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We are developing new computer vision techniques for characterization of breast masses on mam-
mograms. We had previously developed a characterization method based on texture features. The
goal of the present work was to improve our characterization method by making use of morpho-
logical features. Toward this goal, we have developed a fully automated, three-stage segmentation
method that includes clustering, active contour, and spiculation detection stages. After segmenta-
tion, morphological features describing the shape of the mass were extracted. Texture features were
also extracted from a band of pixels surrounding the mass. Stepwise feature selection and linear
discriminant analysis were employed in the morphological, texture, and combined feature spaces
for classifier design. The classification accuracy was evaluated using thA&,aneder the receiver
operating characteristic curve. A data set containing 249 films from 102 patients was used. When
the leave-one-case-out method was applied to partition the data set into trainers and testers, the
average tesA, for the task of classifying the mass on a single mammographic view was0.83,
0.84+0.02, and 0.87%=0.02 in the morphological, texture, and combined feature spaces, respec-
tively. The improvement obtained by supplementing texture features with morphological features in
classification was statistically significari€ 0.04). For classifying a mass as malignant or benign,

we combined the leave-one-case-out discriminant scores from different views of a mass to obtain a
summary score. In this task, the téstvalue using the combined feature space was6®02. Our

results indicate that combining texture features with morphological features extracted from auto-
matically segmented mass boundaries will be an effective approach for computer-aided character-
ization of mammographic masses. ZD01 American Association of Physicists in Medicine.
[DOI: 10.1118/1.1381548]
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[. INTRODUCTION cal features and patient age. Pohimanal® segmented
masses using an adaptive region growing algorithm, whose
) arameters were interactively adjusted. After mass segmen-
effective method to detect early breast cancer. Masses afgtion, features related to tumor shape and boundary rough-

important indicators of malignancy on mammograms. How ness were automatically extracted and used for the classifi-
ever, only a small percentage of masses found on mammao-_. . .
. : . cation of the lesions. They found that their tumor boundary
grams are malignant. Many benign conditions, such as cysts . . . . e
' roughness feature provided slightly inferior classification ac-

and fibroadenomas are detected as breast masses. Some be-

nign masses may look suspicious enough for the radiologis(f_uracy gompared to two experienced I’é;lelOngtS who spe-
to recommend biopsy. In three studies, it was found that oniy'@2€d in mammography. Rangayyanal.” used a measure
20%-30% of mammographically suspicious nonpalpablé)f the diffusion of a mass into the surrounding mammogram
breast masses that underwent biopsy were malidﬁénn f[erme(.j edge a-cutance,. as well as a number of shape factors,
order to reduce costs and patient discomfort, it is importanticluding Fourier descriptors, moments, and compactness, to
to reduce the number of benign biopsies without missing ang'assify masses. They found the edge acutance measure to be
malignant masses. Computer-aided diagnosis has the potepiperior to the other features extracted from the mass shape.
tial to assist the radiologists in the characterization of mamUsing the acutance measure alone, they were able to cor-
mographic massés. rectly classify 93% of masses in a database of 54 cases.
In recent years, many researchers have investigated tRéton et al® characterized the degree of spiculation and the
use of computer-extracted image features for classification diresence of fuzzy areas in the region surrounding a mass by
breast masses as malignant or benign. The features were ereans of polar and pseudopolar representations of this re-
tracted from the gray-level and morphological characteristicgion. Huoet al? extracted features related to the margin and
of the lesion. Kildayet al® extracted mass shapes using in-the density of the masses for classification. They designed
teractive gray-level thresholding, and classified them intcand tested a two-stage hybrid classifier consisting of a rule-
cancer, cyst, and fibroadenoma categories using morphologbased stage and an artificial neural network stage on a data

Mammography is currently the only proven and cost-
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set of 95 mammograms. The hybrid classifier achieved an IR
area under the receiver operating character{®©C) curve 60 m Beni
of 0.94 for their data set. Sahinet al. and Charet al. used 0 5 — M:ig:ant
texture features extracted from transformed images for char- &
acterization of breast mass€sand investigated the effect of 2 40 4
their computer-aided diagnosi€AD) method on radiolo- E
gists’ rating of breast masséghey showed that their CAD g 30 - -
method could significantly improve radiologists’ accuracy in w M
characterization of masses, and thereby might reduce unnec- g 20
essary biopsies. =z n

A second class of techniques for computer aided charac- Lhn m I sminemis A
terization of breast lesions use the computer to combine 04

mammographic features extracted by a radiologist into a ma- 1 2 3456 78 9 10

lignancy rating. Gettyet al. designed a classifier based on 12 MALIGNANCY RATING

mammographic features extracted by radiologists, and

showed that the classifier could substantially increase the rdic. 1. The distribution of the malignancy rating of the masses in our data
diologists’ diagnostic accurady.Lo et al. and Bakeret al. rsne;” b%’ai? experienced radiologist) very likely benign,(10) very likely
designed a neural network classifier based on BI-RADS fea- gnant

tures of the American College of Radiology, and the personal L .
and family history of the p?atieﬁ“?.‘l“ Thegieural netF\)/vork graphic interpretation. Out of the 249 mammograms, 223

o N . e . .. were acquired six months or less before biopsy, and 26 were
ﬁ;alsj\llf:l’; zggn;Ie?rrélgctinrt%E%Z?ézpecmmty athigh sensitiv acquired more than six months before biopsy. The probabil-

In the clinical evaluation of a mammographic mass itsity of malignancy of the biopsied mass on _each mammogram
shape and margin characteristics are very importaiie Wl\;al s Sr:;' I;ed r(?yec?r;\fjaé?om%%rgﬁhgsgalizll(t));( ;;Z?gzaqsnACt
previously introduced a rubber-band straightening transforrrg Q pprov lologl ) '9
to analyze the margin characteristics of a mdsk the mammographm appearande 1.0 (’T‘OS.‘ malignant mammo-
present study, our aim is to include features related to thgraphm appearance). The distribution of the malignancy

shape of the mass to improve the characterization accuracy;‘;tk'tﬂg ?;;ﬂenrgsts Zﬁz %griaﬁh;:svsv;: CS)CS:IIV; 'gvlze'?'thlé gr?tti?e
In order to obtain an accurate delineation of mass bound- 9 9 P

aries, we have developed a fully automated three-stage Seﬁqnge of sugpicion for malignancy, indicating that the malig-.
mentation method. The first stage of our segmentation gn_t or _benlgn featu_res Qf these_ rr_lasses_could n_ot be easily
method is based on a clustering technique that we previousId'St'ngu'Shed by radiologists. This is consistent with the fact

investigated. Clustering is used to find the general outline o?ﬁat all these masses had undergone biopsy. The size of the

the mass shape. This general outline is refined using an af1asses In our data set ranged from 5 to 29 (mean size

tive contour method in the second stage. In the third stag :12.'5 mm). Thg dlslznbutpn IC:)f th(; Sl'z‘? forbmallggarrqt ang

spiculations are detected and segmented based on image gdg—mgbn T“assfei IS S c;wn 'nl. 'g. 2. Itis o _ser_vell t at; €
dient directions. After segmentation, morphological feature IStri uyon of the size for malignant masses Is similar to that
are extracted from the mass shape, and are combined wi R benign masses.

the texture features that we have previously utilized for char-1 Ogg elar:;n;rggr?;z:n;vzer?Xg:gSIEIZZee%fW ith axl_lL(J)'(\)MSnTin[zjls-
acterization of breast masses. P 1oo K

Il. METHODS 0 ; '
35 = Benign
A. Data set . C—— Malignant
The mammograms used in this study were randomly se- § 30
lected from the files of patients in the Radiology Department ‘E‘ 25
at the University of Michigan who had undergone biopsy. All & 20
mammograms were acquired with dedicated mammographic g
systems. The criteria for inclusion of a mammogram in the o 15 o
data set were that the mammogram contained a biopsy- § 10
proven mass, and that approximately equal numbers of ma- z
lignant and benign masses were present in the data set. 5
Our data set consisted of 249 mammograms from 102 0 JI]-l:‘—
patients. The mammograms contained a total of 122 benign 0 3 6 9 12 15 18 21 24 27 30
and 127 malignant masses. The true pathology of the masses MASS SIZE (MM)

WaS. determined by biopsy and hls.t0|0glc analysis. Six of th%lG. 2. The distribution of the mass size for the 249 masses in our data set.
benign masses, and 63 of the malignant masses were chardfgss sizes were measured as the longest dimension of the mass by an

terized as spiculated by a radiologist experienced in mammaexperienced radiologist.
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Fic. 3. The block diagram for the mass segmentation algorithm. All images

Z,, for k#3, are binary images, with a nonzero value indicating an objectF'G' 4. The mass ROI, the initial contour, and the final contour of the active
pix’el. ' ' contour model for a spiculated malgs), (c), and(e)] and a nonspiculated
mass|(b), (d), and(f)].

4096 gray levels. The digitizer was calibrated so that gray . ) i
level values were linearly proportional to the optical densitySiZ€ Of the mass. This choice prevented most of the masses

(OD) within the range of 0.1 to 2.8 OD units, with a slope of from merging_into neighboring objects. After clustering, one
0.001 OD/pixel value. Outside this range, the slope of thd® Several objects would be segmented in the ROI. If more
calibration curve decreased gradually, with the OD range ex"@n One object was segmented, the largest connected object
tending to 3.5. The pixel values were linearly converted be!Vas selected. The selected object was then filled, grown in a
fore they were stored on the computer so that a high pixef°¢@ neighborhood, and eroded and dilated with morpho-
value represented a low optical density. Iog|cal_ operators. In the resultlng binary image, a nonzero
The location of the biopsied mass was identified by the/alué indicated an object pixel, and zero value indicated a
radiologist, and a region of intere$ROI) containing the background p|er..The !mplemgntatlon Qetalls of these steps
mass was extracted for computerized analysis. The size ¢f2ve been described in the literatdfeigures 4(a) 4(d)
the ROI was chosen such that the radiologist-marked lesioli’oW €xamples of a spiculated mass and a nonspiculated
and a band of about 50-pixel-wide surrounding background"ass and the results of the first stage segmentation.
were included in the ROI.
Before any processing, the ROIs were first processed witk- Active contour segmentation

a background correction algorithm. The goal of background  Ajthough initial mass segmentation resulted in reasonable
correction is to reduce the nonuniform background caused bbhass Shapes for most of the masses, further refinement was
the overlapping breast structures and the location of the lenecessary before detection and segmentation of the spicula-

sion on the mammogram. The nonuniform background is nofions. We used an active contour model for mass shape re-
related to mass malignancy, but may affect the segmentatiofjnement.

and feature extraction results used in our computerized An active contour is a deformable continuous curve,
analysis. Details and examples of our background correctiofyhose shape is controlled by internal for¢dee model, om

technique can be found in the literatdfe.’ priori knowledge about the object to be segmeptaatl ex-
_ ternal forces(the imagef° The internal forces impose a
B. Mass segmentation smoothness constraint on the contour, and the external forces

We used a fully automated segmentation method to exPush the contour toward salient image features, such as
tract the mass shape. The block diagram for our mass se§dges. To solve a segmentation problem, an initial boundary
mentation algorithm is shown in Fig. 3, and the individual 'S iteratively deformed so that the energy due to internal and

steps of the segmentation algorithm are explained in the folexternal forces is minimized along the contour. The energy
lowing. terms used in our implementation are described in the

literature?* We used the shape segmented by our first stage
segmentation method as the initial boundary. To minimize
The mass segmentation method employed in this studthe contour energy, we used an iterative algorithm proposed
started with the initial detection of a mass shape within aby Williams and ShaR? The details of our active contour
ROI using a pixel-by-pixelk-means clustering algorithm, model have been described elsewér€igures 4(c)-4(f)
which was discussed in detail in the literatdfé® The pa-  show the initial and final contours of the model for a spicu-
rameters of the segmentation algorithm were chosen so th&ted mass and a nonspiculated mass, respectively. A binary
the segmented region was slightly smaller than the appareinage, denoted by, in the schematic shown in Fig. 3, is

1. Initial mass segmentation

Medical Physics, Vol. 28, No. 7, July 2001



1458 Sahiner et al.: Improvement of mammographic mass characterization 1458

Border pixel to

Gradient image pixel line

line
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Segmented Segmented mass

Fic. 5. The definition of the search region for a given border pixel.

Fic. 6. The definition of the angular differenee

produced by filling the interior of the resulting contour, such
that any pixel within the object has a pixel value of 1, andIation likelihood map

and is denoted &y in Fig. 3. Figure
any background pixel has a pixel value of 0. y g g

7 shows the spiculation likelihood map for the two masses
' _ _ used in Fig. 4. The spiculation likelihood mdg is used for
3. Segmentation of spiculations both detecting whether a mass is spiculated, and for seg-

Spiculations on mammograms appear as linear structurdgenting the spiculations. To detect whether a mass is spicu-
with a positive image contrast, and they usually lie in a radiafated, a binary imagé, is produced by thresholdings, at a
direction to the mass. As a result of their linearity, the gra_threshoIdT. After initial experimentation, the value d@fwas
dient directions at image pixels on or close to the spiculatiorfhosen to be 0.85. This threshold was kept constant in the
are more or less in the same orientation relative to that of théegmentation algorithm for all images used in the study.
spiculation. Karssemeijeet al. have used this property for ~ After thresholding, all connected objects iy are de-
detecting spiculated lesions on mammografiis. this study, tected. The number of the objects is used as an estimate of
we developed a method for determining whether a pixthe number of possible spiculations. The ratio of the total
(i..jo) on the mass contour lies on the path of a spiculation@reéa of the objects iz, to the mass area is used as an
and to segment the spiculation if it does. indication of the relative size of the spiculations. The product

For a pixel (¢.jc) on the mass boundary, a search regionOf the two features abovénumber of objects and the size
S(i..j.) is defined as the set of all image pixels tiatlie ratio) is used as apiculation detection variabléo classify

outside the massii) have a positive contrastjii) are at a the mass as spiculated or nonspiculated. The choice of the
distance less than 4 mm from.(j.); and (iv) are within  threshold for this classification is discussed in Sec. IID. If

+m/4 of the normal to the mass contour &t j.) (Fig. 5). the mass is classified as spiculated, then the algorithm com-
At each image pixeli(j) in S(i.,j.), the obtuse angle® bines the binary image that represents the mass outline de-
between two lines is computed, where the first line is definedected by the active contour modely) and the binary image

by the gradient direction ati(j), and the second line joins
the pixel (i,j) to the mass boundary pixel(,j.) (Fig. 6).

We have used a method based on convolution with Gaussia
derivative$® for computing the gradients. The spiculation
measure(i.,j.) at a mass boundary pixelyj.) is defined

as the average value 6fin the search regio8(i.,j.). If the
pixel (i.,].) lies on the path of a spiculation, thenwill be
close ton/2 whenever the image pixel,{) is on the spicu-
lation, and hence the mean of the spiculation measure will be
high.

For the segmentation task, we computdd,,j.) for a
sequence of 30 contours. The first contour in the sequence i
that provided by the active contour model. The following
contours in the sequence are obtained by expanding the pre
vious contour by one pixel at a time, so thkas computed in
a 30-pixel-wide band around the mass. The resulting imageg_ 7. The spiculation likelihood maps for the spiculated and the nonspicu-
in the 30-pixel-wide band around is referred to as the spicutated masses shown in Fig. @) spiculated,(b) nonspiculated.

(@) ()
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Euclidean distance from the object’s centroid to each of its
edge pixels and normalized relative to the maximum radial
length for the object.In our previous studies, we found that
NRL mean, standard deviation, entropy, area ratio, and zero
crossing count were useful for discriminating between ob-
jects containing masses and normal tis¥ue.

The sixth feature, convexity, is defined as the ratio of the
area of the segmented object to the area of the smallest con-
vex shape that contains the object. If the object is convex, as
is the case with many benign masses, then this feature will
attain its maximum value of unity. If the object shape is
highly nonconvex, as is the case with many spiculated or
malignant masses, then the value of this feature will be
Flc_s. 8. The result of the final s_egmentation f(_Jr the spiculated gnd the nonism?::é seventh feature, Fourier descriptBD), is based on
spiculated masses shown in Figs. 4 andajspiculated(b) nonspiculated. the Fourier transform of the object boundary sequence. To
compute the Fourier transform of the object boundary se-

that represents the result of thresholdi@g)(to segment the guence, thex andy coordinates of each border pixsi is
spiculations(Fig. 3). If the mass is classified as nonspicu-represented as a complex numbefm)=x(m)+jy(m),
lated, then the output of the segmentatiorzis Figure 8 where n<N, andz(m) is a periodic sequence with period

shows the result of spiculation detection and segmentatiol- Let c(k) denote the Fourier coefficients of the periodic
for the masses used in Figs. 4 and 7. sequencez(m), and letd(k) be a periodic sequence with

periodN, defined in the interval B<N as

C. Feature extraction 0 k=0
d(k)= 1
1. Extraction of morphological features (k) lc(k)/c(1)] k#0. @

Mahgn_ant masses tend to have_more_ wrggular coNtours - .an be shown thatd(k) is independent of rotation,
than benign masses. In addition, spiculation is a strong indi-

. . translation, and scaling of the object, and the choice of the
cation for malignancy. Therefore, features related to the seqitial point 2(0) on the object contour sequerieObjects

mented mass shape are expected to yield useful mforma’uovr\}i,[h irregular contours have more high-frequency compo-

for characterization of breast masses. In this study, thlrteeHents than those with smooth contours. The following sum-

morphological features were extracted from the final mas?nary Fourier descriptor meas@fewhich emphasizes low-

outline. A list of these thirteen features, as well as their ac;

curacy in classifying each mass in our data set as mali nafrequency components ofi(k) is therefore useful in
Yy g & . . an I?Jtiscriminating between shapes with smooth and irregular
or benign, are shown in Table I. In this section, we describe

) Iy contours
these morphological features. The classification accuracy is !
discussed in Sec. IV. SN2 21k 0d (KK
The first five morphological features listed in Table | are FD= > N2 d(k)
k=—N/2+1k#0

based on the normalized radial lengttRL), defined as the

)

For computational efficiency, all contours were interpo-

TasLE I. The list of the morphological features used in this study, and thelated toa large 'megral power of 2, ](22 before the compu-

areaA, under the ROC curve when each feature is used alone for classifitation of the Fourier series.
cation. The remaining six features were also shown to be useful

in discriminating between objects containing masses and

Morph‘;'ga'ga' feature 2?;5:2232% normal tissué® These features include the perimeter, area,

i perimeter-to-area ratio, circularity, rectangularity, and con-
Fourier descriptor 0.82 trast of the object. The definition of these features can be
Convexity 0.79 found in the literaturé®
Rectangularity 0.75
Perimeter 0.75
NRL mean 0.72 2. Extraction of texture features
Contrast 0.71 . . .
NRL entropy 0.69 _ The texture of the region sgr.rou_ndmg_the mass can y!eld
Circularity 0.67 important features for its classification. Since possible spicu-
NRL area ratio 0.66 lations and the gradient of the opacity caused by the mass are
NRL standard deviation 0.65 approximately radially oriented, the texture of the region sur-
NRL zero crossing count 0.64 rounding a mass is expected to have a radial dependence.
Perimeter-to-area ratio 0.63 . .
Area 0.60 However, most texture extraction methods are designed for

texture orientations in a uniform directighorizontal, verti-
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TasLE II. The list of the texture features used in this study, and the Areander the ROC curve when each
feature is used alone for classification. For each measure, the randg \alues for different pixel-pair
distances and directions is shown.

Spatial gray-level dependence Classification Run-length statistics Classification
(SGLD) feature measure accuracyA, (RLS) feature measure accuracyA,
Difference average 0.52-0.66 Long runs emphasis 0.63-0.66
Difference entropy 0.53-0.66 Run percentage 0.59-0.65
Inverse difference moment 0.50-0.66 Gray level nonuniformity 0.59-0.62
Difference variance 0.52-0.65 Run length nonuniformity 0.55-0.57
Inertia 0.53-0.65 Short runs emphasis 0.50-0.56
Correlation 0.50-0.61

Inf. measure of correlation 1 0.50-0.61

Inf. measure of correlation 2 0.50-0.59

Energy 0.54-0.59

Entropy 0.54-0.58

Sum variance 0.52-0.58

Sum entropy 0.51-0.57

Sum average 0.55-0.56

cal, or at a certain angle between these two directioftsbe  classifier accuracy, we considered both film-based and case-
able to extract meaningful texture features from the regiorbased methods. In the film-based method, the purpose was to
surrounding a mass, we have designed a rubber bandassify the mass on each view as malignant or benign. In the
straightening transfornfRBST) that maps a band of pixels case-based method, the purpose was to classify each mass as
surrounding the mass onto the Cartesian pl@ectangular malignant or benign, using the information from all available
region)%2°30|n the transformed image, the border of the views. To merge the information from different views of a
mass is expected to appear approximately as a horizont#sion, we considered two methods. In the first method, the
edge, and spiculations are expected to appear approximatedgores from different views were averaged. In the second
as vertical lines. method, the maximum malignancy score among all views
The mass outline produced by the first stage segmentatiomas used as the score of the mass. The second method cor-
discussed previously is used for defining the RBST imageresponds to calling a mass malignant if it appears to be ma-
The mass object produced by this stage is usually slightlyignant on any view, whereas the first method gives equal
smaller than what can be visually discerned on the mammoweight to each view to predict malignancy.
gram. Thus, a thin border region along the mass margin is Stepwise feature selection and linear discriminant analysis
included in the RBST image. Important texture and gradientvere used for classifier design, and &hfold cross-
information at the mass margin is therefore included in thevalidation resampling scheme was used for partitioning the
analysis of the region surrounding the mass. A 40-pixel-widedata into design and test sets. In a first set of experiments, we
region, corresponding to a 4 mm band is used to determinased tenfold cross validation. The data set was partitioned
the RBST image. into ten random partitions such that all mammograms from
The texture features extracted from the RBST images inene patient were grouped into the same partition. Nine of the
clude 13 texture measures, each calculated at 4 directiormrtitions were used for feature selection and classifier train-
and 10 distances, from the spatial gray-level dependendag, and the remaining partition was used for testing. The
(SGLD) matrices, and 5 run-length statisti€(RLS) mea-  purpose of grouping all mammograms of one patient into the
sures, each calculated at four directions, as described in ogsame partition was to ensure that the test data were indepen-
previous work? A list of the SGLD and RLS texture mea- dent from training. Without this type of partitioning, one
sures is shown in Table II. Also shown in Table Il are themammogram from a patient may be used for training a clas-
classification accuracies when each measure is used alonedidier that will be tested on another mammogram of the same
distinguish between malignant and benign ROIls. For conpatient, which may bias the test results because the training
ciseness, the range of classification accuramyer four di- and test sets may not be completely independent. The test
rections and ten distances for SGLD measures, and over fopartition was rotated in a round-robin manner so that all
directions for RLS measure)f each texture measure is partitions served as a test partition once and only once. The
shown. The definition of these featute®’ and the param- discriminant scores were analyzed using ROC methodology,
eters used in this study can be found in the literatfire. using theLABROC program of Metzet al®® For each test
partition, the classification accuracy was evaluated as the
areaA, under the ROC curve. A meah, value for the data
The classifier in this study was designed to classify theset was obtained by averaging these Agrvalues. In a sec-
masses on each available view. The same mass imaged ond set of experiments, we used a leave-one-case-out method
the CC and MLO views, and any additional views receivedfor data partitioning. This method is similar to ten-fold cross
different classification scores for each view. To assess thealidation discussed previously, with the differences that, in

D. Classification

Medical Physics, Vol. 28, No. 7, July 2001



1461 Sahiner et al.: Improvement of mammographic mass characterization 1461

the leave-one-case-out method, each partition consisted of ; g
films from one and only one patient, and that the scores from
all ROIs were accumulated for the ROC analysis. Since there
were 102 patients, this corresponded to 102-fold cross vali-
dation. The statistical significance of the difference between
ROC curves obtained with classifiers using different feature
spacegtexture, morphological, or combingdas tested us-
ing the cLABROC program of Metzet al3

Classifier training consisted of three stages, and was
based on the training set alone for all of these three stages.
The first stage was related to mass segmentation. As dis-
cussed in Sec. Il B, the decision to classify a mass as spicu- Jl o
lated or nonspiculated was based on thresholding a spicula- 0 1 2 3 4 5 6
t_ion_ detection variable obtai_ned from the spicula’_[ion SPICULATION DETECTION STATISTIC
likelihood map. The value of this threshold was determined
from the training set such that the sum of correct decisiorf'e- 9. The distribution of the spiculation detection variable for the spicu-

. . lated and the nonspiculated masses.

percentages for the spiculated and nonspiculated masses was
maximized for the training set. Classification of a mass as
spiculated or nonspiculated determined if the spiculation segA. Tenfold cross validation
mentation step would be applied to the masse Fig. 3).

. b bp asse Fig. 3) The average number of selected features was 2, 10, and
This affected the morphological features extracted and se-, . ) .

4 in the morphological, texture, and combined feature

lected in the second stage of classifier training. The secon]d

stage of the training involved stepwise feature selecidh, Spaces. The resultingy, values for each of the ten partitions

which has been used for classifier design in many of oul® shown in Table lll. It is observed that combining the

CAD application§°'17'37'388tepwise feature selection itera- morphological and texture feature spaces improves the clas-

tively enters features into or removes features from the rouSiﬁCation accuracy. The averagg value for the ten parti-
y g ﬁons in this study was 0.85 for either the texture or the

of selected features based on a feature selection criterion. In . . :
. . o morphological features used alone. Using the combined fea-
this study, the feature selection criterion was based on th

Wilks’ lambda?®® obtained using the trainers alone. The num-{eure space, the average tésf value for the ten partitions

ber of features in stepwise feature selection was controlled® ached 0.89.
by the F-to-enter andF-to-remove thresholds, which were B. Leave-one-case-out
evaluated over a range from 5.0 to 2.0. In the third stage, the’
coefficients of the linear classifier were determined based on The average number of selected features was 4, 8, and 10
the training set. By making these three decisions independein the morphological, texture, and combined feature spaces.
of the test set, we aimed at improving the generalizability ofThe resultingA, values were 0.84+0.02, 0.83=0.02, and
our classification results to unknown cases in the patien®.87+0.02 in the morphological, texture, and combined fea-
population. ture spaces, respectively. The ROC curves for classification
in these three feature spaces is shown in Fig. 10. For classi-
fication in the combined feature spack, € 0.87+0.02), the
distribution of the classifier scores for the 249 masses is
shown in Fig. 11. This distribution represents film-based
Figure 9 shows the distribution of the detection variableclassification results, in the sense that the mass on each film
used for the classification of a mass as spiculated or non-
spiculated. It is observed that by properly ChQOS'”g therABLE Ill. The testA, values for each partition using linear discriminant
threshold, more than 30%60/180) of the nonspiculated analysis with morphological, texture, and combined feature spaces.
masses can be correctly identified without misclassifying any
spiculated masses. At the selected threshold for the spicula-Parition  Morphological Texture Combined

mmmm Nonspiculated
C— Spiculated

NUMBER OF MASSES

[ll. RESULTS

tion detection variablésee the earlier paragrapfy% (53/ number feature space  feature space _ feature space
69) of the spiculated masses and 78%40/180)of the non- 1 0.90+0.06 0.92+0.06 0.92+0.07
spiculated masses were correctly identified. Since there are 2 0-92i0-26 0.98-0.03 1-020 000
six spiculated but benign masses in our data set, we did not 2 8'23;8'02 8'32;8'82 8'26;8'82
use this variable for the classification of the masses as ma- ¢ 0.94+0.05 0.80+0.16 0.92+0.07
lignant or benign. 6 0.82+0.08 0.66+0.12 0.85+0.08
For both the tenfold cross validation and leave-one-case- 7 1.000 000 1.000 000 0.96.04
out data partitioning methods, we investigated the classifica- g g-gzig-ig 8-%1’8-18 8-;‘%8-5
: : : : . .64=0. .73=0. .74=0.
tion of the masses as malignant or benign in the morphologi- 10 0.9340.05 0.9140.06 0.98+0.03

cal feature space alone, texture feature space alone, and R, age 0.85 0.85 0.89
combined morphological and texture feature space.
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Fic. 10. ROC curves for classification of masses in the morphological, DISCRIMINANT SCORE
texture, and combined feature spaces.
Fic. 12. The distribution of the case-based discriminant scores for leave-
one-case-out classification of malignant and benign masses, using the com-

is given a separate score, as discussed in Sec. Il D. In prapined feature space. The scores from the same mass of the same year have
tice, radiologists read different views of the same patienPee" veraged into a single score for the mass.
together. To simulate this condition, we combined the dis-

criminant scores of different views of the same mass froNye effective in classifying breast masses as malignant or be-
the same year to obtain a single case-based score for eagy, \when tenfold cross validation was used for data parti-
mass. This analysis resulteq in 127 average scores for 1q%ning, the average classification accuracy with morphologi-
patle_nts, because some patients had mammograms Spannily featyres alone was equal to that with texture features
multiple years or from both breasts, and masses in dlfferenémne @,=0.85). The average classification accuracy im-
breasts or from different years were averaged separately. ASoyed toA,=0.89 when texture and morphological features
described in Sec. 11D, we compared using either the maxijyere combined. In the tenfold cross-validation method, the
mum malignancy score or the average malignancy score 4ggi o values for each partition were computed separately.
the combination method. These two methods both resulted i¥his meant that there were, on average, 24.9 films in each
ROC curves withA,=0.91. The distribution of the case- aqt partitioning. Due to the small number of cases used for
based scores using the averaging method is shown in Fig. 12,0 5,ting the test ROC curves, the standard deviations of
IhonZROC curves for f|Im-ba§¢d _C|aSSIflcatli)l4\z(:O.87 the A, values were large, relative to those obtained using the
+0.02) and case-based classificatioh,£0.9120.02) are  |o4ye-one-out method, as observed from Table Ill. As a re-

shown in Fig. 13. sult, the difference between the classifiers trained with the
three different feature spaces did not reach statistical signifi-
IV. DISCUSSION cance for any of the ten partitions shown in Table Ill. For the

Our results indicate that accurate segmentation of mameave-one-case-out method, the scores from all ROIs were
mographic masses and the use of morphological features caccumulated for the ROC analysis, as explained previously.
This meant that the classification scores for all films were

analyzed to obtain the test ROC curve. In this case, the clas-

35 sifier based on the combined feature space was significantly
Il Benign
o 30 71 7 Malignant
bu) 25 1.0
7]
s 4
= 20 S 0.8 1
i =
g
o
5s £ 06
m w
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Fic. 11. The distribution of the film-based discriminant scores for leave- FALSE-POSITIVE FRACTION

one-case-out classification of malignant and benign masses, using the com-

bined feature space. The score of a mass on each film is considered indets. 13. Case-based and film-based ROC curves for classification of malig-
pendently. nant and benign masses.
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more accurate than that based on the texture feature space 60 . 1
alone (=0.04). The difference between the classifiers s Benign
based on the combined and morphological feature spaces did , 50 C— Malignant
not reach statistical significance. 4
We previously introduced a rubber-band straightening £ 40 -
transform to analyze the margin characteristics of a massin a E
texture feature spacé.In this work, we developed a new 2 30
three-stage segmentation method that consists of clustering, 4 20
active contours, and spiculation detection; and evaluated the £
effectiveness of combining the morphological features ex- < 10
tracted from the segmented mass and texture features for
improving computerized breast mass classification. The mor- 0 q_l
phological features used in this study were not nGv&f® 0.5 0.6 0.7 0.8 0.9
and we had previously attempted to combine these features FOURIER DESCRIPTOR

with texture features. However, with our previous mass segl-: 14, The distribution of the Fourier descrintor feature f i and
. . 1G. . e daistripution o € Fourier descriptor reature 1or malignant an
mentation method, we were unable to improve our texture; P 9

o . . A . benign masses.
based classification results by including morphological fea-
tures. This is a strong indication that the quality of
segmentation is very important for morphological feature ex-morphological features alone, the contrast feature was se-
traction. lected, in addition to FD, for all of the ten partitions shown
The three-stage segmentation method used in this studp the first column of Table Ill. The classification accuracy of
adds two new stages to our previous segmentation méthodthe contrast feature is lower than those of several other fea-
Previously, the clustering method was successful in segmentures in Table |. However, contrast is the only feature in
ing the main portion of the mass from the background. How-Table | that makes use of the gray scale information in the
ever, one major limitation of clustering-based segmentatioimage. Therefore, compared to other morphological features,
is that, even for well-circumscribed masses, the segmenteitt seems to be able to introduce more complemen-
shape contains many irregularities due to structured or rartary, and useful, information into the classifier when com-
dom noisegsee Fig. 4(d)]. Another limitation is that, to pre- bined with FD.
vent merging with neighboring structures, the clustering pa- The ability of each texture measure to discriminate be-
rameters have to be chosen so that the segmented objecttigeen malignant and benign masses is shown in Table Il. It is
slightly smaller than the object that would visually be deter-observed that when used alone, the texture features are less
mined for a majority of the masses. Morphological featureseffective than morphological features in classifying the
extracted from such a segmented mass may not adequatetyasses in our data set. However, when texture features are
characterize the true morphology of the mass. The first newombined using a linear classifier, the classification accuracy
segmentation component of this study is the use of an activis comparable to classification using a linear classifier with
contour model for refining the clustering-based segmentatiomorphological features alone. This may be an indication that
results. The second new component is the use of image gr#he linear classifier is not as effective for combining these
dient directions for detecting and segmenting spiculationsmorphological features as for combining the texture features.
As shown in Fig. 9, the spiculation detection variable de-We believe that a major reason for this is the distributions of
signed in this study was able to provide some separatiothe morphological features. It is known that the linear clas-
between the spiculated and the nonspiculated masses. Whesifier is optimal for features with multivariate Gaussian class
the spiculation detection variable was used as the decisiodgistributions with equal covariance matrié8sDue to the
variable to classify the masses as spiculated or nonspicuhresholding operation in segmentati¢see the last para-
lated, the ared, under the ROC curve was 0.85. However, graph of Sec. Il B, and Fig. 3), the distributions of the mor-
this variable could not be directly used for the classificationphological features in this study are very different from be-
of the masses as malignant or benign, because almost haifg Gaussian. As an example, the distribution of the Fourier
(64/127)of the malignant masses were visually characterizedlescriptor feature is shown in Fig. 14. It can be observed that
as nonspiculated by a radiologist experienced in mammothe distributions of both the benign and the malignant masses
graphic interpretation. follow a bimodal distribution, very likely with the smaller
The ability of each morphological feature to discriminate peak corresponding to masses classified as spiculated, and
between the ROIs containing malignant and benign masses ke larger peak corresponding to those classified as honspicu-
shown in Table | in terms of the ared, under the ROC lated. It is known that other types of classifiers, such as arti-
curve. TheA, values indicate the accuracy of classifying theficial neural networks or hybrid classifiers, perform better
individual 249 ROIs as malignant or benign. The featurewith non-Gaussian distributions. We will investigate the per-
with the highest classification accuracy was the Fourier deformance of other types of classifiers in these feature spaces
scriptor(FD). The stepwise method selected FD for all of thein the future.
ten partitions shown in both the first and the last columns of In a previous study, we had used the same texture features
Table Ill. When feature selection was performed using theas those in this study, and had obtained an ROC area of 0.92
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on a data set containing 238 mas&@he main reason for set of prior mammograms is collected, it will be interesting
the lower accuracy with texture features in this study is theand important to evaluate whether the computer classifier
difference of the feature selection methods used in the twaan predict the malignancy of the “unsuspected” masses in
studies. In our previous study, the features were selected uearlier years.

ing the entire data set, as have been done in most studies in

the CAD I.iteratu.re“.l‘%Af_ter feature selection, the data set \; concLUSION

was patrtitioned into training and test sets for formulation of

the linear discriminant function. In the current study, both ~We have developed a fully automated three-stage segmen-
feature selection and classifier coefficient determination werétion method for delineation of mass boundary and detec-
performed on the training set. We have recently compare§®n and segmentation of spiculations. Morphological fea-
the effect of these two different approaches to feature seledUres describing the shape of the mass and texture features
tion on classifier performance prediction using a Montedescribing the margin characteristics of the mass were ex-
Carlo simulation stud§® We have found that, when feature {racted from the segmented mass and a band of pixels sur-
selection is performed using the training set alone, the preiounding the segmented mass, respectively. The data set was
dicted test performance of the classifier is lower, in generalPartitioned using a tenfold cross validation and a leave-one-
than that of a classifier trained with an infinite number of¢ase-out method for training and testing a classifier with
samples, as can be expected when a classifier is design&PWise fez_iture selectlo_n followed by linear dlscr|m|nan_t_
with a finite design sample set. However, when feature Seane_llyss. Using the combined feature space, the test classifi-
lection is performed using the entire set of available sample§ation accuracy was,=0.89 andA,=0.87 for the tenfold
(training and test sets together), the predicted test perfofSr0SS validation and the .I(.eavg—one—case-out methqu, respec-
mance can be higher or lower than that of a classifier trainelVely. Case-based classification scores were obtained by av-
with an infinite number of samples, depending on the num&raging the test scores of the same mass from the same year.
ber of available samples, the number of features, and th&h€ area under the ROC curve for case-based classification
correlation between the features. The fact that the predictef@SA;=0.91. Our results indicate that combining morpho-
performance of the classifier designed with a finite sampldogical features extracted from the automatically segmented
set can exceed that with an infinite sample set in the lattefass boundary with texture features can significantly im-

case indicates that feature selection using the entire availabRfove the accuracy for computer-aided characterization of

sample set can result in an overly optimistic prediction of theMammographic masses.
classifier performance. In studies with a clinical data set,

there is no knowledge of the true class distributions, so it IS ACKNOWLEDGMENTS
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