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Purpose: The buildup of noncalcified plaques (NCPs) that are vulnerable to rupture in coronary
arteries is a risk for myocardial infarction. Interpretation of coronary CT angiography (cCTA) to
search for NCP is a challenging task for radiologists due to the low CT number of NCP, the large
number of coronary arteries, and multiple phase CT acquisition. The authors conducted a preliminary
study to develop machine learning method for automated detection of NCPs in cCTA.
Methods: With IRB approval, a data set of 83 ECG-gated contrast enhanced cCTA scans with 120
NCPs was collected retrospectively from patient files. A multiscale coronary artery response and
rolling balloon region growing (MSCAR-RBG) method was applied to each cCTA volume to extract
the coronary arterial trees. Each extracted vessel was reformatted to a straightened volume composed
of cCTA slices perpendicular to the vessel centerline. A topological soft-gradient (TSG) detection
method was developed to prescreen for NCP candidates by analyzing the 2D topological features
of the radial gradient field surface along the vessel wall. The NCP candidates were then character-
ized by a luminal analysis that used 3D geometric features to quantify the shape information and
gray-level features to evaluate the density of the NCP candidates. With machine learning techniques,
useful features were identified and combined into an NCP score to differentiate true NCPs from false
positives (FPs). To evaluate the effectiveness of the image analysis methods, the authors performed
tenfold cross-validation with the available data set. Receiver operating characteristic (ROC) analy-
sis was used to assess the classification performance of individual features and the NCP score. The
overall detection performance was estimated by free response ROC (FROC) analysis.
Results: With our TSG prescreening method, a prescreening sensitivity of 92.5% (111/120) was
achieved with a total of 1181 FPs (14.2 FPs/scan). On average, six features were selected during the
tenfold cross-validation training. The average area under the ROC curve (AUC) value for training
was 0.87 ± 0.01 and the AUC value for validation was 0.85 ± 0.01. Using the NCP score, FROC
analysis of the validation set showed that the FP rates were reduced to 3.16, 1.90, and 1.39 FPs/scan
at sensitivities of 90%, 80%, and 70%, respectively.
Conclusions: The topological soft-gradient prescreening method in combination with the luminal
analysis for FP reduction was effective for detection of NCPs in cCTA, including NCPs causing
positive or negative vessel remodeling. The accuracy of vessel segmentation, tracking, and centerline
identification has a strong impact on NCP detection. Studies are underway to further improve these
techniques and reduce the FPs of the CADe system. © 2014 American Association of Physicists in
Medicine. [http://dx.doi.org/10.1118/1.4885958]
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1. INTRODUCTION

Over 16 × 106 Americans have coronary heart disease and
the prevalence of myocardial infarction approaches 8 × 106.1

Over 445 000 Americans die of coronary heart disease and
over 151 000 die of myocardial infarction each year. Acute MI
is often caused by rupture of coronary atherosclerotic plaques.
In a study of the prevalence of atherosclerosis in patients with
fatal stroke,2 it was found that coronary plaques, coronary
stenoses, and myocardial infarction were highly prevalent in
patients who died from a stroke regardless of etiology.

Plaque composition is an important factor in determin-
ing the risk for plaque rupture. Noncalcified plaques (NCP)

are lipid-rich and more vulnerable to rupture than calcified
plaques. NCPs are more difficult to visualize by radiologists
because their CT numbers of NCP are low and soft plaque
buildup may not significantly narrow the lumen. Conventional
angiography and stress tests fail to provide a complete picture
of plaque accumulation. ECG triggering contrast-enhanced
coronary CT angiography (cCTA) with multi-detector row CT
is a noninvasive diagnostic tool that can directly capture 3D
images of a beating heart using a CT scanner. cCTA can iden-
tify the early stages of vulnerable plaque buildup even before
the stenosis caused by the plaque can be visualized on con-
ventional angiography images.3 However, the interpretation
of cCTA (Ref. 4) is a demanding task even for experienced
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radiologists because of the large volume of data and the many
vessel segments that need to be analyzed. Studies using 64-
slice cCTA showed that the segment-based detection sensitiv-
ity ranged from 82% to 95%, specificity from 95% to 97%
for >50% stenosis in >1.5 mm vessels.5–9 However, the re-
ported sensitivities of NCP of <50% occlusion can be as low
as about 35%–50%.10–12

Computerized analysis is essential for diagnostic accuracy
for cCTA. The American Heart Association recommends that
a workstation that allows for interactive manipulation and
post-processing of the acquired data set is crucial. Most ad-
vanced clinical workstations provide functions to semiauto-
matically find a centerline between two points specified by
the user.13 Automatic segmentation techniques in combina-
tion with user interactive correction are used for calcium
scoring, which has been widely used to assess the risk of coro-
nary artery disease. Arnoldi et al.14 reported that a computer-
aided detection (CADe) system for detection of stenosis of
≥50% occlusion on four major coronary arteries (left main,
left anterior descending, left circumflex, and right coronary
artery) achieved 74% sensitivity with an average 0.56 false
positives (FPs) per patient on 59 patients who underwent both
cCTA and cardiac catheterization. However, there are no NCP
analysis tools available in current clinical workstations. Such
tools may be able to provide more comprehensive quantitative
information about the patient’s plaque burden and to moni-
tor the response to therapy for patients undergoing medical
treatment.14, 15

The development of plaques in a coronary artery can cause
arterial remodeling. Vessel remodeling is related to the pro-
gression and regression of atherosclerotic diseases. Positive
remodeling (arterial expansion) may be a characteristic of
early, unstable lesions, allowing considerable plaque accumu-
lation despite normal luminal size. Negative remodeling (ar-
terial shrinkage) and fibrotic changes may be associated with
more stable plaques. Detection of NCP of positive remodel-
ing is more challenging because the vessel lumen may not be
narrowed and the contrast of NCPs is low relative to the sur-
rounding tissue. In this study, we investigated the feasibility of
our topological soft-gradient (TSG) detection method for pre-
screening followed by luminal analysis for FP reduction in a
CADe system that is designed to assist radiologists in detec-
tion of NCPs in cCTAs including both positive and negative
remodeling.

2. MATERIALS AND METHODS

2.A. Data set

Institutional Review Board approval was obtained before
collection of patient data. We retrospectively collected a data
set of 83 cCTA studies from files of 83 patients from 2005
to 2011. Eligible cases are those diagnosed with coronary
artery disease and having at least one NCP in the cCTA study.
The contrast-enhanced cCTA scans were acquired with ECG-
gating using GE 64-slice scanners (LightSpeed VCT or Dis-
covery CT750 HD) at 100–120 kVp and 340–790 mA in
our department. Forty-seven of the 83 cCTA studies were ac-

quired with retrospective ECG gating and the remaining 36
studies were acquired with prospective ECG gating. Both the
acquisition and reconstruction protocols were those set up
for cCTA in our cardiothoracic imaging division during the
period of time the clinical exams were performed. For the
prospective gating cCTA studies, adaptive statistical iterative
reconstruction algorithm from GE was used, which further
reduced dose in the acquisition of cCTA images. The effec-
tive dose was, on average, 23.3 ± 1.9 mSv for the studies
with retrospective gating in comparison to 4.0 ± 1.9 mSv for
those with prospective gating. The reconstructed cCTA vol-
umes have a slice interval of 0.625 mm and in-plane pixel size
of 0.391 or 0.488 mm, which were interpolated to isotropic
voxel sizes of 0.130 mm or 0.162 mm, respectively, upon in-
put to the CADe system for processing.

Each case was first read independently by two cardiotho-
racic radiologists. A single reconstructed phase (70% or 75%)
for each scan, in which more major coronary arterial segments
are relatively stationary, was selected and read by both radi-
ologists. During the reading, the radiologist manually marked
the location of each plaque with a 3D bounding box in the
cCTA volume and traced the plaque longitudinally along the
coronary vessel using an in-house developed graphical user-
interface. The radiologists followed the 17-segment model of
coronary arteries to label the locations of the NCPs. The 17
major coronary arterial segments16 that are considered clin-
ically significant include (1) proximal RCA, (2) mid RCA,
(3) distal RCA, (4) right posterior descending artery, (5) left
main, (6) proximal left anterior descending (LAD), (7) mid
LAD, (8) distal LAD, (9) first diagonal, (10) second diag-
onal, (11) proximal left circumflex (LCX), (12) first obtuse
marginal, (13) distal LCX, (14) second obtuse marginal, (15)
posterior descending, (16) posterior lateral branch, and (17)
ramus intermedius. A GE Advantage workstation was avail-
able for the radiologist to read the cCTA images with the
clinical visualization software. The radiologist also reviewed
the clinical report of the cCTA exam as a reference for dou-
ble checking the presence or absence of soft plaques. In ad-
dition to the location of the NCP, the radiologist provided
the conspicuity rating of the NCP on a ten-point scale (10:
most obvious) and the confidence level of the marked loca-
tion having an NCP on a ten-point scale (10: highest con-
fidence). In this study, only coronary arterial segments with
diameters greater than about 2 mm were considered for NCP
detection because plaques in very small coronary arteries are
less significant clinically and also difficult to determine its
presence. For any NCP location that did not agree in the two
independent readings, the location would be reread by the
radiologists. If there was still disagreement, an independent
expert radiologist would serve as the adjudicator to decide
whether the location had an NCP. With this process, a to-
tal of 120 NCPs were identified in the 83 cCTA volumes.
The distributions of the conspicuity ratings and locations of
the NCPs in the data set are shown in Fig. 1. Four of the
120 NCPs in our data set extended over two arterial seg-
ments, which were counted as one target but each of the arte-
rial segments received a count in the location histogram in
Fig. 1. The radiologist-marked NCP locations along the
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FIG. 1. (a) Distribution of conspicuity ratings of 120 NCPs in our data set.
The conspicuity of the NCPs was rated by experienced cardiothoracic ra-
diologists on a 10-point scale (10 = most obvious); (b) Bar chart of loca-
tions of NCPs in our data set. Four of the 120 NCPs spread over two arterial
segments. RPD: right posterior descending artery; LAD: proximal left ante-
rior descending; LCX: proximal left circumflex; OM1: first obtuse marginal;
OM2: second obtuse marginal; PD: posterior descending; PLB: posterior lat-
eral branch; RAMUS: ramus intermedius.

arteries were used as reference standard for evaluation of the
CADe system.

2.B. Detection of NCP by computer vision
and machine learning techniques

2.B.1. Definition and reformation of search space

NCP results from a buildup of atherosclerotic deposits
within the walls of coronary arteries and is prone to rup-
ture without warning. Our computerized detection scheme
is established upon the analysis of coronary artery walls.
We first used a previously developed multiscale coronary
artery response-rolling balloon region growing (MSCAR-
RBG) method17 to extract the coronary artery trees. Figure 2
showed an example of the segmented and tracked arterial trees
from a cCTA volume.

Our current MSCAR-RBG method does not have perfect
performance. In a separate study,18 we evaluated its perfor-

FIG. 2. An example of coronary arterial trees extracted by our MSCAR-
RBG method. The left coronary arterial tree is shown in the front and the
right coronary arterial tree is in the back.

mance with 62 cCTA volumes using radiologists’ manually
tracked coronary arterial segments following the 17-segment
model16 as reference standard. We found that the MSCAR-
RBG method correctly tracked 86.2% of the coronary arterial
segments with 55 false vessels in the 62 cCTA volumes. For
the current study, we evaluated the FP detections of NCPs in
the segmented vessels rather than those in the false vessels.
Therefore, the false segments were manually eliminated in the
current data set of cCTA scans and only the true coronary ar-
teries were processed in the detection stages.

Coronary arteries are relatively small tubular structures in
the heart region. The centerline is determined during segmen-
tation and tracking. For the subsequent plaque detection, an
optimal path finding algorithm19 traced each vessel along its
centerline from the seed point to the end of the vessel based
on Dijkstra’s algorithm20 and labeled them as a vessel for fur-
ther analysis. Note that these vessel labels were different from
the arterial segments in the clinical 17-segment model, and the
coronary arteries closer to the seed point would be a part of the
optimal paths for other downstream vessels multiple times.
The NCPs in the repeatedly traced segments might therefore
be detected multiple times but they would be merged at the
later stage of the detection algorithm, as described later.

We applied curved planar reformation (CPR) to each vessel
traced by the optimal path finding algorithm. The entire length
of each coronary vessel was transformed to a single volume
by resampling the cCTA volume in planar cross sections per-
pendicular to the vessel centerline. The CPR simplifies the
analysis of the lumen, wall, diameter variation and surround-
ing tissues by reformatting the originally curved planes and
volume into a rectangular volume. The cross section of the
volume was chosen to be 81 × 81 voxels and the length of the
volume was determined by the length of the tracked vessel ex-
cept that it was cutoff when the vessel diameter was reduced
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FIG. 3. Illustration of the determination of the vectors �a and �b that defined
the cross-sectional plane.

to smaller than about 2 mm. The spatial position and shape of
the vessel centerline determined which parts of the 3D space
were transformed. As the coordinate system of a plane cannot
be uniquely defined by a single vector tangential to the vessel
centerline, a reference vector was defined. Figure 3 illustrates
the definition of the cross-sectional plane relative to a station-
ary reference frame. We defined the reference vector

−→
V0 to

be parallel to the x-axis of the reference frame and used the
right-hand rule to define the direction of the cross product of
two vectors. Given a vector �V that was tangential to the ves-
sel centerline at point p, the cross-sectional plane centered at
p was defined by the vectors �a and �b as

�a = −→
V0 × −→

V ,

�b = �V × (−�a) .

The voxel values on the cross-sectional plane were ob-
tained by interpolation from the original cCTA volume.

2.B.2. Prescreening of NCP candidates

In order to prescreen the candidates of NCPs, we first used
anisotropic diffusion method21 to reduce the voxel value vari-
ation, which is commonly encountered due to factors such as
image noise, motion, and numerical sampling in reconstruc-
tion, while preserving edges. Since plaque buildup occurred
on the vessel wall, we transformed the coordinate system of
the CPR volume from Cartesian to cylindrical, where the ves-
sel centerline was set to be the cylindrical axis, to facilitate
analysis of the vessel wall. In the cylindrical coordinate sys-
tem, an in-slice horizontal gradient along any radius from the
cylindrical axis towards the vessel periphery was calculated
and the location of maximum radial gradient was detected as
the initial vessel wall or the radius of the vessel lumen. As-
suming the cross section of a vessel is round, the radii around
the cross section were averaged to reduce the estimation er-
ror. A one-dimensional median filter was further applied to
the average radius profile along the vessel to reduce noise and
define the location of the vessel wall.

We developed a TSG detection method for prescreen-
ing of NCP candidates along the vessel wall in the CPR
volume22 Fig. 4 showed a schematic diagram of our pre-
screening method. In the TSG method, the gradient along the

CPR 
Volume

Radial Gradient 
(at the vessel wall) 

Transformation to 2D 
Topological Surface

Histogram Analysis
(along the vessel center line)

Candidate ROIs 
for Luminal Analysis

FIG. 4. Diagram of the TSG detection method for prescreening of NCP
candidates.

radial direction from the vessel centerline to the wall on a re-
formatted slice was defined as the difference between the av-
erage CT value at half radius from the vessel center to the wall
and the average CT value from the wall to a distance of half
radius outside the vessel. The radial gradient was calculated at
all wall locations which were then transformed to a 2D topo-
logical surface characterizing the radial gradient field on the
vessel wall. The radial gradient field topology on this surface
was treated as a 2D image and analyzed to identify regions of
interest with soft gradients as follows. For each voxel along
the vessel centerline, a running window of 1.1-mm in length
centered at the voxel was defined and mapped to the TSG
surface for histogram analysis. The histogram of the calcu-
lated radial gradient values in the window was generated. The
upper boundary of the lowest quartile on the histogram was
treated as the soft gradient value at the corresponding voxel
along the vessel centerline. The voxel-by-voxel soft gradients
determined along the vessel centerline formed the soft gradi-
ent profile, which was then searched to identify local minima.
Each local minimum was labeled as an NCP candidate and a
2-mm vessel segment centered at the candidate was defined
as the region of interest (ROI) for luminal analysis.

2.B.3. Luminal analysis

A quantitative luminal analysis was designed for FP re-
duction. The luminal analysis used 3D geometric features to
quantify the shape information and gray-level features to eval-
uate the density of the NCP candidates.

In the geometric analysis, a measure of the degree of steno-
sis, referred to as radius differential, was calculated as the first
derivative of the radius profile along the straightened vessel.
In addition, the straightened volume underwent two transfor-
mations at each voxel: volumetric shape indexing (VSI) and
gradient direction mapping. In general, VSI used differential
geometry to capture the intuitive notion of local (in a small
neighborhood) shape of a surface. We used the definition by
Dorai and Jain23 in which VSI at a point is defined as

V SI = 1

2
− 1

π
arctan

(
k1 + k2

k1 − k2

)
, (1)

where k1 and k2 are the principal curvatures of the surface,
with k1 ≥ k2. The principal curvatures measure the maxi-
mum and minimum bending of a regular surface at each point.
Given the Gaussian curvature K and mean curvature H, the
following quadratic equation can be written,

k2 − 2Hk + K = 0, (2)

the solutions of which yield the principal curvatures:
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k1 = H +
√

H 2 − K, (3)

k2 = H −
√

H 2 − K. (4)

The VSI provides a continuous gradation between convex and
concave curvatures therefore it can differentiate the subtle
shape variations.

The second transformation, gradient direction mapping, is
designed to characterize the local direction of the gradient
vectors at a given point. Without loss of generality, one can
assume that a straightened vessel in cCTA can be adequately
modeled as a bright cylinder in a dark background and the
gray level of its cross section is gradually decreasing from
the center to the edge of the cylinder. According to the above
assumptions, the gradient field in the vessel is homogeneous
with the radial gradient vectors pointing to the central axis of
the cylinder while inhomogeneity occurs at the locations of
NCPs. A quantitative measure of gradient direction mapping
(GDM) at a point is defined as

GDM = �g · �p
|�g| | �p| , (5)

where �g is the gradient vector and �p is the vector from the
given point to the central axis of the cylinder.

Four features that described the statistical characteristics in
the local region were calculated for each NCP candidate in the
two transformed volumes to obtain eight geometric features
and in the CPR volume to obtain four gray level features. Let
si denote the ROI of the ith NCP candidate (a 2-mm-long ves-
sel segment centered at the NCP candidate location, defined
in Sec. 2.B.2). A histogram was generated from each of the
three volumes with VSI, GDM, or gray level values. Let Xj be
the value of the jth bin of a given histogram in the ROI, H(si),
the following four features were calculated to characterize the
statistics of the ROI:

μi =
∑

j∈H (si )

PjXj , (6)

σ 2
i =

∑
j∈H (si )

Pj (Xj − μi)
2, (7)

γi =
∑

j∈H (si )

(
Xj − μi

|σi |
)3

, (8)

ki =
∑

j∈H (si )

(
Xj − μi

|σi |
)4

, (9)

where Pj was the probability of a voxel having the value of Xj

in the ROI si, which was estimated from the histogram nor-
malized by the total number of voxels in si.

In addition, we designed an asymmetry features in mea-
suring the asymmetric spatial location of the NCP candidates
relative to the vessel centerline. Let {Ii} represent the set of
voxels in the 30o sector subtended at the vessel centerline and
is 2-mm-long centered at the ith candidate along the vessel

while
{
Îi

}
be the set of voxels in the sector at the 180o sym-

metric location of {Ii}with the vessel centerline as the axis of
symmetry. The asymmetry measure (A) was defined as

A = μ̂ − μ√
σ̂ 2 + σ 2

, (10)

where μ and σ 2 were the mean and variance of CT values in
the corresponding set.

In total, we extracted 14 feature descriptors including nine
geometric features, four gray-level features, and one asym-
metry features to quantify the differences between NCPs and
FPs. To evaluate the performance of our computer-vision
methods, we applied tenfold cross-validation resampling with
a linear discriminant classifier in which useful features were
selected and linearly combined into an NCP discriminant
score to differentiate true NCPs from FPs. Denote the full
data set as T, and the ten randomly partitioned and dis-
joint subsets by case as Tv , (v = 1, 2, . . . , 10), for the vth
cross-validation fold, the training and validation subsets were
given by Tt = T − Tv and Tv , respectively. We considered a
two-class supervised machine learning problem where a set
St = {(xi, yi)}ni=1 of n training samples was available in the
training subset Tt. Here, x is the 14-dimensional feature vec-
tor, and y ∈ [0, 1] is the class label (0: false and 1: true NCP).
Assuming that the class conditional distributions are multi-
variate normal distributions with mean vector mo and m1, re-
spectively, and identical covariance matrix �, the optimal dis-
criminant function is given by

y (x) = WT x + w0 (11)

with

WT = (
mT

1 − mT
0

)
�−1, (12)

w0 = 1

2
mT

0 �−1m0 − 1

2
mT

1 �−1m1 + lnP1 − lnP0, (13)

where Pi is the class prior of class i. During training, we
considered supervised learning in settings where there were
many irrelevant features and only a small subset of the fea-
tures was sufficient to differentiate the two classes (Sahiner
et al.24). Therefore, stepwise feature selection with simplex
optimization24 was used to reduce the number of features and
prevent overfitting. In each fold, to maintain the independence
of the validation subset, feature selection was performed only
in the training subset. The selected feature subset was used as
input predictor variables to formulate the discriminant func-
tion in that fold. The trained discriminant function was ap-
plied to the validation subset to generate the discriminant
scores for the NCP candidates. Since the discriminant func-
tion [Eq. (11)] represented the corresponding maximum like-
lihood estimates of the targeted classes using training sets that
were drawn from the same population, the tenfold validation
results could be combined into a full set in the test evaluation.
Receiver operating characteristic (ROC) analysis25 was used
to assess the classification performance of the NCP discrimi-
nant scores for the full validation set. The ROC analysis was
also used to study the discriminatory ability of the individual
features.
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(a) (b) (c)

FIG. 5. An example of vessel straightening by our implementation of the curved planar reformation method. (a) 3D volume rendering of the heart with the NCP
location identified by the cyan arrow (b) volume rendering of the straightened coronary artery segment corresponding to the vessel indicated by the white arrow
in (a). The NCP (cyan arrow) caused positive remodeling of the vessel wall; (c) cross sectional images of the NCP from up to down in the reformatted volume
with the NCP locations identified by a cyan arrow. The slices were arranged from up to down as: left column: slice 1–5 and right column: slice 6–10 (the slice
numbers are relative).

To evaluate the overall detection performance, a free re-
sponse receiver operating characteristic (FROC) curve was
generated by varying the decision threshold on the NCP dis-
criminant score. At a given threshold, an NCP candidate with
discriminant score above the threshold was scored as a true
positive (TP) if it was located in the radiologist’s manually
marked plaque segment. Otherwise, it would be scored as FP.
As discussed above, the upstream vessels are traced multiple
times by the optimal path finding algorithm, the straightened
vessels have overlapping segments in which an NCP may be
detected multiple times. For the purposes of scoring and out-
put of the CADe marks, all true and false NCP candidate lo-
cations were transformed to the coordinate system of the orig-
inal cCTA volume and the NCP candidates marking the same
location were combined and counted only once. The FROC
curve was obtained as the fraction of TPs relative to the total
number of reference NCPs in the data set plotted as a function
of the number of FPs per cCTA volume.

3. RESULTS

Figure 2 showed an example of coronary arterial trees ex-
tracted by our MSCAR-RBG method. The MSCAR-RBG al-
gorithm tracked and segmented 166 coronary arterial trees
from the 83 cCTA volumes (LCA and RCA trees in each
case). After manual elimination of false positives and trac-
ing by the optimal path finding algorithm, a total of 729 ves-
sels were extracted and used for the detection of NCPs. Six
of the 120 NCPs were located in coronary arteries that failed
to be segmented and they were counted as false negatives in
estimation of sensitivity. Figure 5 showed an example of a
straightened coronary artery segment by CPR and cross sec-
tional planes intersecting an NCP.

The discriminatory ability of the individual features eval-
uated as the area under the ROC curve (AUC) ranged from
0.59 to 0.76. In each fold of the tenfold cross-validation train-
ing of the NCP discriminant function, the stepwise selection
procedure selected the most effective subset of features from
the available feature pool. Because of the difference in a frac-
tion of the samples of each training set, the stepwise proce-
dure could select a slightly different subset of features in each
fold. On average, six features were selected in the ten train-
ing folds. The most often selected features in the ten folds
included the radius differential, asymmetry, skewness of gray
levels in the CPR volume, variance of gray levels in the CPR
volume, variance of VSI, and variance of gradient direction
mapping. These features may be considered to be the most
robust features within the original feature set for the current
classification task. Figure 6 compared the box plots of these
six features in differentiating the NCPs from FPs.

In each fold, the discriminant function combined the fea-
tures selected in that fold with the learned weights, the aver-
age AUC value for the training sets in the ten folds was 0.87
± 0.01. The discriminant scores of the validation subsets in
the ten folds were combined into a full validation set for ROC
analysis and the AUC value was 0.85 ± 0.01.

With our TSG prescreening method, a prescreening sen-
sitivity of 92.5% (111/120) was achieved with a total of
1181 FPs (14.2 FPs/scan). Figure 7 illustrated the distribu-
tion of the FPs detected in coronary arteries of various diam-
eters. Using the luminal analysis and the NCP discriminant
score, the test result from tenfold cross validation showed a
reduction of the FP rates to 3.16, 1.90, and 1.39 FPs/scan at
sensitivities of 90%, 80%, and 70%, respectively. Figure 8
showed the FROC curve of the overall detection performance
in the validation set. Figure 9 compared the performances of
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our CADe system for detections of NCPs when the retrospec-
tive gating cases (47 cases) and the perspective gating cCTA
cases (36 cases) in the validation set were used to generate the
FROC curves separately.

4. DISCUSSIONS

NCP detection in cCTA is challenging because of their
subtle CT number differences from the surrounding tissues
and the large number of coronary arteries. Computer-aided
detection may be useful for assisting radiologists in NCP de-
tection in cCTA. In this study, we developed a new topological
soft-gradient prescreening method based on a transformation
of the radial gradient field on the coronary arterial wall to a
2D topological surface. Our NCP detection approach was de-
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signed to detect both positive and negative vessel remodeling.
In addition, we developed a luminal analysis for characteri-
zation of NCPs. Two image transformations were designed to
facilitate the statistical analysis of geometric and gray level
characteristics of the NCP candidates. A number of quan-
titative measures were extracted as the input predictor vari-
ables for a linear discriminant classifier to differentiate NCPs
from FPs. The output score from the linear discriminant has
good discriminatory ability for NCP but further improvement
is needed.

A number of factors in cCTA, including the small-size
coronary arteries, the noise and limited spatial resolution of
CT, and the low contrast of the fatty plaques, affect the visi-
bility of the borders between the vessel lumen, the NCP, and
the arterial wall and thus the detectability of NCPs by radi-
ologists or CADe systems. In this study, we reformatted the
coronary artery by CPR to facilitate vessel narrowing detec-
tion and feature analysis in the cross-sectional planes and de-
signed a topological soft gradient transformation to analyze
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the radial gradients on the object surface for prescreening
of NCP candidates. We performed feature analysis in 2-mm
vessel segments at the candidate locations. Feature extrac-
tion from NCPs in cCTA volume is challenging because some
feature measures such as those from texture analysis mod-
els may not be reliable in objects with few voxels. To eval-
uate the characteristics of the target objects, we developed
a luminal analysis in which 3D geometric features were ex-
tracted to quantify the shape information and gray-level fea-
tures to assess the density of the NCP candidates. In our cur-
rent system, we used an anisotropic diffusion filter to reduce
the noise and preserve the edge information. A sharpening
filter26 may be potentially useful for enhancing edges and fa-
cilitating detection. We will investigate the tradeoffs between
edge enhancement and noise for different techniques in future
studies.

Reliable tracking of coronary arterial trees is a critical step
for successful automated NCP detection. Our current CADe
system is not fully automatic due to the fact that we used
manually placed seed points at the origins of the LCA and
RCA trees to initialize vessel tracking by the MSCAR-RBG
method. In addition, since the purpose of the current study is
to evaluate the topological soft-gradient prescreening method
in combination with the luminal analysis, independent of the
performance of the coronary artery segmentation and track-
ing stage, we excluded the FPs from vessel tracking to avoid
the confounding effects of other factors. An automated seed
detection method is under development. Further work is un-
derway to improve the vessel segmentation and tracking tech-
niques and to automatically exclude false vessels in order to
fully automate the CADe system.

The accuracy of the vessel centerline has a strong impact
on the quality of the CPR volume and the vessel and the de-
tection of NCP candidates in the reformatted volume. Noise
and jaggedness of the centerline will lead to jaggedness in
the straightened artery and erroneous variations of the vessel
radius along the centerline. Since the prescreening of NCP
candidates depends on estimation of the vessel wall location
and to a certain extent the variations in the vessel radius, erro-
neous variations in the radius would cause false positives and
false negatives. Many factors can cause jaggedness and errors
in the centerline, including poor vessel contrast in the original
cCTA volume, noise, presence of calcified plaques, blurring
and partial volume effects on small vessels, sharp turns, and
bifurcation of the vessel. Further improvement in vessel cen-
terline localization is essential to improve the smoothness and
continuity of the CPR volume.

The image data used in this study was acquired with ECG
gating and reconstructed at multiple phases. We selected one
phase for NCP detection. Our CADe method can be affected
by the image quality of the selected cCTA phase. In our data
set, 15 out of 120 NCPs were rated as poor image quality by
radiologist (12 as excellent, 64 as good, and 29 as adequate)
due to factors such as low contrast filling, noisy background,
or blurring by cardiac motion. We are developing automated
methods for registration of coronary arterial trees from multi-
ple phases27 and selection of the phase of best image quality
for each arterial segment for NCP detection. The incorpora-

tion of the automated vessel segment selection method will
likely alleviate some of the problems and improve the accu-
racy of NCP detection.

To our knowledge, at present there is no simple answer to
the question of how high the sensitivity and specificity of a
CADe system should be in order for it to be clinically useful.
The acceptability of a CADe system in a given application
depends on many factors such as the radiologists’ experience
and accuracy on the specific disease which the CADe appli-
cation is designed for, whether the overall performance im-
proves when radiologist uses CADe in his/her clinical prac-
tice, and even the subjective preference of the individual
radiologists (for example, some radiologists prefer high sen-
sitivity even at the cost of lower specificity whereas others
prefer the opposite, as demonstrated by the wide range of op-
erating points in the ROC space in a study of the variability
in radiologists’ interpretation of mammograms.28 The perfor-
mance required of a CADe system (or similarly, where the
operating point of radiologists should be to maximize clinical
utility) is a complicated issue involving many factors such as
the tradeoffs among overdiagnosis, delayed diagnosis, health
care costs and morbidity for work-up, which in turn, are dis-
ease dependent. These issues are far beyond the scope of our
work. Automated NCP detection is still in the early stage. The
current study demonstrates the feasibility of our approach to
NCP detection and the various steps that need refinement. We
will continue to improve the performance of our CADe sys-
tem and conduct an observer ROC study to compare radiolo-
gists’ detection accuracy with and without CADe to assess its
potential usefulness in the future.

5. CONCLUSION

This study indicated the feasibility of our topological soft-
gradient prescreening method in combination with the lumi-
nal analysis for detection of NCPs in cCTA, including NCPs
causing positive or negative vessel remodeling. The accuracy
of vessel segmentation, tracking, and centerline identification
has a strong impact on the accuracy of NCP detection. Further
studies are needed to improve these techniques and reduce the
false positives of the CADe system.
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