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Strong convergence to the homogenized limit of elliptic equations
with random coefficients II

Joseph G. Conlon and Arash Fahim

Abstract

Consider a discrete uniformly elliptic divergence form equation on the d � 3 dimensional lattice
Zd with random coefficients. In Conlon and Spencer [Trans. Amer. Math. Soc., http://www.
math.lsa.umich.edu/∼conlon/paper/hom10.pdf], rate of convergence results in homogenization
and estimates on the difference between the averaged Green’s function and the homogenized
Green’s function for random environments which satisfy a Poincaré inequality were obtained.
Here, these results are extended to certain environments in which correlations can have arbitrarily
small power law decay. These environments are simply related via a convolution to environments
which do satisfy a Poincaré inequality.

1. Introduction

In this paper, we continue the study of solutions to divergence form elliptic equations with
random coefficients begun in [3]. In [3], we were concerned with solutions u(x, η, ω) to the
equation

ηu(x, η, ω) + ∇∗a(τxω)∇u(x, η, ω) = h(x), x ∈ Zd, ω ∈ Ω, (1.1)

where η > 0, Zd is the d-dimensional integer lattice and (Ω,F , P ) is a probability space
equipped with measure-preserving translation operators τx : Ω → Ω, x ∈ Zd. In (1.1), we take
∇ to be the discrete gradient operator defined by

∇φ(x) = (∇1φ(x), . . . ,∇dφ(x)), ∇iφ(x) = φ(x+ ei) − φ(x), (1.2)

where the vector ei ∈ Zd has 1 as the ith coordinate and 0 for the other coordinates, 1 � i � d.
Then ∇ is a d-dimensional column operator, with adjoint ∇∗ which is a d-dimensional row
operator.

The function a : Ω → Rd(d+1)/2 from Ω to the space of symmetric d× d matrices satisfies
the quadratic form inequality

λId � a(ω) � ΛId, ω ∈ Ω, (1.3)

where Id is the identity matrix in d dimensions and Λ, λ are positive constants.
It is well known [8, 12, 15] that if the translation operators τx, x ∈ Zd, are ergodic on

Ω, then solutions to the random equation (1.1) converge to solutions of a constant coefficient
equation under suitable scaling. Thus, suppose that f : Rd → R is a C∞ function with compact
support and, for ε satisfying 0 < ε � 1, let uε(x, η, ω) be the solution to (1.1) with h(x) =
ε2f(εx), x ∈ Zd. Then uε(x/ε, ε2η, ω) converges with probability 1 as ε→ 0 to a function
uhom(x, η), x ∈ Rd, which is the solution to the constant coefficient elliptic partial differential
equation (PDE)

ηuhom(x, η) −∇ahom∇uhom(x, η) = f(x), x ∈ Rd, (1.4)
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where the d× d symmetric matrix ahom satisfies the quadratic form inequality (1.3). This
homogenization result can be viewed as a kind of central limit theorem, and our goal in [3]
was to show that the result can be strengthened for certain probability spaces (Ω,F , P ).
In particular, we extended a result of Yurinskii [14] which gives a rate of convergence in
homogenization,

sup
x∈εZd

〈|uε(x/ε, ε2η, ·) − uhom(x, η)|2〉 � Cεα for 0 < ε � 1. (1.5)

Yurinskii’s assumption on (Ω,F , P ) is a quantitative strong mixing condition. To describe it,
we first observe that any environment Ω can be considered to be a set of fields ω : Zd → Rn with
n � d(d+ 1)/2, where the translation operators τx, x ∈ Zd, act as τxω(z) = ω(x+ z), z ∈ Zd

and a(ω) = ã(ω(0)) for some function ã : Rn → Rd(d+1)/2. Now let χ(·) be a positive decreasing
function on R+ such that limq→∞ χ(q) = 0. The quantitative strong mixing condition is given
in terms of the function χ(·) as follows: For any subsets A,B of Zd and events ΓA, ΓB ⊂ Ω,
which depend, respectively, only on variables ω(x), x ∈ A, and ω(y), y ∈ B, then

|P (ΓA ∩ ΓB) − P (ΓA)P (ΓB)| � χ

(
inf

x∈A,y∈B
|x− y|

)
. (1.6)

In the proof of (1.5), he requires the function χ(·) to have power law decay, that is,
limq→∞ qβχ(q) = 0 for some β > 0. Evidently, (1.6) trivially holds if the ω(x), x ∈ Zd,
are independent variables. Recently, Caffarelli and Souganidis [2] have obtained rates of
convergence results in the homogenization of fully nonlinear PDE under the quantitative strong
mixing condition (1.6). In their case, the function χ(q) is assumed to decay logarithmically in
q to 0, and correspondingly the rate of convergence in homogenization that is obtained is also
logarithmic in ε. In their methodology, a stronger assumption on the function χ(·), for example,
power law decay, does not yield a stronger rate of convergence in homogenization.

In [3], we followed an approach to the problem of obtaining rates of convergence in
homogenization pioneered by Naddaf and Spencer [11]. They obtained rate of convergence
results under the assumption that a Poincaré inequality holds for the random environment.
Specifically, consider the measure space (Ω̃, F̃) of vector fields ω̃ : Zd → Rk, where F̃ is the
minimal Borel algebra such that each ω̃(x) : Ω̃ → Rk is Borel measurable, x ∈ Zd. For any C1

function G : Ω̃ → C, we denote by dω̃G(y; ω̃) = ∂G(ω̃)/∂ω̃(y), y ∈ Zd, its gradient. Thus, for
fixed ω̃ ∈ Ω̃, the gradient dω̃G(·; ω̃) is a mapping from Zd to Ck, which has Euclidean norm
‖dω̃G(·; ω̃)‖2 in �2(Zd,Ck). A probability measure P̃ on (Ω̃, F̃) satisfies a Poincaré inequality
if there is a constant KP̃ > 0 such that

Var[G(·)] � KP̃ 〈|dω̃G(·; ω̃)‖2
2〉 for all C1 functions G : Ω̃ −→ C. (1.7)

In [11], it is assumed that P̃ is translation invariant, that is, the translation operators
τx, x ∈ Zd, acting by τxω̃(z) = ω̃(x+ z), z ∈ Zd, are measure preserving, and that the Poincaré
inequality (1.7) holds. Rate of convergence results are then obtained provided a(ω) = ã(ω̃(0))
in (1.1), where the function ã : Rk → Rd(d+1)/2 is C1 and has bounded derivative, in addition
to satisfying (1.3).

Gloria and Otto [6, 7] have developed much further the methodology of Naddaf and Spencer,
under the assumption that the environment satisfies a weak Poincaré inequality. This weak
Poincaré inequality holds for an environment in which the variables a(τxω), x ∈ Zd, are
independent, whereas the inequality (1.7) in general does not. These papers are concerned
with establishing an optimal rate of convergence for finite length scale approximations to the
homogenized coefficient ahom of (1.4). The recent paper [5] uses a similar approach to obtain
optimal estimates on the variance of uε(x/ε, ε2η, ·).

If the translation invariant probability measure P̃ is Gaussian, then the measure
is determined by the 2-point correlation function Γ : Zd → Rk ⊗ Rk defined by Γ(x) =
〈ω̃(x)ω̃(0)∗〉, x ∈ Zd, where ω̃(·) ∈ Rk is assumed to be a column vector and the superscript
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∗ denotes adjoint. Defining the Fourier transform of a function h : Zd → C by

ĥ(ξ) =
∑

x∈Zd

h(x) eix·ξ, ξ ∈ [−π, π]d, (1.8)

one can easily see that the Poincaré inequality (1.7) holds if and only if Γ̂ ∈ L∞([−π, π]d).
Hence, if Γ(·) is summable on Zd, then (1.7) holds. Suppose now that, for some β > 0, the
function Γ(x) � 1/|x|β for large |x|. Then the inequality (1.6) holds for a function χ(·) with
power law decay β, but the Poincaré inequality does not hold in general unless β > d.

The main goal of the present paper is to show that the approach to obtaining rate of
convergence results in homogenization based on using the Poincaré inequality can be extended
to some environments for which Γ(·) is not summable. In particular, they include certain
Gaussian environments for which Γ(x) � 1/|x|β at large |x| and β > 0 can be arbitrarily
small. Hence, our approach bridges a gap between the Yurinskii criterion (1.6), which requires
only β > 0, and the Naddaf–Spencer criterion (1.7), which corresponds to β > d. The idea
is to consider environments defined by a(ω) = ã(ω(0)), where ω : Zd → Rn is a convolution
ω(·) = h ∗ ω̃(·), ω̃ ∈ Ω̃. The function h : Zd → Rn ⊗ Rk from Zd to n× k matrices is assumed
to be q summable for some q < 2, and the probability space (Ω̃, F̃ , P̃ ) to satisfy the Poincaré
inequality (1.7).

In [3], we proved rate of convergence results for a massive Euclidean field theory environment
(Ω̃, F̃ , P̃ ). The environment consists of fields φ : Zd → R with measure P̃ formally given by

exp

⎡
⎣− ∑

x∈Zd

V (∇φ(x)) +
1
2
m2φ(x)2

⎤
⎦ ∏

x∈Zd

dφ(x)

/
normalization, (1.9)

where V : Rd → R is a uniformly convex function and m > 0. Then (Ω̃, F̃ , P̃ ) with measure
(1.9) satisfies the inequality (1.7). In the Gaussian case when V (·) is quadratic, one has that
the correlation function 〈φ(x)φ(0)〉 = Gm2(x), x ∈ Zd, where the Green’s function Gν(·) is the
solution to

νGν(x) + ∇∗V ′′∇Gν(x) = δ(x), x ∈ Zd. (1.10)

Hence, 〈φ(x)φ(0)〉 decays exponentially in |x| as |x| → ∞. Taking ω(·) = h ∗ φ(·) for some
h ∈ �q(Zd), we have that

Γ(x) = 〈ω(x)ω(0)〉 =
∑

y,y′∈Zd

h(x− y)h(−y′)Gm2(y − y′), (1.11)

and so if 1 � q � 2, then 〈ω(0)2〉 <∞. If β > 0 and h(z) = 1/[1 + |z|d/2+β/2], z ∈ Zd, then
h ∈ �q(Zd) for q > 2d/(d+ β). We easily see from (1.11) that Γ(x) � |x|−β as |x| → ∞.

The limit as m→ 0 of the measure (1.9) is a probability measure P̃ on gradient fields
ω̃ : Zd → Rd, where formally ω̃(x) = ∇φ(x), x ∈ Zd, a result first shown by Funaki and Spohn
[4]. This massless field theory measure satisfies a Poincaré inequality (1.7) for all d � 1. In
the case d = 1, the measure has a simple structure since then the variables ω̃(x), x ∈ Z, are
independent and identically distributed. For d � 3, the gradient field theory measure induces
a measure on fields φ : Zd → R which is simply the limit of the measures (1.9) as m→ 0. For
d = 1, 2, the m→ 0 limit of the measures (1.9) on fields φ : Zd → R does not exist. If d � 3,
then 〈φ(x)φ(0)〉 � |x|−(d−2) as |x| → ∞ for the massless field theory. Observe now that

φ(x) =
∑

y∈Zd

[∇G0(x− y)]∗∇φ(y) = h ∗ ω̃(x), x ∈ Zd, (1.12)
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where G0(·) is the Green’s function for (1.10) with ν = 0, V ′′ = Id. Since h : Zd → Rd in (1.12)
is q summable for any q > d/(d− 1), the environment of massless fields φ : Zd → R with d � 3
is of the form φ = h ∗ ω̃, where h : Zd → Rd is q summable for some q < 2 and (Ω̃, F̃ , P̃ ) satisfies
the Poincaré inequality (1.7).

Rather than attempt to formulate a general theorem for environments ω = h ∗ ω̃ where
(Ω̃, F̃ , P̃ ) satisfies the Poincaré inequality (1.7), we shall rigorously prove only that the
results obtained in [3] hold for massless fields φ : Zd → R with d � 3. In § 2, we indicate
the generality of our argument by showing that the proof of [3, Proposition 5.3] formally
extends to environments ω = h ∗ ω̃. Our first theorem concerns the rate of convergence (1.5)
in homogenization.

Theorem 1.1. Let ã : R → Rd(d+1)/2 be a C1 function on R with values in the space of
symmetric d× d matrices, which satisfies the quadratic form inequality (1.3) and has bounded
first derivative Dã(·), so ‖Dã(·)‖∞ <∞. For d � 3, let (Ω,F , P ) be the probability space
of massless fields φ(·) determined by the limit of the uniformly convex measures (1.9) as
m→ 0, and set a(·) in (1.1) to be a(φ) = ã(φ(0)), φ ∈ Ω. Let f : Rd → R be a C∞ function of
compact support; uε(x, η, ω) be the corresponding solution to (1.1) with h(x) = ε2f(εx), x ∈ Zd

and uhom(x, η), x ∈ Rd, be the solution to (1.4). Then there is a constant α > 0 depending
only on d,Λ/λ and a constant C depending only on η, d,Λ, λ, ‖Dã(·)‖∞, f(·) such that (1.5)
holds.

Our second theorem concerns point-wise convergence at large length scales of the averaged
Green’s function for (1.1) to the homogenized Green’s function for (1.4), which is uniform
as η → 0. The averaged Green’s function Ga,η(x), x ∈ Zd, for (1.1) is defined by Ga,η(x) =
〈u(x, η, ·)〉, where h(·) in (1.1) is the Kronecker delta function h(x) = 0 if x �= 0 and h(0) = 1.

Theorem 1.2. With the same environment as in the statement of Theorem 1.1, let
Gahom,η(x), x ∈ Rd, be the Green’s function for the homogenized equation (1.4). Then there
are constants α, γ > 0 depending only on d and the ratio Λ/λ of the constants λ,Λ of (1.3),
and a constant C depending only on ‖Dã(·)‖∞,Λ/λ, d such that

|Ga,η(x) −Gahom,η(x)| � C

Λ(|x| + 1)d−2+α
e−γ

√
η/Λ|x|, x ∈ Zd − {0}, (1.13)

|∇Ga,η(x) −∇Gahom,η(x)| � C

Λ(|x| + 1)d−1+α
e−γ

√
η/Λ|x|, x ∈ Zd − {0}, (1.14)

|∇∇Ga,η(x) −∇∇Gahom,η(x)| � C

Λ(|x| + 1)d+α
e−γ

√
η/Λ|x|, x ∈ Zd − {0}, (1.15)

provided 0 < η � Λ.

It was shown in [3] that Theorem 1.2 follows once one has established some regularity
properties of the Fourier transform of the averaged Green’s function Ga,η(·). We establish
these properties (Hypothesis 3.1) in § 3 for the massless field theory environment. As observed
in [3], the proof of Theorem 1.1 follows along the same lines as the proof of Theorem 1.2, and
is somewhat simpler. We therefore have omitted its proof here. The problem of determining
the optimal value of α in (1.5) is a subtle one. In our proof for an environment ω = h ∗ ω̃ with
h(·) being q summable with q < 2, the exponent α depends on q as well as the ellipticity ratio
Λ/λ for the PDE (1.1). If q → 2, then α→ 0 in our approach, which corresponds to α→ 0
when β → 0 in the Yurinskii approach.
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2. Variance estimate on the solution to a PDE on Ω

We recall some definitions from [3]. For ξ ∈ Rd and 1 � j � d, we define the ξ derivative of a
measurable function ψ : Ω → C in the j direction by ∂j,ξ, and its adjoint by ∂∗j,ξ, where

∂j,ξψ(ω) = e−iej ·ξψ(τej
ω) − ψ(ω),

∂∗j,ξψ(ω) = eiej ·ξψ(τ−ej
ω) − ψ(ω).

(2.1)

We also define a d-dimensional column ξ gradient operator ∂ξ by ∂ξ = (∂1,ξ, . . . , ∂d,ξ), which
has adjoint ∂∗ξ given by the row operator ∂∗ξ = (∂∗1,ξ, . . . , ∂

∗
d,ξ). Let H(Ω) be the Hilbert space

of measurable functions Ψ : Ω → Cd with norm ‖Ψ‖H(Ω) given by ‖Ψ‖2
H(Ω) = 〈|Ψ(·)|22〉, where

| · |2 is the Euclidean norm on Cd. Then there is a unique row vector solution Φ(ξ, η, ω) =
(Φ1(ξ, η, ω), . . . ,Φd(ξ, η, ω)) to the equation

ηΦ(ξ, η, ω) + ∂∗ξa(ω)∂ξΦ(ξ, η, ω) = −∂∗ξa(ω), η > 0, ξ ∈ Rd, ω ∈ Ω, (2.2)

such that Φ(ξ, η, ·)v ∈ L2(Ω) for any v ∈ Cd. Furthermore, Φ(ξ, η, ·)v ∈ L2(Ω) satisfies the
inequality

η‖Φ(ξ, η, ·)v‖2
L2(Ω) + λ‖∂ξΦ(ξ, η, ·)v‖2

H(Ω) � Λ2|v|2/λ. (2.3)

Letting P denote the projection orthogonal to the constant function, our generalization of [3,
Proposition 5.3] is as follows.

Proposition 2.1. Suppose that a(·) in (2.2) is given by a(ω) = ã(ω(0)), where ã :
Rn → Rd(d+1)/2 is a C1 d× d symmetric matrix-valued function satisfying the quadratic
form inequality (1.3) and ‖Dã(·)‖∞ <∞. The random field ω : Zd → Rn is a convolution
ω(·) = h ∗ ω̃(·) of an n× k matrix-valued function h : Zd → Rn ⊗ Rk and a random field
ω̃ : Zd → Rk. The function h is assumed to be p0 summable for some p0 with 1 � p0 < 2
and the probability space (Ω̃, F̃ , P̃ ) of the fields ω̃ : Zd → Rk to satisfy the Poincaré inequality
(1.7). Then there exists p1 depending only on d,Λ/λ, p0 and satisfying 1 < p1 < 2, such that,
for g ∈ Lp(Zd,Cd ⊗ Cd) with 1 � p � p1 and v ∈ Cd,∥∥∥∥∥∥P

∑
x∈Zd

g(x)∂ξΦ(ξ, η, τx·)v
∥∥∥∥∥∥
H(Ω)

� CKP̃ ‖Dã(·)‖∞|v|
Λ

‖h‖p0‖g‖p, (2.4)

where KP̃ is the Poincaré constant in (1.7) and C is a constant depending only on
d, n, k,Λ/λ, p0.

Proof. From (1.7), we have that

∥∥∥∥∥∥P
∑

x∈Zd

g(x)∂ξΦ(ξ, η, τx·)v
∥∥∥∥∥∥

2

H(Ω)

� KP̃

∑
z∈Zd

〈∣∣∣∣∣∣
∂

∂ω̃(z)

∑
x∈Zd

g(x)∂ξΦ(ξ, η, τx·)v
∣∣∣∣∣∣
2

2

〉
. (2.5)

From the chain rule, we see that

∂

∂ω̃(z)
∂ξΦ(ξ, η, τx·)v =

∑
y∈Zd

[
∂

∂ω(y)
∂ξΦ(ξ, η, τx·)v

]
h(y − z). (2.6)
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Hence, using the translation invariance of the probability measure P̃ on Ω̃, we conclude from
(2.5) and (2.6) that∥∥∥∥∥∥P

∑
x∈Zd

g(x)∂ξΦ(ξ, η, τx·)v
∥∥∥∥∥∥

2

H(Ω)

� KP̃

∑
z∈Zd

〈∣∣∣∣∣∣
∑

x∈Zd

g(x)
∑

y∈Zd

[
τ−z

∂

∂ω(y)
∂ξΦ(ξ, η, τx·)v

]
h(y − z)

∣∣∣∣∣∣
2

2

〉
. (2.7)

For a differentiable function ψ : Ω → C, we denote its gradient by dωψ : Zd × Ω → C so that
dωψ(y;ω) = ∂ψ(ω)/∂ω(y), y ∈ Zd, ω ∈ Ω. The gradient operator dω does not commute with
the translation operators τx, x ∈ Zd, and in fact we have that

∂

∂ω(y)
ψ(τxω) = dωψ(y − x; τxω), x, y ∈ Zd. (2.8)

Defining now the function u : Zd × Ω → Ck by

u(z, ω) = e−iz·ξ ∑
y∈Zd

[dωΦ(y; ξ, η, τzω)v]h(y + z), (2.9)

we conclude from (2.8) that

∇u(x− z, ω) = ei(z−x)·ξ ∑
y∈Zd

[
τ−z

∂

∂ω(y)
∂ξΦ(ξ, η, τxω)v

]
h(y − z). (2.10)

Hence, (2.7) becomes∥∥∥∥∥∥P
∑

x∈Zd

g(x)∂ξΦ(ξ, η, τx·)v
∥∥∥∥∥∥

2

H(Ω)

� KP̃

∑
z∈Zd

〈∣∣∣∣∣∣
∑

x∈Zd

g(x) ei(x−z)·ξ∇u(x− z, ·)
∣∣∣∣∣∣
2

2

〉
. (2.11)

In [3], we also defined the ξ derivative of a measurable function ψ : Zd × Ω → C in the j
direction by Dj,ξ, and its adjoint by D∗

j,ξ, where

Dj,ξψ(x, ω) = e−iej ·ξψ(x− ej , τej
ω) − ψ(x, ω),

D∗
j,ξψ(x, ω) = eiej ·ξψ(x+ ej , τ−ej

ω) − ψ(x, ω).
(2.12)

The corresponding d-dimensional column ξ gradient operator Dξ is then given by
Dξ = (D1,ξ, . . . , Dd,ξ), and it has adjoint D∗

ξ given by the row operator D∗
ξ = (D∗

1,ξ, . . . , D
∗
d,ξ).

We see from (2.8) that these operators satisfy the identity

∂

∂ω(y)
∂ξψ(ω) = Dξdωψ(y;ω), y ∈ Zd, ω ∈ Ω, (2.13)

for differentiable functions ψ : Ω → C. A similar relationship holds for the adjoints ∂∗ξ ,D
∗
ξ .

Hence, on taking the gradient of equation (2.2) with respect to ω(·), we conclude from (2.13)
that

ηdωΦ(y; ξ, η, ω)v +D∗
ξ ã(ω(0))DξdωΦ(y; ξ, η, ω)v

= −D∗
ξ [δ(y)Dã(ω(0)){v + ∂ξΦ(ξ, η, ω)v}] for y ∈ Zd, ω ∈ Ω. (2.14)

Evidently (2.14) holds with ω ∈ Ω replaced by τzω for any z ∈ Zd. We now multiply (2.14)
with τzω in place of ω on the right by e−iz·ξh(y + z) and sum with respect to y ∈ Zd. It then
follows from (2.9) that

ηu(z, ω) + ∇∗ã(ω(z))∇u(z, ω) = −∇∗f(z, ω), (2.15)
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where the function f : Zd × Ω → Cd ⊗ Ck is given by the formula

f(z, ω) = Dã(ω(z)){v + ∂ξΦ(ξ, η, τzω)v} e−iz·ξh(z). (2.16)

Now from (2.3), it follows that ∂ξΦ(ξ, η, ·)v ∈ H(Ω) and ‖∂ξΦ(ξ, η, ·)v‖H(Ω) � Λ|v|/λ. Hence,
if h ∈ L2(Zd,Rn ⊗ Rk), then the function f is in L2(Zd × Ω,Cd ⊗ Ck) and ‖f‖2 �
‖Dã(·)‖∞(1 + Λ/λ)|v|‖h‖2. We see from (2.15) that if f ∈ L2(Zd × Ω,Cd ⊗ Ck), then ∇u is in
L2(Zd × Ω,Cd ⊗ Ck) and ‖∇u‖2 � ‖f‖2/λ. It follows then from (2.11) and Young’s inequality
for convolutions [13] that (2.4) holds with p0 = 2 and p = 1.

To prove the inequality for some p > 1, we use a version of Meyer’s theorem [10] for solutions
of elliptic equations on Zd. Lattice versions of Meyer’s theorem were already used in [11] and
more recently in [7]. For any 1 < q <∞, we consider the function f as a mapping f : Zd →
L2(Ω,Cd ⊗ Ck) with norm defined by

‖f‖q
q =

∑
z∈Zd

‖f(z, ·)‖q
2, (2.17)

where ‖f(z, ·)‖2 is the norm of f(z, ·) ∈ L2(Ω,Cd ⊗ Ck). It was observed in [13] that the
Calderon–Zygmund theorem applies to Fourier multiplier operators of functions on Rd with
range in a Hilbert space. One can similarly see that it applies to Fourier multiplier operators
of functions on Zd with range in a Hilbert space. We conclude therefore that there exists q0
depending only on d,Λ/λ with 1 < q0 < 2 such that if ‖f‖q0 <∞, then ‖∇u‖q � 2‖f‖q/λ for
q0 � q � 2. If h is p0 integrable with p0 < 2, then we can take max[p0, q0] = q1 � q � 2. It
follows again from (2.11) and Young’s inequality for convolutions [13] that (2.4) holds with
p1 = 2q1/(3q1 − 2).

3. Proof of Theorem 1.2

The basic approach of [3] is to use the fact that the solution to (1.1) can be expressed by a
Fourier inversion formula in terms of the solution to the equation

ηΦ(ξ, η, ω) + P∂∗ξa(ω)∂ξΦ(ξ, η, ω) = −P∂∗ξa(ω), η > 0, ξ ∈ Rd, ω ∈ Ω, (3.1)

where P is the projection orthogonal to the constant. It is easy to see that, just like the
solution to (2.2), the solution to (3.1) also satisfies the inequality (2.3). If ξ = 0, then the
solution Φ(ξ, η, ω) to (2.2) has zero mean, so 〈Φ(0, η, ·)〉 = 0. Hence, the solutions to (2.2) and
(3.1) coincide if ξ = 0 but are in general different. For ξ ∈ Rd and η > 0, let e(ξ) ∈ Cd be the
vector e(ξ) = ∂ξ1 and q(ξ, η) be the d× d matrix

q(ξ, η) = 〈a(·)〉 + 〈a(·)∂ξΦ(ξ, η, ·)〉, (3.2)

where Φ(ξ, η, ω) is the solution to (3.1). The solution to (1.1) is then given in [3] by the formula

u(x, η, ω) =
1

(2π)d

∫
[−π,π]d

ĥ(ξ) e−iξ·x

η + e(ξ)∗q(ξ, η)e(ξ)
[1 + Φ(ξ, η, τxω)e(ξ)] dξ, x ∈ Zd, ω ∈ Ω.

(3.3)
If the environment (Ω,F , P ) is ergodic, then the limit limη→0 q(0, η) = ahom exists, and ahom is
the diffusion matrix for the homogenized equation (1.4). It follows from (3.3) that the Fourier
transform Ĝa,η(ξ), ξ ∈ [−π, π]d, of the averaged Green’s function Ga,η(x), x ∈ Zd, is given by
the formula

Ĝa,η(ξ) = 1/[η + e(ξ)∗q(ξ, η)e(ξ)] for ξ ∈ [−π, π]d. (3.4)

In [3], it was shown (see especially § 7) that Theorem 1.2 is a consequence of the following.
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Hypothesis 3.1. For ξ ∈ Cd denote its real part by �ξ ∈ Rd and its imaginary part by
�ξ ∈ Rd so that ξ = �ξ + i�ξ. Then there exist positive constants C1 and α � 1 depending
only on d and Λ/λ, such the function q(ξ, η), ξ ∈ Rd, η > 0, has an analytic continuation to
the region |�ξ| � C1

√
η/Λ and

‖q(ξ′, η′) − q(ξ, η)‖ � CΛ[|ξ′ − ξ|α + |(η′ − η)/Λ|α/2],

0 < η � η′ � Λ, ξ′, ξ ∈ Cd with |�ξ|, |�ξ′| � C1

√
η/Λ, (3.5)

where C is a constant depending on the environment and the function a(·).

Here, we will prove that Hypothesis 3.1 holds for the massless field theory environment
(Ω,F , P ) of Theorem 1.1. To do this, we recall some operators defined in [3]. For any g ∈ H(Ω),
let ψ(ξ, η, ω) be the solution to the equation

η

Λ
ψ(ξ, η, ω) + ∂∗ξ∂ξψ(ξ, η, ω) = ∂∗ξ g(ω), η > 0, ξ ∈ Rd, ω ∈ Ω. (3.6)

The operator Tξ,η on H(Ω) is defined by Tξ,ηg(·) = ∂ξψ(ξ, η, ·). It also has the representation

Tξ,ηg(ω) =
∑

x∈Zd

{∇∇∗Gη/Λ(x)}∗exp[−ix · ξ]g(τxω), ω ∈ Ω, (3.7)

where Gν(·) is the Green’s function defined by (1.10) with V ′′(·) ≡ Id. It easily follows from
(3.6) that Tξ,η is a bounded operator on H(Ω) with ‖Tξ,η‖H(Ω) � 1, provided ξ ∈ Rd, η >
0. Furthermore, by Conlon and Spencer [3, Lemma 2.1] the function ξ → Tξ,η from Rd to
the Banach space of bounded linear operators on H(Ω) has an analytic continuation to a
strip |�ξ| < C

√
η/Λ, where C is a constant depending only on d. Let b be the d× d matrix-

valued function b(ω) = Id − a(ω)/Λ, ω ∈ Ω, whence (1.3) implies the quadratic form inequality
0 � b(·) � (1 − λ/Λ)Id. We define, for η > 0, r = 1, 2, . . . , and �ξ ∈ Rd with |�ξ| < C

√
η/Λ,

an operator Tr,η,�ξ from functions g : Zd → Cd ⊗ Cd to periodic functions Tr,η,�ξg : [−π, π]d ×
Ω → Cd ⊗ Cd by

Tr,η,�ξg(�ξ, ·) =
∑

x∈Zd

g(x)τxPb(·)[PTξ,ηb(·)]r−1, where ξ = �ξ + i�ξ. (3.8)

For 1 � p <∞, let �p(Zd,Cd ⊗ Cd) be the Banach space of d× d matrix-valued functions
g : Zd → Cd ⊗ Cd with norm ‖g‖p defined by

‖g‖p
p = sup

v∈Cd:|v|=1

∑
x∈Zd

|g(x)v|p2, (3.9)

where |g(x)v|2 is the Euclidean norm of the vector g(x)v ∈ Cd. We similarly define the space
L∞([−π, π]d × Ω,Cd ⊗ Cd) of d× d matrix-valued functions g : [−π, π]d × Ω → Cd ⊗ Cd with
norm ‖g‖∞ defined by

‖g‖∞ = sup
v∈Cd:|v|=1

[
sup

ζ∈[−π,π]d
||g(ζ, ·)v||H(Ω)

]
. (3.10)

Since ‖Tξ,η‖H(Ω) � 1 if ξ ∈ Rd, η > 0, then it follows from (3.7) and (3.8) that if �ξ = 0, then
Tr,η,�ξ is a bounded operator from �1(Zd,Cd ⊗ Cd) to L∞([−π, π]d × Ω,Cd ⊗ Cd) with norm
‖Tr,η,�ξ‖1,∞ � (1 − λ/Λ)r. In the following, we show that Tr,η,�ξ is a bounded operator from
�p(Zd,Cd ⊗ Cd) to L∞([−π, π]d × Ω,Cd ⊗ Cd) for some p > 1 in the case of the environment
of Theorem 1.1 and estimate its norm ‖Tr,η,�ξ‖p,∞. This extends [3, Lemma 5.1] to the massless
field case.
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Lemma 3.1. Let (Ω,F , P ) be an environment of massless fields φ : Zd → R with d � 3,
and ã : R → Rd(d+1)/2 be as in the statement of Theorem 1.1. Set a(φ) = ã(φ(0)), φ ∈ Ω.
Then there exists p0(Λ/λ) with 1 < p0(Λ/λ) < 2 depending only on d and Λ/λ, and positive
constants C1(Λ/λ), C2(Λ/λ) depending only on d and Λ/λ such that

‖Tr,η,�ξ‖p,∞ � C2(Λ/λ)r‖Dã(·)‖∞
Λ
√
λ

(1 − λ/Λ)(r−1)/2 for 0 < η � Λ,

|�ξ| < C1(Λ/λ)
√
η/Λ, (3.11)

provided 1 � p � p0(Λ/λ).

Proof. It will be sufficient for us to bound ‖Tr,η,�ξg‖∞ in terms of ‖g‖p for g : Zd → Cd ⊗
Cd of finite support. Let Q be a cube in Zd containing the support of the function g(·) and
(ΩQ,FQ, PQ,m) be the probability space of periodic functions φ : Q→ R with measure

exp

⎡
⎣− ∑

x∈Q

V (∇φ(x)) +
1
2
m2φ(x)2

⎤
⎦ ∏

x∈Q

dφ(x)

/
normalization, (3.12)

where we assume m > 0 and V : Rd → R is C2 with a(·) = V ′′(·) satisfying the quadratic
form inequality (1.3). We denote by Ω̃Q the space of periodic fields ω̃ : Q→ Rd and let F :
Ω̃Q × ΩQ → C be a C1 function which, for some constants A,B, satisfies the inequality

|F (ω̃, φ)| + |dω̃F (y; ω̃, φ)| + |dφF (y; ω̃, φ)| � A exp[B{‖ω̃‖2 + ‖φ‖2}],
y ∈ Q, ω̃ ∈ Ω̃Q, φ ∈ ΩQ. (3.13)

Let 〈·〉ΩQ,m denote expectation with respect to the measure (3.12) and note that the Hessian
of

∑
x∈Q V (∇φ(x)) + 1

2m
2φ(x)2 is bounded below in the quadratic form sense by the constant

operator −λΔ +m2. It follows then from the Brascamp–Lieb inequality [1] that

VarΩQ,m[F (∇φ, φ)]

� 〈[∇∗dω̃F (∇φ, φ) + dφF (∇φ, φ)]∗(−λΔ +m2)−1[∇∗dω̃F (∇φ, φ) + dφF (∇φ, φ)]〉ΩQ,m

� 2〈[∇∗dω̃F (∇φ, φ)]∗(−λΔ +m2)−1[∇∗dω̃F (∇φ, φ)]〉ΩQ,m

+ 2〈[dφF (∇φ, φ)]∗(−λΔ +m2)−1[dφF (∇φ, φ)]〉ΩQ,m. (3.14)

We conclude from (3.14) that the Poincaré inequality

VarΩQ,m[F (∇φ, φ)] � 2
λ
〈‖dω̃F (∇φ, φ)‖2

2〉ΩQ,m +
2
m2

〈‖dφF (∇φ, φ)‖2
2〉ΩQ,m (3.15)

holds. We will show using (3.15) that ‖Tr,η,�ξg‖∞ is bounded in terms of ‖g‖p if the
environment is the probability space (ΩQ,FQ, PQ,m). The result will then follow by taking
first Q→ Zd and then m→ 0.

Let us suppose that the cube Q is centered at the origin in Zd with side of length L, where
L is an even integer. Let Gν : Zd → R be the solution to (1.10) with V ′′(·) = Id. Then there
exist positive constants C, γ depending only on d such that Gν satisfies the inequality

Gν(x) + (|x| + 1)|∇Gν(x)| � C

(|x| + 1)d−2
e−γ

√
ν|x| for d � 3, 0 < ν � 1, x ∈ Zd. (3.16)

The inequality (3.16) can be proved by using the Fourier inversion formula (see [9] and
references therein). We denote by Gν,Q : Q→ R the corresponding Green’s function for the
periodic lattice Q, so

Gν,Q(x) =
∑

n∈Zd

Gν(x+ Ln), x ∈ Q. (3.17)



982 JOSEPH G. CONLON AND ARASH FAHIM

Then any periodic function φ : Q→ R can be written as

φ(x) =
∑
y∈Q

[∇Gν,Q(x− y)]∗∇φ(y) +
∑
y∈Q

νGν,Q(x− y)φ(y), x ∈ Q. (3.18)

We take ν = 1/L2 in (3.18) to obtain a representation

φ(·) = hQ ∗ ω̃(·) + kQ ∗ φ(·), (3.19)

where hQ = [hQ,1, . . . , hQ,d] is a row vector and the operation ∗ denotes convolution on the
periodic latticeQ. It follows from (3.16) and (3.17) that if q > d/(d− 1), then there is a constant
Cq depending only on q, d such that ‖hQ‖q � Cq. Similarly, if q � 1 and q �= d/(d− 2), then
‖kQ‖q � Cq/min[Ld(1−1/q), L2].

We first prove (3.11) when r = 1. For the environment (ΩQ,FQ, PQ,m), we have from (3.19)
that

T1,η,�ξg(�ξ, φ) =
∑
x∈Q

g(x)Pb̃(hQ ∗ ω̃(x) + kQ ∗ φ(x)). (3.20)

Let Hm(ΩQ) be the Hilbert space of functions f : ΩQ → Cd which are square integrable
with respect to the measure PQ,m. It follows from (3.15) that if v ∈ Cd, then the norm of
T1,η,�ξg(�ξ, ·)v ∈ Hm(ΩQ) is bounded as

‖T1,η,�ξg(�ξ, ·)v‖2
Hm(ΩQ) � 2

λ

∑
z∈Q

d∑
j=1

∥∥∥∥∥∥
∑
x∈Q

g(x)hQ,j(x− z)Db̃(φ(x))v

∥∥∥∥∥∥
2

Hm(ΩQ)

+
2
m2

∑
z∈Q

∥∥∥∥∥∥
∑
x∈Q

g(x)kQ(x− z)Db̃(φ(x))v

∥∥∥∥∥∥
2

Hm(ΩQ)

. (3.21)

Since d � 3, we can choose q such that d/(d− 1) < q < 2 and q �= d/(d− 2). It then follows
from (3.21) and Young’s inequality for convolutions that, for p = 2q/(3q − 2) > 1,

‖T1,η,�ξg(�ξ, ·)v‖2
Hm(ΩQ) � Cq‖g‖2

p‖Db̃(·)‖2
∞|v|2

[
1
λ

+
1

m2La(q)

]
, (3.22)

where a(q) = 2min[d(1 − 1/q), 2]. Let (Ω,F , Pm) be the probability space of fields φ : Zd → R
with measure Pm given by (1.9). Proposition 5.1 of [3] enables us to take the limit of (3.22) as
Q→ Zd to obtain the inequality

‖T1,η,�ξg(�ξ, ·)v‖2
Hm(Ω

Zd ) � Cq‖g‖2
p‖Db̃(·)‖2

∞|v|2/λ, (3.23)

for the environment (Ω,F , Pm). Finally, [3, Proposition 6.1] enables us to take the limit of
(3.23) as m→ 0 provided d � 3. We have proved (3.11) when r = 1.

To prove the result for r > 1, we consider the environment (ΩQ,FQ, PQ,m) and write as in
[3]

Tr,η,�ξg(�ξ, φ)v = P
∑
x∈Q

g(x)b̃(φ(x))∂ξFr(ξ, η, τxφ), φ(·) ∈ ΩQ. (3.24)

For ξ ∈ Rd, η > 0, the functions Fr(ξ, η, φ) are defined inductively by
η

Λ
Fr(ξ, η, φ) + ∂∗ξ∂ξFr(ξ, η, φ) = P∂∗ξ [b̃(φ(0))∂ξFr−1(ξ, η, φ)], r > 2,

η

Λ
F2(ξ, η, φ) + ∂∗ξ∂ξF2(ξ, η, φ) = P∂∗ξ [b̃(φ(0))v].

(3.25)

From [3, Lemma 2.1], it follows that for fixed η > 0 the function Fr(ξ, η, φ), ξ ∈ Rd, has an
analytic continuation into the strip |�ξ| < C1

√
η/Λ for some constant C1 depending only on
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d. Furthermore, ∂ξFr ∈ Hm(ΩQ) and

‖∂ξFr(ξ, η, ·)‖Hm(ΩQ) � (1 − λ/Λ)r−1[1 + C2|�ξ|2/(η/Λ)]r−1|v|
for |�ξ| < C1

√
η/Λ, r � 2, (3.26)

where the constant C2 depends only on d. Note that (3.26) implies that ‖Tr,η,�ξ‖1,∞ is finite,
provided |�ξ| < C1

√
η/Λ.

Using the representation (3.19) for φ(·), we can consider the Fr, r � 2, defined by (3.25) as
functions of ω̃(·) and φ(·), which we denote by F̃r(ξ, η, ω̃, φ). Observe now that, for 1 � j � d,

∂

∂ω̃j(z)

∑
x∈Q

g(x)b̃(hQ ∗ ω̃(x) + kQ ∗ φ(x))∂ξF̃r(ξ, η, τxω̃, τxφ)

=
∑
x∈Q

g(x)hQ,j(x− z)Db̃(φ(x))∂ξFr(ξ, η, τxφ)

+
∑
x∈Q

g(x)b̃(φ(x))
∂

∂ω̃j(z)
∂ξF̃r(ξ, η, τxω̃, τxφ). (3.27)

For ξ ∈ Rd and u : Q→ C, we denote by ∇ξu : Q→ Cd the function ∇ξu(z) =
[∇1,ξu(z), . . . ,∇j,ξu(z)], z ∈ Q, where ∇j,ξu(z) = e−iej ·ξu(z + ej) − u(z), z ∈ Q, j = 1, . . . , d.
Now let ur,j : Rd × R+ ×Q× ΩQ → C be given by the formula

ur,j(ξ, η, z, φ) =
∑
y∈Q

dφFr(y; ξ, η, τzφ)hQ,j(y + z). (3.28)

Then, as in (2.6) and (2.10), we have that

∇ξur,j(ξ, η, x− z, φ) =
∑
y∈Q

τ−z
∂

∂φ(y)
∂ξFr(ξ, η, τxφ)hQ,j(y − z)

= τ−z
∂

∂ω̃j(z)
∂ξF̃r(ξ, η, τxω̃, τxφ). (3.29)

Similarly to (2.15) and (2.16), we see that ur,j(ξ, η, z, φ) satisfies the equation
η

Λ
ur,j(ξ, η, z, φ) + ∇∗

ξ∇ξur,j(ξ, η, z, φ) = P∇∗
ξfr,j(ξ, η, z, φ), (3.30)

where the function fr,j : Rd × R+ ×Q× ΩQ → Cd is given by the formula

f2,j(ξ, η, z, φ) = Db̃(φ(z))vhQ,j(z),

fr,j(ξ, η, z, φ) = Db̃(φ(z))∂ξFr−1(ξ, η, τzφ)hQ,j(z) + b̃(φ(z))∇ξur−1,j(ξ, η, z, φ), r > 2.
(3.31)

Suppose that ξ ∈ Rd, η > 0 and g : Q→ Cd is a periodic function on Q. We define the
function T̃ξ,ηg : Q→ Cd by T̃ξ,ηg(z) = ∇ξu(z), z ∈ Q, where u : Q→ C is the solution to the
equation

η

Λ
u(z) + ∇∗

ξ∇ξu(z) = ∇∗
ξg(z), z ∈ Q. (3.32)

It follows easily from (3.32) that the norm of T̃ξ,η acting on �2(Q,Cd) satisfies ‖T̃ξ,η‖2 � 1.
Observing that (3.32) is a special case of (3.6), we apply [3, Lemma 2.1]. Hence, there are
positive constants C1, C2 depending only on d such that the function ξ → T̃ξ,η from Rd to linear
maps on �2(Q,Cd) has an analytic continuation to the region |�ξ| � C1

√
η/Λ and ‖T̃ξ,η‖2 �

(1 + C2|�ξ|2/[η/Λ]) in this region. We can also adapt the proof of the Calderon–Zygmund
theorem [13] to further conclude that if |�ξ| � C1

√
η/Λ, then the norm of T̃ξ,η on �q(Q,Cd) for

1 < q <∞ satisfies the inequality ‖T̃ξ,η‖q � (1 + C2|�ξ|2/[η/Λ])(1 + δ(q)), where δ(q) depends
only on d, q and limq→2 δ(q) = 0.
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As noted in [13], one can extend the results of the Calderon–Zygmund theorem to operators
on functions with values in a Hilbert space. Let Lq(Q,Hm(ΩQ)) be the Banach space of
functions g : Q→ Hm(ΩQ) with norm

‖g‖q
q =

∑
x∈Q

‖g(x)‖q
Hm(ΩQ). (3.33)

We define gr,j,ξ,η : Q→ Hm(ΩQ) and hr,j,ξ,η : Q→ Hm(ΩQ) by

gr,j,ξ,η(z) = fr,j(ξ, η, z, ·), hr,j,ξ,η(z) = ∇ξur,j(ξ, η, z, ·), z ∈ Q. (3.34)

From (3.26) and (3.31), it follows that if |�ξ| � C1/
√
η/Λ, then

‖g2,j,ξ,η‖q � C‖Db̃(·)‖∞‖hQ,j‖q|v|,
‖gr,j,ξ,η‖q � C‖Db̃(·)‖∞‖hQ,j‖q(1 − λ/Λ)r−2[1 + C2|�ξ|2/(η/Λ)]r−2|v|

+ (1 − λ/Λ)‖hr−1,j,ξ,η‖q if r > 2, (3.35)

where C depends only on d. We see from the Hilbert space version of the Calderon–Zygmund
theorem (see [13, p. 45]) applied to (3.30) that, for q > 1, there is a constant δ(q) � 0 such
that

‖hr,j,ξ,η‖q � [1 + δ(q)][1 + C2|�ξ|2/(η/Λ)]‖gr,j,ξ,η‖q and lim
q→2

δ(q) = 0. (3.36)

It follows then from (3.35) and (3.36) that

‖gr,j,ξ,η‖q � Cr‖Db̃(·)‖∞‖hQ,j‖q[1 + δ(q)]r−2(1 − λ/Λ)r−2[1 + C2|�ξ|2/(η/Λ)]r−2|v|, (3.37)

where C depends only on d.
From (3.27) and (3.29), we see that

1
2

∥∥∥∥∥∥
∂

∂ω̃j(z)

∑
x∈Q

g(x)b̃(hQ ∗ ω̃(x) + kQ ∗ φ(x))∂ξF̃r(ξ, η, τxω̃, τxφ)

∥∥∥∥∥∥
2

Hm(ΩQ)

�

∥∥∥∥∥∥
∑
x∈Q

g(x)hQ,j(x− z)Db̃(φ(x− z))∂ξFr(ξ, η, τx−zφ)

∥∥∥∥∥∥
2

Hm(ΩQ)

+

∥∥∥∥∥∥
∑
x∈Q

g(x)b̃(φ(x− z))hr,j,ξ,η(x− z, φ)

∥∥∥∥∥∥
2

Hm(ΩQ)

. (3.38)

Observe now from (3.26) and Young’s convolution inequality for functions with values in a
Hilbert space that

∑
z∈Q

∥∥∥∥∥∥
∑
x∈Q

g(x)hQ,j(x− z)Db̃(φ(x− z))∂ξFr(ξ, η, τx−zφ)

∥∥∥∥∥∥
2

Hm(ΩQ)

� C[‖Db̃(·)‖∞‖g‖p‖hQ,j‖q(1 − λ/Λ)r−1[1 + C2|�ξ|2/(η/Λ)]r−1|v|]2, (3.39)

where p = 2q/(3q − 2) with 1 � q � 2 and C depends only on d. We can bound the second
term on the right-hand side of (3.38) similarly. Thus, from (3.36) and (3.37) we conclude that

∑
z∈Q

∥∥∥∥∥∥
∑
x∈Q

g(x)b̃(φ(x− z))hr,j,ξ,η(x− z, φ)

∥∥∥∥∥∥
2

Hm(ΩQ)

� C[r‖Db̃(·)‖∞‖g‖p‖hQ,j‖q[1 + δ(q)]r−1(1 − λ/Λ)r−1[1 + C2|�ξ|2/(η/Λ)]r−1|v|]2, (3.40)



STRONG CONVERGENCE II 985

where p = 2q/(3q − 2) with 1 � q � 2 and C depends only on d.
We can argue now as in the r = 1 case to establish (3.11) for r � 2 by choosing q < 2

and |�ξ| � C2(Λ/λ)
√
η/Λ to satisfy [1 + δ(q)](1 − λ/Λ)[1 + C2|�ξ|2/(η/Λ)] � (1 − λ/Λ)1/2.

We obtain then an estimate on the first term on the right-hand side of (3.15) which is uniform
as Q→ Zd. By essentially repeating our argument, we also see that the second term on the
right-hand side of (3.15) vanishes as Q→ Zd. Finally, (3.11) follows by letting m→ 0.

Proof of Hypothesis 3.1. We assume that (ξ, η) and (ξ′, η′) are as in the statement of
Hypothesis 3.1. Let g : Zd → Cd ⊗ Cd be the function defined by

g(x) = {∇∇∗Gη′/Λ(x)}∗ e−ix·ξ′ − {∇∇∗Gη/Λ(x)}∗ e−ix·ξ, (3.41)

where the Green’s function Gν(·) is the solution to (1.10) with V ′′(·) ≡ Id. It follows from (3.7)
and [3, Lemma 2.1] that the constant C1 > 0 in (3.5) can be chosen depending only on d and
Λ/λ so that

‖[q(ξ′, η′) − q(ξ, η)]v‖ � C2Λ
∞∑

r=1

‖Tr,η,�ξg(�ξ, ·)v‖H(Ω) for |�ξ|, |�ξ′| � C1

√
η/Λ, (3.42)

where C2 is a constant depending only on d,Λ/λ. We can see from (3.41) that there is a
constant C1 depending only on d such that if |�ξ|, |�ξ′| � C1

√
η/Λ, then the function g(·) is

in �p(Zd,Cd ⊗ Cd) for any p > 1. Furthermore, if 0 � α � 1 and p > d/(d− α), then ‖g(·)‖p

satisfies the inequality

‖g(·)‖p � Cp[|ξ′ − ξ|α + |(η′ − η)/Λ|α/2], (3.43)

where the constant Cp depends only on d, p. The Hölder continuity (3.5) for sufficiently small
α > 0 follows from (3.42), (3.43) and Lemma 3.1.
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