60.02, respectively~Table IV!. The 22 features selecte
from the local feature space alone is shown in Table I~b!.
The Az values for the two test groups were 0.9260.02 and
0.9560.01, respectively~Table IV!. When we combined the
global and local feature spaces, 41 features were sele
@Table I~c!#. TheAz values improved to 0.9660.01 and 0.97
60.01, respectively. The improvements in theAz values for
the test groups with the combined feature space were st
tically significant compared to those with either the global
local feature space alone.

Figure 2 shows the distribution of the discriminant sco
for the test groups in the hybrid dataset. Figure 3 shows
ROC curves for the global, local, and the combined feat

TABLE III. ~a!Az values with features from local feature space with differe
bin widths for the manual dataset.~b! AZ values with features from differen
combined feature spaces~local feature space with different bin widths! for
the manual dataset.
~a!

Bin width ~pixel value!
Equivalent bit depth
Number of features

32
7
19

16
8
18

8
9
17

4
10
7

Training set Test set

M11M 2 M 11M 2 0.8760.02 0.8960.01 0.8960.02 0.8560.0
M 1 M 1 0.9160.02 0.9160.02 0.8860.02 0.8960.0
M 1 M 2 0.8660.02 0.8660.02 0.8460.03 0.8060.0
M 2 M 2 0.8860.02 0.8960.02 0.8860.02 0.8160.0
M 2 M 1 0.8860.02 0.8860.02 0.8760.02 0.8760.0

~b!

Bin width ~pixel value!
Equivalent bit depth
Number of features

32
7
31

16
8
38

8
9
45

4
10
42

Training set Test set

M 11M 2 M 11M 2 0.9460.01 0.9560.01 0.9560.01 0.9560.0
M 1 M 1 0.9560.01 0.9660.01 0.9660.01 0.9760.0
M 1 M 2 0.9260.02 0.9160.02 0.9260.02 0.9060.0
M 2 M 2 0.9460.02 0.9560.01 0.9560.02 0.9560.0
M 2 M 1 0.9360.02 0.9160.02 0.9160.02 0.9160.0

TABLE IV. Comparison of the area under the ROC curves,Az , obtained
from different feature spaces for the hybrid dataset.

Feature space Global Local Combined
Number of features 32 22 41

Training set Test set

H11H2 H11H2 0.9360.01 0.9660.01 0.9760.01b,c

H1 H1 0.9360.01 0.9660.01 0.9860.01a,b

H1 H2 0.9160.02 0.9260.02 0.9660.01a,b

H2 H2 0.9260.02 0.9360.02 0.9760.01a,b

H2 H1 0.9060.02 0.9560.01 0.9760.01a,b

aThe improvement is statistically significant ata50.05, comparing com-
bined to global feature space.
bThe improvement is statistically significant ata50.05, comparing com-
bined to local feature space.
cCLABROC did not converge when comparing combined to global feat
space.
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spaces, illustrating the improvement in the classification
curacy.

IV. DISCUSSION

We demonstrated previously that texture features in
multiresolution framework could be used to classify mas
and normal breast tissue on mammograms. The objective
this study are to expand the feature pool for the linear d
criminant model, and to evaluate the effectiveness of glo
and local multiresolution texture features for the reduction
false-positive ROIs. In the following, we will discuss th
relations and differences among the global and local fea
pools, their underlying physical meaning, and the robustn
issue of the discriminant model and our approach.

A. Inclusion of more texture measures

Compared with our previous study, we included five mo
texture measures in the feature pool as potential candid
in the linear discriminant model. Our results demonstra

FIG. 2. Distribution of discriminant scores for the test subgroups.~a! Test
with H2 . ~b! Test withH1 .
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that some of these additional texture measures were ch
at various scales and distances by the stepwise feature s
tion procedure. Under similar conditions to the previo
study, the number of features selected from the global fea
space decreased from 19 to 11, but the classification res
for the test groups were slightly better than those obtai
previously@Table I~a!#. These new features therefore app
to include useful information for the differentiation betwee
masses and normal tissue. However, many features in
global space are related to each other. The different tex
measures~see the Appendix! essentially describe the shap
of the same two-dimensional histogram~or SGLD matrix!
from different perspectives. For example, the two inform
tion measures of correlation selected in the global feat
space@Table I~a!#are nonlinear functions of entropy textur

FIG. 3. Comparison of ROC curves for test groups using features from
global, local, and the combined feature spaces.~a! Test withH2 . ~b! Test
with H1 .
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~see the Appendix!. On the other hand, the reason that t
multiresolution~essentially multidistance!framework in our
previous studies18 provided statistically better results tha
the single distance~one SGLD matrix!17 is the availability of
several SGLD matrices that describe the images from dif
ent spatial relationships. In order to significantly improve t
classification accuracy, it seems to be more important to p
vide additional and complementary information to the m
tiresolution feature space than to summarize the informa
with more texture measures from different perspectives.

B. Difference between global and local features

In this section, we try to examine the difference in t
information contained in the global and local features. In
following discussion, ‘‘detail’’ is relative and used as a ge
eral term that can be defined from different perspectives

Although the same texture measures and similar mu
resolution~or multidistance!method are used, the emphas
of the global and local feature spaces are different. The m
tiresolution analysis with global features summarizes
overall ~or ‘‘structural’’! information of mass and norma
tissue ROIs, since the original image and the low-pass
sions of an ROI are the input images to the feature anal
and the extracted global features are directly related to th
images. Although the original image contains complete~in-
cluding overall and detail! information of an ROI, only three
features from the original image were selected for the hyb
dataset and none for the manual dataset@Table I~a!#. There-
fore, the emphasis of the linear combination of the selec
global features is on the overall, rather than detail, inform
tion due to the features that are extracted from the low-p
images at larger scales and distances.

It is well known that detailed information plays an impo
tant role in the classification of masses by radiologists
mammographic reading. In order to improve the classifi
tion accuracy, it is necessary to extract features that can
scribe image details. The different perspectives and re
ences from which radiologists summarize the de
information, however, remain to be explained. For examp
the details revealed from the comparison of mammogram
the same breast obtained at different times are usually di
ent from the details by the asymmetry analysis of the ri
and left breasts. They are also different from the deta
information contained in the high-pass quadrants of
wavelet coefficients. Although the wavelet transform p
vides a detailed analysis in a multiresolution framework,
have not found a statistically significant difference in t
individual texture features of the high-pass wavelet coe
cients between mass and normal tissue ROIs. This migh
due to the difficulty in separating the detailed informati
between the mass and tissue in the high-frequency doma
the presence of image noise. On the other hand, the re
ences from past mammograms or bilateral mammograms
not available for the current analysis of single-view mamm
grams.

If we examine carefully the detailed analyses by the ra
ologists and the wavelet transform, we can find that the
Medical Physics, Vol. 24, No. 6, June 1997
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erences for the details are different. For radiologists, the
erences are changes in the tissue structures and appea
of suspicious objects in the same breast; or asymmetry
tissue distribution in the left and right breasts. For the wa
let transform, the references are related to the different
quency bands, where the spatial relationships between p
are defined. By partitioning an ROI into object and perip
eral regions and using these regions as input to the fea
analysis, we are changing our reference point and examin
the variations of the objects with respect to peripheral
gions. Some local features are related to image details,
ticularly those features extracted from SGLD matrices w
d 5 1. The spatial relationship between pixel pairs at this d
tance is defined at the highest possible spatial resolut
From Table I~b! we can see that several texture features
the local feature space were selected atd 5 1. We can also
examine the features from the way they are extracted
global feature extraction, the pixels in the object and its s
rounding background of an input ROI are accumulated in
same SGLD matrices, resulting in an averaging of the ob
and its background information. The smaller the object,
stronger is the influence of the background. For local feat
extraction, the averaging effect becomes relatively sm
since the object region size is 939 mm, smaller than the size
of most of the masses in our database. The pixels in
object region are used to construct SGLD matrices for
object, thereby providing features that are more specific
the individual objects than the global features. The periph
SGLD matrices are based on the pixels at the four corner
the ROI, so that they provide an estimate of the aver
properties of the normal tissue background in an ROI. T
resulting texture features for the periphery region are l
sensitive to the variations in the tissue background than th
for each individual subregion. Along with the features for t
object subregion, the differences in the corresponding f
tures between the object subregion and its peripheral su
gions ~i.e., the difference features! are included in the loca
feature space. These features emphasize the difference
tween the object and its surrounding tissue background a
therefore, are related to the change in texture in the ob
region. They also normalize, to some extent, the chang
texture by providing the same reference point, i.e., the f
tures of their own background, in the comparison of differe
objects. Local feature extraction cannot be considered a
cial case of global feature extraction, since there is
equivalence in the global feature space to the difference
tures in the local space.

Like ‘‘detail’’ or local, the term ‘‘global’’ is also relative.
The current global feature space is ‘‘global’’ with respect
the extracted ROI. If we examine the whole mammogra
this ‘‘global’’ feature space becomes ‘‘local.’’ Radiologist
usually analyze a suspicious object in the context of bre
anatomy in their detection process. This anatomical inform
tion is more ‘‘global’’ than those global features that w
extracted. There is no doubt that this kind of structural inf
mation at a higher level will provide additional and compl
mentary information in the classification of mass and norm
tissue. The inclusion of this kind of information, however,
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beyond the scope of the present study and deserves fu
investigation in the process of improving the classificat
accuracy and intelligence of CAD algorithms.

C. Segmentation of suspicious object

With features from the local space alone, we ha
achieved statistically similar classification accuracy to t
with the global features. This implies that the local featu
space is as effective as the global space. Evidently, the
fectiveness of the local feature space depends on the acc
segmentation of the suspicious object in the ROI. This m
become difficult when a subtle mass is adjacent to a st
tured background tissue. For our feasibility studies, we u
a low-pass filter to identify an object based on the mean p
intensity. This technique proved to be effective for most
the masses in our database, except for one mass that h
piece of dense tissue in the proximity. More sophistica
methods may be necessary to identify subtle masses ne
boring dense tissue structure in order to further improve
classification accuracy. It may also be helpful if the size
the object regions is varied according to the size of the in
vidual masses rather than fixed, as used in this study.
DWCE algorithm can provide the location and the size o
bounding box for a suspicious object.21 We also used this
information in our extraction of local texture features. T
preliminary results demonstrated a similar level of class
cation accuracy, suggesting that for the dataset used in
study, our object identification and the feature extract
methods can identify the object location correctly in mo
cases.

D. Complementary information in the global and local
feature spaces

The statistically significant improvement in the classific
tion accuracy with the combined feature space indicates
the global and local features characterize different inform
tion in an image. It is a result of the difference in the ima
regions subjected to SGLD formulation. It indicates that b
the structural information associated with the global featu
based on the entire ROI and the detail information associ
with the local features based on subregions in the ROI
necessary to distinguish masses from normal tissue.
though there may be some correlation between the two
ture spaces, the stepwise feature selection procedure ca
lect those important features that are complementary to e
other. One would also expect that in addition to the glo
and local feature spaces described here, features that
effectively summarize the detail information embedded
the high-frequency components of the wavelet coefficient
properly extracted, may be able to contribute to further i
provement in the classification accuracy.

E. Hybrid dataset

Our hybrid dataset included manually extracted mas
and independent normal tissue ROIs that were detecte
false positives in an automated detection program. We
Medical Physics, Vol. 24, No. 6, June 1997
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not use the automatically extracted mass ROIs and over
ping normal tissue ROIs23 in this study. Since our DWCE
algorithm at present did not detect all the masses, this wo
reduce the size of our dataset and the results could no
compared to those for the manual dataset. Our goals in
study were to compare the classification accuracy of the
bal, local, and combined feature spaces, and to demons
that the classifier can distinguish masses from normal tis
and thus can be used to reduce FPs detected by an autom
algorithm. The effectiveness of the classifier as an FP red
tion technique in an automated mass detection program
been evaluated in a different study.23

The difference inAz values between the manual and h
brid datasets can be explained by the difference in the c
position of the FP ROIs. In theH set, the FPs segmented b
the DWCE algorithm mainly consisted of dense tissue rat
than fatty tissue. For theM set, the dense and dense/fat
ROIs were extracted for their similarity in appearance to
potential mass, and they were generally different from
fatty tissue ROIs.17,18Although it was much easier to classif
mass and fatty tissue ROIs than to classify mass and den
dense/fatty ROIs separately, the inclusion of the three dif
ent types of FPs together in the normal tissue class incre
the within-class variability. Since the FPs in theH set were
more homogeneous than those in theM set, it would be
easier and more effective for the discriminant model to ma
mize the ratio of the between-class variation and the with
class variation for theH set than for theM set. This maxi-
mization is the essence of the linear discriminant analysi
the separation between mass and normal tissue.

There are two purposes for including the manual data
~1! The manual dataset was used in our previous study
fore the automated segmentation was developed. There
in this paper, it served as a reference point on how the lo
and combined texture feature spaces improved the classi
tion. ~2! The statistical model~including feature selection
and model parameter optimization! is data dependent, espe
cially when the number of cases is small. The analysis of t
datasets with different FP characteristics provided some
formation on the adaptivity of our approach. This will b
discussed in more detail in the following section.

F. Robustness of the discriminant model and the
model building procedure

In robust statistics,33 one seeks effective prediction meth
ods that are rather insensitive, or robust against, certain ty
of failures in the model, so that good answers are still o
tained, even if some assumptions are only approxima
true. The robustness of the classification model is an imp
tant issue in computer-aided diagnosis. Whether an o
mized model based on a limited dataset can achieve a
sonable accuracy in the general patient populat
determines the success or failure of that model.

The major issue of the classification model is the select
of model components, i.e., feature selection. To examine
pirically the robustness of a selected feature set, we app
the features selected from the manual set to the hybrid



s
he

t

e
t
w
e
s

2

ri

-
e
o
m
c

re
a
rid

ith
e

en

e
at
6

or

ur
th
he
ct

on
t
a
t
ls
co

nd
m

s of
or-

by
de
l;
m-

the
nts
the
ere
nd
uc-
ces
is-
ure
, in
x-
s the
se-

29
-
si-
ny
the
l to

e

ti-
. A

912 Wei et al. : False-positive reduction with global and local texture features 912
The resulting linear model using these feature variable
different from the optimal one. When the coefficients of t
classifier were trained on theH1 subset, theAz values were
0.9760.01 for the training setH1 and 0.9560.01 for the tes
setH2 . When the classifier was trained onH2 , theAz values
were 0.9660.01 for the training set and 0.9560.01 for the
test set. Compared to Table IV, we can see that theAz values
obtained using this suboptimal feature set were only 0.01
0.02 lower than theAz values obtained by optimal featur
selection. We also applied the 41 features selected from
hybrid dataset to the manual set. When the classifier
trained onM1 , the trainingAz reduced to 0.9360.02 and th
test Az reduced to 0.8760.02. When the classifier wa
trained onM2 , the trainingAz reduced to 0.9360.02 while
the testAz reduced to 0.8960.02. These were about 0.0
0.05 lower than the corresponding optimalAz values in
Table II. The slightly larger drop inAz values may be due to
the fact that the characteristics of the FPs in the hyb
dataset are a subset of the characteristics of the FPs in
manual set, as discussed in the previous section.

The consistently lowerAz values, compared to those ob
tained with the optimal feature set observed from these
periments confirm the fact that selection of a feature set fr
a different population is suboptimal. However, a more i
portant observation is that the suboptimal feature sets
consistently provide very highAz values under all conditions
studied, which were better than~15 out of 16 feature and
training/test set combinations! or equal to~1 out of 16! the
Az values obtained from the optimal global or local featu
sets alone. This is a strong indication that the feature sets
not very sensitive to the type of false positives in the hyb
or manual dataset.

To explore empirically the robustness of the model w
respect to training and test set partitioning, we repartition
the hybrid dataset into two subsets based on cases. In
new partitioning, all the ROIs belonging to the same pati
were grouped into the same subset~either training or test!.
The training and test procedures were the same as thos
scribed in Sec. II C, except for the difference in the d
partitioning. The testAz values were 0.9760.01 and 0.9
60.01 for the two subsets, respectively. The testAz values
for this by-case partitioning were within 0.01 from those f
the by-film partitioning~see last column of Table IV!. The
differences were not statistically significant (p 5 0.48), as
estimated from thez score. This suggests that, for o
dataset, the effect of the possible correlation between
different ROIs from the same patient partitioned into t
training and test subsets was less important than the effe
feature selection on the classification accuracy.

It is important to recognize that our empirical analysis
two limited datasets~theM andH sets!does not prove tha
either the feature sets or the trained classifiers are gener
able to the patient population at large. It will be necessary
retrain the classifier when the characteristics of the fa
positives change or when large and general datasets be
available, as we discussed previously.17,18 However, the ef-
fectiveness of the classification for both the hybrid a
manual datasets, which contained false positives of so
Medical Physics, Vol. 24, No. 6, June 1997
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what different characteristics, demonstrates the robustnes
our model building approach in differentiating mass and n
mal tissue ROIs.

V. CONCLUSION

This study significantly expanded our previous work
~i! introducing a new local texture feature pool to provi
additional discriminatory information to the existing mode
~ii! classifying FPs extracted automatically from our co
puter segmentation program; and~iii! evaluating the robust-
ness of our classification model. Global features from
approximation images in the low-pass wavelet coefficie
were used to describe the structural information about
mass and normal tissue, while the local texture features w
used to differentiate the specific information of the mass a
mass-like normal tissue from their background tissue str
ture. The classification capability of these two feature spa
were statistically comparable on their own. When the d
criminant model included features from the combined feat
pool, the improvement in the classification accuracy was
general, statistically significant for both the manually e
tracted dataset and the hybrid dataset. This demonstrate
effectiveness of multiresolution feature analysis in the fal
positive reduction for automated detection of masses.
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APPENDIX: DEFINITION OF SGLD TEXTURE
MEASURES

An SGLD matrix element,pu,d( i j ), is the joint probabil-
ity of the gray level pairsi and j in a given directionu
separated by a distance ofd pixels. For each ROI, 13 textur
measures were derived from its SGLD matrix of a givenu
andd. The following provides a summary of the mathema
cal definitions of the texture measures used in our study
simplified notationp( i , j ) will be used to denote the SGLD
matrix elements.

(1) Energy.

ENERGY5(
i50

n21

(
j50

n21

p2~ i , j !,

wheren is the number of gray levels of the image.

(2) Correlation.

CORRELATION5
( i50
n21( j50

n21~ i2mx!~ j2my!p~ i , j !

sxsy
,

where
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mx5 (
i50

n21

ipx~ i !, sx
25 (

i50

n21

~ i2mx!
2px~ i !,

my5 (
j50

n21

jpy~ j !, sy
25 (

j50

n21

~ i2my!
2py~ j !,

px~ i !5 (
j50

n21

p~ i , j !, py~ j !5 (
i50

n21

p~ i , j !,

are the mean and variance of the marginal distributi
px( i ) andpy( j ), respectively.

(3) Entropy.

ENTROPY52(
i50

n21

(
j50

n21

p~ i, j !log2 p~ i , j !.

(4) Inertia.

INERTIA5 (
i50

n21

(
j50

n21

~ i2 j !2p~ i , j !.

(5) Inverse difference moment.

INVERSE DIFFERENCE MOMENT

5 (
i50

n21

(
j50

n21
1

11~ i2 j !2
p~ i , j !.

(6) Sum average.

SUM AVERAGE5 (
k50

2n22

kpx1y~k!,

where

px1y~k!5( i50
n21( j50

n21p~ i , j !,

i1 j5k, k50,...,2n22.

(7) Sum entropy.

SUM ENTROPY52(
k50

2n22

px1y~k!log2 px1y~k!.

(8) Difference entropy.

DIFFERENCE ENTROPY52(
k50

n21

px2y~k!log2 Px2y~k!,

where

px2y~k!5( i50
n21( j50

n21p~ i , j !,

u i2 j u5k, k50,...,n21.

(9) Sum variance.

SUM VARIANCE

5 (
k50

2n22

~k2SUM AVERAGE!2px1y~k!.
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s

(10) Difference average.

DIFFERENCE AVERAGE5(
k50

n21

kpx2y~k!.

(11) Difference variance. Notice the difference in the
definitions of this feature here and in Haralicket al.22

DIFFERENCE VARIANCE

5 (
k50

n21

~k2DIFFERENCE AVERAGE!2px2y~k!.

(12) Information Measure of Correlation 1.

IMC15
ENTROPY2H1

max$HX ,HY%
,

where

H152 (
i50

n21

(
j50

n21

p~ i, j !log2@px~ i !py~ j !#,

HX52 (
i50

n21

px~ i !log2@px~ i !#,

HY52 (
j50

n21

py~ j !log2@py~ j !#.

(13) Information measure of correlation 2.

IMC25A12exp@22~H22ENTROPY!#,

where

H252 (
i50

n21

(
j50

n21

px~ i !py~ j !log2@px~ i !py~ j !#.
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