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1. Introduction

A fundamental aspect of the study of Diophantine equations is that of determining

when an equation has a local solution. Artin once conjectured (see the preface to [1])

that if k is a complete, discretely valued field with finite residue class field, then every

homogeneous form of degree d in greater than d # variables whose coefficients are

integers of k has a nontrivial zero. In this paper, we consider the case of this

conjecture in which k is a p-adic field. Although a counterexample due to Terjanian

[16] proved Artin’s conjecture false in this situation, Ax and Kochen [2] have shown

when [k :Q
p
]¯ n is finite, that given d, there exists a number p(d, n) such that Artin’s

conjecture is true provided that p is larger than p(d, n). Unfortunately, the methods

of Ax and Kochen do not lead to explicit estimates for p(d, n). Cohen [5] found a

method which determines the possible cardinalities of the residue class fields of all p-

adic fields for which Artin’s conjecture is false, and Brown [3] has used this to bound

p(d, 1), but this bound is so large that one feels that it must be possible to do better.

Hence, it is still an interesting problem to obtain estimates on the size of p(d, n).

Previous to Ax and Kochen’s proof, several results of this kind were already

known. Hasse [9] showed that p(2, n)¯ 1 for all n, and Demyanov [6] (when the

characteristic of the residue field is not 3) and Lewis [13] proved that p(3, n)¯ 1. That

is, Artin’s conjecture is true for d¯ 2 and d¯ 3. Furthermore, Birch and Lewis [4]

and Laxton and Lewis [11] showed the existence of p(5, n), p(7, n) and p(11, n), but

were unable to estimate their values. More recently, Leep and Yeomans [12] obtained

the bound p(5, n)% 43.

In this note, we will show how a theorem due to Schmidt can be combined with

the method of Laxton and Lewis to obtain upper bounds for p(7, n) and p(11, n). In

particular, in Section 3 we prove the following theorem.

T 1. Let k be a p-adic field with residue class field of cardinality q. Let d

be a positi�e integer and let m be an integer exceeding d #. Let F be a homogeneous

polynomial of degree d in m �ariables whose coefficients are integers of k.

(i) When d¯ 7, the polynomial F has a nontri�ial k-rational zero pro�ided that

q" 2(5"!7&17$.

(ii) When d¯ 11, the polynomial F has a nontri�ial k-rational solution pro�ided that

q" 2(5%11&23$61$.

This provides the bounds p(7, n)% 2(5"!7&17$ and p(11, n)% 2(5%11&23$61$. Hence,

if k is restricted to the fields Q
p
, one needs in principle only to check a finite number

of cases to determine whether Artin’s conjecture is true when d¯ 7 or 11.
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Our method will closely follow the method of Laxton and Lewis [11]. We start by

showing that it is sufficient to prove the theorem for certain ‘reduced’ forms, which

are explicit in a relatively large number of variables after reducing modulo the

maximal ideal of k. Working in the residue class field k* of k, we are able to estimate

the number of singular solutions of F in k*. Then if the cardinality of the residue class

field is large enough, a theorem due to Schmidt may be used to show that F must

contain a nonsingular zero in k*. Finally, Hensel’s lemma is used to lift this

nonsingular zero to a nontrivial zero of F in k.

The reader may care to compare the upper bounds for p(7, n) and p(11, n) in the

above theorem with the bound p(5, n)% 43 given by Leep and Yeomans [12]. The

major reason for the disparity between these bounds and Leep and Yeomans’ bound

for p(5, n) is the large value of q needed in order to apply Schmidt’s theorem. It is

interesting to note that the conclusion of Schmidt’s theorem gives a bound on q

smaller than the bound needed to apply the theorem. Leep and Yeomans obtain their

better result by slicing to an absolutely irreducible curve, and then using a version of

the Weil estimate for points on curves over finite fields. Unfortunately, it seems to be

difficult to extend their slicing argument to equations of higher degrees.

2. Preliminaries

Our notation will be consistent with that of Laxton and Lewis [11]. Let k be a p-

adic field with maximal ideal pW . The residue class field of k will be denoted k*, and

will have cardinality q and characteristic p. A form will mean a homogeneous

polynomial. A point will mean a point in projective space, and dimension will mean

projective dimension. If the coefficients of a form F¯F(x) are integers of k, then the

image of F under the natural map from k[x] to k*[x] will be denoted by F*. The

algebraic closure of the residue class field k* will be written as kh . When F is defined

over k and has integral coefficients, then Vh will represent the variety defined by

F*(x)¯ 0. A point of Vh is said to be nonsingular if some partial derivative of F*

does not vanish there. Finally, if Z is a variety or collection of varieties defined

over a finite field k*, then N
Z

will represent the number of points of Z defined

over k*.

We begin with a brief discussion of reduced forms. Let F be a form of degree d

whose coefficients are integers of k. Define var(F ) to be the number of variables

explicit in F. We call two forms F and G equivalent if one can be obtained from the

other by a nonsingular linear change of variables. Note that if F and G are equivalent,

then the change of variables yields a bijection between the zeros of F and the zeros

of G, under which nonsingular zeros correspond to nonsingular zeros. Define

ord(F )¯minvar(G), where the minimum is taken over all forms G equivalent to F.

A form F is said to be nondegenerate if ord(F )¯ var(F ). Clearly, any degenerate

form has a nontrivial integral zero. Hence we may always assume that F is

nondegenerate.

Now define I(F ) to be the resultant of the partial derivatives of F. The following

lemma permits us to suppose that I(F )1 0. This means that the partial derivatives of

F have no common zeros, and hence that all of the zeros of F are nonsingular. More

information about resultants may be found in [14].

L 1. In order to pro�e that any form of degree d in n" d # �ariables whose

coefficients are integers of k has a nontri�ial zero in k, it is sufficient to pro�e this fact

for forms F for which I(F )1 0.
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This is a corollary to [11, Lemma 6].

Next, we call F a reduced form if the power of p dividing I(F ) is less than or equal

to the power of p dividing I(G) for all forms G equivalent to F. Since any

nondegenerate form F with I(F )1 0 is equivalent to a reduced form, it suffices to

prove the theorem for such forms. We now state two lemmas about reduced forms

which we will need later.

L 2. Suppose that F(x) is a reduced form of degree d in n" d # �ariables.

Then F*(x) has no linear factor in kh [x].

L 3. With the same hypotheses on F as in the statement of Lemma 2, if d¯
2, 3, 5, 7 or 11 then among the absolutely irreducible factors of F* is one whose degree

is different from all the others. This factor has coefficients in k* and is a simple factor

of F*.

These are [11, Lemmas 9 and 10]. Note that Lemma 3 is false in general when d

is larger than 11.

Our plan is to find a nonsingular zero of the distinguished factor from Lemma 3

which is not a zero of any other factor of F*, and then ‘ lift ’ this zero to a zero of F.

In order to accomplish this, we need a lemma that tells us we can ‘ lift ’ this zero.

L 4. Suppose that F(x) is a polynomial in n �ariables whose coefficients are

integers of k, and a is a nonsingular nontri�ial solution in k* to the equation F*(x)¯ 0.

Then there exists b `kn such that F(b)¯ 0, all the coordinates of b are integers of k,

and each coordinate b
i
of b maps to a

i
under the natural homomorphism from the ring

of integers of k to k*.

This is one version of Hensel’s lemma. A good discussion of Hensel’s lemma can

be found in [7, Chapter 5].

Next, we need information about the number of rational points on varieties. In

our next lemma, we use the notation and terminology of [10], which makes use of that

in [17].

L 5. Let Z be a positi�e cycle in Pn of degree d, dimension r, and rational o�er

the finite field F
q
containing q elements. Then we ha�e N

Z
% d #(q­1)r. In particular, if

q& 10, then we ha�e N
Z
% 1.1rd #qr.

Proof. This is a trivial elaboration of [10, Lemma 1]. Since an algebraic variety

is a positive cycle, we can use this lemma to obtain information about the number of

rational points on varieties.

The proof proceeds by induction on r. If r¯ 0, then N
Z
% d, and so we are done.

For r& 1, the cycle Z can be expressed as a sum of at most d prime rational cycles,

which have dimension r and degree at most d. Assume now that P is a prime rational

cycle. Lang and Weil prove that if B(n, d, r) is a function such that N
P
%B(n, d, r)

whenever P is a prime rational cycle, then we can take B(n, d, r)¯ (q­1)B(n, d, r®1).

Since we may take B(n, d, 0)¯ d, an easy induction shows that we can take B(n, d, r)¯
d(q­1)r. Since Z is a sum of at most d prime rational cycles, we therefore have N

Z
%

d #(q­1)r.
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The second statement of the lemma follows trivially. *

Our next lemma is the main theorem of [15]. This gives us a lower bound on the

number of zeros of an absolutely irreducible polynomial over a finite field, assuming

that the number of elements in the field is large enough.

L 6 (Schmidt). Suppose that f(X
"
,… ,X

m
) is an absolutely irreducible

polynomial of total degree d" 0, with coefficients in the finite field F
q
with q elements.

Let A be the number of solutions (x
"
,… ,x

m
) with components in F

q
of the equation

f(X
"
,… ,X

m
)¯ 0. Suppose that q" 10%m$d &P$([4 log d ]), where [ ] is the greatest

integer function and P(1)¯ 2, P(2)¯ 3,… is the sequence of primes. Then

A" qm−"®(d®1) (d®2) qm−$/#®6d #qm−#.

This lemma gives information about the number of affine zeros of a polynomial.

If f happens to be homogeneous, and N is the number of projective zeros of f, then

Schmidt’s result implies that we have

N& qm−#®(d®1) (d®2) qm−&/#®6d #qm−$.

Our final lemma is Bezout’s theorem (see for example [8, p. 53]). This will allow

us to do computations involving the degrees of intersections of varieties.

L 7. Let Y be a �ariety of dimension greater than 1 in Pn, and let H be a

hypersurface not containing Y. Suppose that Z
"
,… ,Z

n
are the irreducible components

of YfH, and let i(Y,H ;Z
j
) be the intersection multiplicity of Y and H along Z

j
. Then

3
n

j="

i(Y,H ;Z
j
) degZ

j
¯ (degY ) (degH ).

3. Proof of Theorem 1

Now we can essentially follow Laxton and Lewis’ argument, using these results,

to obtain upper bounds for p(7, n) and p(11, n). We suppose that F is a form of degree

d in m variables. If m" d #­1, we may set m®d #®1 of the variables equal to zero

to obtain a form G in d #­1 variables. Since any nontrivial solution of G gives a

nontrivial solution of F, we may assume at the beginning that F is a form in d #­1

variables. That is, we may assume that m¯ d #­1. Finally, assume that q is larger

than the bounds given in the statement of the theorem, and note that this is large

enough to satisfy the hypothesis of Lemma 6.

Suppose that F*¯H
"
…H

n
is a factorization of F* over kh into absolutely

irreducible factors. By Lemma 3, at least one of the H
i
is the only factor with its

degree, and this factor has coefficients in k*. Suppose that H
"
is such a factor, and let

g¯degH
"
. We aim to find a nonsingular zero of H

"
which is not a zero of H

#
…H

n
.

Since H
"
is absolutely irreducible, it follows that U

J
¯ ¦H

"
}¦x

J
is not identically zero

for some J. Let Vh
i
denote the hypersurface defined by the equation H

i
¯ 0, and let Uh

j

be the hypersurface defined by U
j
¯ 0. We have degU

J
¯ g®1, and dimUh

J
¯m®2.

Now, we cannot have dim(Uh
J
fVh

"
)¯m®2, as this would imply that Uh

J
and Vh

"

share a component, which is impossible since each component of Uh
J
has degree strictly

less than degVh
"
. Hence, dim(Uh

J
fVh

"
)%m®3.
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Now, set Wh ¯Vh
"
fUh

"
f…fUh

m
. We wish to find an upper bound for N

W
h , which

is the number of singular rational zeros of H
"
. Trivially, we have N

W
h %N

U
h
J
fV

h
"

. Let

Z
"
,… ,Z

k
be the irreducible components of Uh

J
fVh

"
. By Lemma 5, and since degZ

i
is

always positive, we have

N
W
h %N

U
h
J
fV

h
"

%3
k

i="

N
Zi

%3
k

i="

1.1dimZi(degZ
i
)# qdimZi

% (1.1q)maxidimZi 3
k

i="

(degZ
i
)#

% (1.1q)m−$ 03k
i="

degZ
i1#.

Next, noting that degVh
"
¯ g and degUh

J
¯ g®1, Bezout’s theorem implies that

g(g®1)¯3
k

i="

i(Uh
J
,Vh

"
;Z

i
) degZ

i
&3

k

i="

degZ
i
.

Inserting this inequality into the previous inequality, we have

N
W
h % (1.1q)m−$ g#(g®1)#.

Next, we find an upper bound for the number of zeros of H
"
which are also zeros

of H
#
…H

n
. Since H

"
is a simple factor of F*, it follows that for each i with 2% i% n,

we have dim(Vh
"
fVh

i
)%m®3. By successively using Lemmas 5 and 7, and again the

fact that degVh
i
is positive, we obtain

N
V
h
"
f(V

h
#
e…eV

h
n)

%3
n

i=#

N
V
h
"
fV

h
i

%3
n

i=#

(1.1q)m−$ (degVh
"
)# (degVh

i
)#

¯ (1.1q)m−$ g#3
n

i=#

(degVh
i
)#

% (1.1q)m−$ g# 03n
i=#

degVh
i1#.

Since it is clear that 3n

i=#
degVh

i
¯ d®g, the above inequality becomes

N
V
h
"
f(V

h
#
e…eV

h
n)

% (1.1q)m−$ g#(d®g)#.

Therefore, an upper bound on the number of zeros of H
"
which are singular points

of F* is

(1.1q)m−$ g#((g®1)#­(d®g)#).

Now, since we have assumed that q is large enough so that Lemma 6 may be applied,

the number N of rational points of Vh
"

satisfies

N& qm−#®(g®1) (g®2) qm−&/#®6g#qm−$.
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Therefore, to ensure that Vh
"

has a nonsingular rational point, it suffices to have

qm−#®(g®1) (g®2) qm−&/#®6g#qm−$" (1.1q)m−$ g#((g®1)#­(d®g)#).

That is,

q®(g®1) (g®2) q"/#®g#(6­1.1m−$((g®1)#­(d®g)#))" 0.

Considering this as a quadratic equation in q"/#, we find that we need to have

q"/#"
s­os#­4g#(6­1.1m−$((g®1)#­(d®g)#))

2
,

where we have set s¯ (g®1) (g®2).

Now we must find the value of g which gives the largest bound for q"/#. A ‘brute

force’ calculation shows that for d¯ 7 and d¯ 11, the bound on q"/# is largest when

we have g¯ d. When d¯ 7, we obtain the bound q& 168178. However, in order to

apply Lemma 6, we need to assume that q is larger than 2(5"!7&17$. Hence, when

d¯ 7, the equation F*(x)¯ 0 has a nonsingular solution in k* provided that q"
2(5"!7&17$. This situation occurs again when d¯ 11. In this case, our equation gives

an upper bound on q of approximately 10*. In order to apply Lemma 6, however,

we need to assume that q" 2(5%11&23$61$, which is larger than 10"*. Hence, when

d¯ 11, the equation F*(x)¯ 0 has a nonsingular solution in k* provided that q is

larger than 2(5%11&23$61$.

Therefore, whether d¯ 7 or d¯ 11, whenever q is larger than the bound in the

statement of the theorem, the equation F*(x)¯ 0 has a nonsingular rational solution

in k*. Then Lemma 4 implies that F(x) has a nontrivial solution over k. *
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