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To create a comprehensive dataset of peripheral dose (PD) measurements from a 
new generation of linear accelerators with and without the presence of a newly 
designed fetal shield, PD measurements were performed to evaluate the effects of 
depth, field size, distance from the field edge, collimator angle, and beam modi-
fiers for common treatment protocols and modalities. A custom fetal lead shield 
was designed and made for our department that allows external beam treatments 
from multiple angles while minimizing the need to adjust the shield during patient 
treatments. PD measurements were acquired for a comprehensive series of static 
fields on stack of Solid Water. Additionally, PDs from various clinically relevant 
treatment scenarios for pregnant patients were measured using an anthropomorphic 
phantom that was abutted to a stack of Solid Water. As expected, the PD decreased 
as the distance from the field edge increased and the field size decreased. On aver-
age, a PD reduction was observed when a 90° collimator rotation was applied and/
or when the tertiary MLCs and jaws defined the field aperture. However, the effect 
of the collimator rotation (90° versus 0°) in PD reduction was not found to be clini-
cally significant when the tertiary MLCs were used to define the field aperture. In 
the presence of both the MLCs and the fetal shield, the PD was reduced by 58% 
at a distance of 10 cm from the field edge. The newly designed fetal shield may 
effectively reduce fetal dose and is relatively easy to setup. Due to its design, we are 
able to use a broad range of treatment techniques and beam angles. We believe the 
acquired comprehensive PD dataset collected with and without the fetal shield will 
be useful for treatment teams to estimate fetal dose and help guide decisions on treat-
ment techniques without the need to perform pretreatment phantom measurements.

PACS numbers: 87.53.Bn, 87.55.D-, 87.55.N
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I. INTRODUCTION

Radiation therapy may be considered for the treatment of malignancies in pregnant patients in 
situations where treatment cannot be postponed until the postpartum period. Considering the 
radiosensitive nature of the fetus, special care is required to reduce the fetal dose. The report 
from AAPM Task Group (TG) 36(1) recommends that the equivalent absorbed dose received by a 
fetus should be kept below 5 cGy to minimize the risk of adverse biological effects. Depending 
on the gestational stage and the dose absorbed by the fetus, radiation poses a risk of lethality, 
malformation, growth retardation, mental retardation, carcinogenesis, genetic abnormalities, 
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and behavioral disorders.(1-4) However, these risks can be minimized with careful planning and 
precautions to ensure the dose to the fetus is as low as reasonably achievable.

The goal of radiotherapy is to deliver a high dose to the defined treatment target in an attempt 
to control the growth of the tumor while also minimizing dose to normal structures. To achieve 
the optimum treatment plan that balances the risks and benefits of radiotherapy, deliberate 
treatment strategies should be used in an attempt to minimize fetal dose, and prior to initiat-
ing treatment, fetal dose should be evaluated. The abdominal region should not be defined as 
part of the treatment volume(1) and therefore, the fetus will only be exposed to out-of-field/
peripheral dose. Peripheral dose (PD) is the absorbed dose received outside of the radiation 
treatment field. The principal components of PD are: 1) leakage radiation through the head of 
the treatment machine, 2) radiation scattered from the collimators and beam modifiers, and  
3) radiation scattered within the patient from the irradiated volume (internal scatter).(1)

Some factors that affect the PD include distance from the radiation field edge,(5-7) field 
size,(5,6,8-12) and beam modifiers.(5,9-11) Depending on the location of the treatment site relative 
to the fetus, modifications to the radiation treatment plan can be applied to minimize the fetal 
dose. These changes may include reducing the size of the radiation apertures, changing the 
angle(s) of entry of the radiation beam(s), and selecting low-energy X-rays.(1,2) It has also been 
suggested that using flattening-filter free (FFF) beams reduces PD by reducing leakage radia-
tion to areas outside the treatment field.(13-18) However, even with these planning strategies, 
the fetus is still exposed to radiation from collimator scatter, gantry head leakage, and internal 
scatter.(1,2) To further reduce dose, the use of shielding material should be considered. Shielding 
material has been found to reduce fetal dose by upwards of 50%.(2) Several studies suggested 
different designs for fetal shields(19-25) and a summary of some designs have been provided in 
the report from AAPM TG 36.(1) However, a number of these designs may be challenging to 
use with modern radiation therapy techniques such as volumetric arc therapy.

Prior to 2010, pregnant patients treated in the Department of Radiation Oncology at the 
University of Michigan were treated with a bridge-style shield that would support eight 10.25 kg 
lead bricks. The bricks were manually positioned on the bridge while the patient was lying on 
the treatment couch, which raised safety concerns for both the patient and involved staff. The 
shield design also limited the treatment options to simple techniques. Due to these limitations 
and concerns, we designed and made a custom, mobile fetal shield.

The goal of this study was twofold. First, we designed and constructed a mobile fetal lead 
shield that would allow external beam treatments from multiple angles while minimizing the 
need to adjust the shield during the patient’s treatment. Second, we created a comprehensive 
dataset of PD measurements with and without the fetal shield as a function of depth, field size, 
distance from the edge of the radiation field, collimator angle, and beam modifiers for common 
treatment protocols and modalities available in our department. The dataset allows users to 
assess PD and determine the effectiveness of the fetal shield for a variety of clinical sites and 
treatment techniques without requiring pretreatment phantom measurements.

 
II. MATERIALS AND METHODS

A fetal shield was designed through a collaborative effort of three medical physicists in the 
Department of Radiation Oncology, a design and prototype consultant, and two biomedical 
engineers from the University of Michigan’s Medical Innovation Center. The intention of the 
design was to provide shielding from multiple beam angles, so that more advanced treatment 
techniques could be used for pregnant patients. Another design aspect was to minimize adjust-
ments of the shield during the patient’s treatment. Consequentially, a 5-cm thick U-shaped 
lead shield with a detachable posterior shield was designed (the posterior shield was not used 
for phantom measurements and is not used clinically, due to collision-related issues with the 
gantry). The shield was mounted on a mobile frame with motorized hydraulic jacks to raise and 
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lower the shield (see Fig. 1). As suggested by AAPM TG 36,(1) safety tests were performed on 
the shield and ancillary components at the manufacturing machine shop (Fame Industries Inc., 
Wixom, MI) and/or in our clinic. These tests included stability and tipping tests, emergency 
stops for the hydraulics, and checks of the safety pins that hold the shield once positioned.

To evaluate the effectiveness of the fetal shield in terms of dose reduction, point dose mea-
surements were performed on a Varian Trilogy linear accelerator (Varian Medical Systems, Palo 
Alto, CA) equipped with a multileaf collimator (MLC). A stack of 40 × 110 × 20 cm3 Solid Water 
(Solid Water model 457, Gammex/RMI, Milwaukee, WI) was used along with a Farmer-type 
ionization chamber (Exradin A12, Standard Imaging, Middleton, WI) to estimate the range of 
doses that might be delivered to a fetus for a variety of situations. Radiation of varying square 
field sizes (6 × 6 to 30 × 30 cm2) were delivered and point-dose measurements were made at a 
range of depths (1.5 to 10.0 cm) and distances from the field edge (10 to 40 cm) (see Table 1). 
The distance from field edge was defined at the surface of the Solid Water phantom where 
the source to surface distance (SSD) was 100 cm. The PD measurements were normalized to 
the central axis dose (CAX) at a depth of 1.5 cm (the nominal depth of maximum dose for a 
6 MV photon beam) for each respective field size. While the effects of depth and distance from 
the field edge were assessed for all field sizes, the effects of collimator angle (0° vs. 90°) and 
the tertiary MLC (retracted vs. shaped to the field aperture) were evaluated for only the 10 × 
10 cm2 field size. When rotating the collimator to 90°, the direction of motion of the lower 
jaws is parallel to the cranial-caudal axis of the patient. When performing measurements at 
varying distances from the field edge, the position of the fetal shield was verified or adjusted 
such that it was adequately shielding the phantom and ion chamber, similar to the clinical setup. 

Fig. 1. A three dimensional schematic view (a) of the fetal lead shield, and (b) a photo of the fetal lead shield positioned 
during the PD measurements.

Table 1. PD measurement conditions for the 6 MV photons.

 Field Size (cm2)
  6×6 10×10 15×15 20×20 25×25 30×30

 Depth (cm) 1.5, 5, 10 1.5, 5, 10 1.5, 5, 10 1.5, 5, 10 1.5, 5, 10 1.5, 5, 10
 Distance from 5, 10, 15, 20, 5, 10, 15, 20, 5, 10, 15, 20, 5, 10, 15, 20, 5, 10, 15, 20, 5, 10, 15, 20,
 field edge (cm) 30, 40 30, 40 30, 40 30, 40 30, 40 30, 40

 MLC Shaped Shaped, Shaped Shaped Shaped Shaped   Retracted
 Collimator Angle
 (degree) 90 0, 90 90 90 90 90
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Additionally, the height of the fetal shield was adjusted so that its highest point was within 
10 cm of the phantom surface. To shield the fetus from posterior treatment fields, a series of ten 
5 cm thick lead bricks were aligned on the treatment couch to cover an area of approximately 
50 × 40 cm2. The lead bricks were positioned so they would be directly under the phantom at 
approximately the level of the ion chamber. The rest of the treatment couch was covered with 
5 cm of Styrofoam block to provide a flat surface for the phantom (see Fig. 2).

To compare the measured PD with the dose estimated in the treatment planning system 
(TPS), the Solid Water phantom was scanned (0.3 cm slice thickness) using a Philips 16 slice 
CT scanner (Royal Philips Electronics, Eindhoven, The Netherlands). The dataset was imported 
into the Eclipse TPS (version 11, Varian Medical Systems), and the PDs for the static fields 
listed in Table 1 were calculated as a function of depth and distance. Doses were calculated 
using a 0.25 cm grid size with the analytic anisotropic algorithm (AAA) version 11.0.31 and 
Acuros XB (AXB) algorithm version 11.0.30 in the TPS.

To estimate PD from clinically relevant treatment sites, a series of treatment plans were 
generated in the TPS. A RANDO anthropomorphic phantom (The Phantom Laboratory, Salem, 
NY) and a stack of 30 × 30 × 30 cm3 Solid Water slabs, which was abutted inferiorly to the 
bottom of the RANDO phantom (see Fig.2(a)), were scanned with the CT and imported into 
the TPS. Treatment plans were generated for brain, head and neck, and lung treatment sites, 
using 3D conformal and intensity modulated radiation therapy (IMRT) techniques with 6 MV 
and 6 FFF beams (see Table 2). For the brain and lung treatment plans, contours were drawn 
and treatment plans were generated to provide suitable dose coverage to the planning target 
volume (PTV) while minimizing the dose to the surrounding organs at risk (OARs), based on 
the objectives and constraints specified in our standard clinical treatment planning directives. 
All plans were reviewed by an independent, qualified medical physicist. The head and neck 
plans were based on clinical plans generated for a pregnant patient who was treated in our 
department. A summary of the PTV and OAR dose limits used for planning each body site are 
listed in Table 3. The phantom was localized using kV on-board imaging. PD measurements 
were then acquired for all treatment plans and techniques.

Fig. 2. A sagittal schematic view (a) of the phantom used for the clinical treatment plan measurements. The phantom 
consisted of a RANDO phantom abutted to a 30 × 30 × 30 cm3 Solid Water stack. An example ion chamber position is 
shown in the schematic. A schematic aerial view (b) of the posterior fetal lead shield. A series of 10 bricks with the thick-
ness of 5 cm were aligned to cover an area of approximately 50 × 40 cm2. The lead bricks were placed on the treatment 
couch at the approximate position of the fetus. The rest of the treatment couch was covered with 5 cm of Styrofoam to 
provide a flat surface for the patient/phantom.
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Initially, multiple measurements for each data point were acquired. Due to concerns with 
overheating and the length of time required to complete the more than 300 measurements, we 
examined the variation in our point measurements. The variation was less than 0.5%; single 
measurements for each data point were acquired for subsequent setups. To monitor the repro-
ducibility of the measurements, repeat measurements for select data points were performed 
during the separate data collection sessions, which showed an average error of less than 3%.

 
III. RESULTS 

A mobile custom fetal shield was designed to accommodate multi-angle external beam radiation 
therapy. The measured PDs for square, static fields at a gantry angle of 0° are shown in Figs. 3(a) 
to 3(d). All PD measurements were normalized to the CAX dose at the depth of 1.5 cm, for the 
same field sizes. Figure 3(a) shows the PD at a depth of 10.0 cm as a function of distance from 
the field edge for varying field sizes. In the absence of the fetal shield, as the distance from the 
field edge increases from 10 to 40 cm, the PD decreases from 0.30% to 0.01% and 2.14% to 

Table 2. Treatment plans that were generated to evaluate PD measurements.

 Body Site TPS Technique Energy

 Brain 3D 6 MV, 6 MV FFF
 Brain IMRT, VMAT 6 MV
 Whole Brain 3D 6 MV
 Head and Neck bilateral 3D, IMRT, VMAT 6 MV
 Lung - Left upper lobe 3D, IMRT 6 MV

TPS = treatment planning system.

Table 3. Dose limits and objectives for planning target volumes (PTVs) and organs at risk (OARs).

  Prescription
  Dose Number of
 Plan (Gy) Fractions Structure Dose Limits

 Brain 54 27 PTV 95% of IDL covers PTV
    Brainstem Max to 0.1 cc less than 54 Gy

 Whole Brain 30 10 PTV 95% of IDL covers PTV

 Head and

 

66 33

 

PTV

 More than 100% of PTV volume receives at 

 

Neck bilateral

    least 95% of prescription dose.
     No more than 0% of PTV volume receives 
     more than 105% of prescription dose.
    Brainstem Max to 0.1 cc less than 54 Gy
    Cord Max to 0.1 cc less than 45 Gy
    Cord PRV 5mm Max to 0.1 cc less than 50 Gy
    Esophagus Mean dose less than 20 Gy
    Larynx Mean dose less than 20 Gy
    Lips V35.0 Gy< 5%
 

 Lung – left

 

60 30

 PTV Prescription dose cover 90% of PTV

 upper lobe
   Both Lungs

    minus GTV V20.0 Gy< 35%

    Cord Max to 0.1 cc less than 45 Gy

IDL = isodose line; PRV = planning organ at risk volume.
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0.09% for field sizes of 6 × 6 and 30 × 30 cm2, respectively. In the presence of the fetal shield, 
the PD for the 6 × 6 cm2 field size decreases from 0.30% to 0.26% and 0.01% to 0.005% at 
distances of 10 and 40 cm from the field edge. For a 30 × 30 cm2 field size, the PD decreases 
from 2.14% to 2.01% and 0.09% to 0.05% at distances of 10 and 40 cm from the field edge. 
Figure 3(b) shows the normalized PD measured at a distance of 30 cm from the field edge, with 
and without fetal shield, as a function of field size. As the depth increases from 1.5 to 10.0 cm, 
the PD increases from 0.01% to 0.02% and 0.14% to 0.20% for field sizes of 6 × 6 and 30 × 
30 cm2, respectively. With the fetal shield in place, a similar increase in PD was noted as the 
depth increases from 1.5 to 10 cm. For these depths and field sizes of 6 × 6 and 30 × 30 cm2, 
the PD was observed to increase from 0.01% to 0.02% and 0.05% to 0.15%, respectively.

Figure 3(c) shows the effect of collimator rotation with and without the fetal shield for a 10 × 
10 cm2 field size with the MLCs retracted. In the absence of fetal shield, our results show that 
by rotating the collimator to 90° as compared to 0°, the PD decreases from 1.03% to 0.87% at 
a distance of 10 cm from the field edge. In the presence of the fetal shield, the PD is reduced 
from 1.03% to 0.57% at 10 cm with the collimator at 90°.

Figure 3(d) demonstrates the effect of the tertiary MLC on the PD with and without the 
fetal shield for a 10 × 10 cm2 field size as a function of distance from the field edge. For this 
measurement, the collimator rotation was set to 0°. In the presence of the MLCs without the 
fetal shield, the PD decreased from 1.03% to 0.62% at a distance of 10 cm from the field edge. 
In the presence of both the MLCs and fetal shield, the PD was reduced from 1.03% to 0.57% 
at a distance of 10 cm from the field edge. A summary of the PD measurements relative to the 
CAX with and without the fetal shield are provided in Tables 4 and 5. These measurements can 
be used to estimate the fetal dose in the presence and absence of the fetal shield by determining 
the approximate distance from the fetus to the field edge, depth, the field size (using the most 

Fig. 3. Measured PDs for static, square fields with a gantry angle of 0° normalized to the central axis dose at a depth of 
1.5 cm. (a) PD measured at a depth of 10 cm as a function of distance from the field edge for different field sizes. These 
measurements were acquired with the MLC shaped to the field apertures and with a collimator rotation of 90°. (b) PD 
measured at a distance of 20 cm from the field edge at different depths as a function of field size with the MLC shaped 
around the field apertures and 90° collimator rotation. (c) PD measured with and without the fetal shield at a depth of 
10 cm, plotted as a function of distance from the field edge with collimator angles of 0 and 90° for the field size of 10 × 
10 cm2. The field was shaped with the jaws, and the MLCs were fully retracted. (d) PD measured at a depth of 10 cm, 
plotted as a function of distance from the field edge for a 10 × 10 cm2 field with the MLC shaped versus MLC retracted. 
Measurements were acquired at a collimator angle of 0°. For all plots, the solid lines represent the measured normalized 
PD in the absence of the fetal shield, while the dashed lines represent the measured normalized PD in the presence of 
the fetal shield.
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conservative field size for the treatment), and photon energy. For example, consider a pregnant 
patient who is prescribed a central axis dose of 50 Gy using 6 MV photons, and a maximum 
treatment field size of 20 × 20 cm2. The dose to the fetus located at a distance of approximately 
30 cm from the field edge can be estimated using Tables 4 and 5. Based on these tables, the 
estimated dose to the fetus with and without the shield at a depth of 10 cm can be calculated as 
50 Gy × 0.0012 = 0.06 Gy and 50 Gy × 0.0009 = 0.04 Gy, respectively. Alternatively, if a patient 
is scheduled to be treated using one of the treatment techniques and sites listed in Table 6, one 
could estimate the dose to the fetus based on the PD estimates listed in Table 6. A summary of 
the dose estimates with and without the fetal shield to a fetal point approximated at a distance 
of 50 cm from the CT reference point illustrated in Fig. 2(a) for each of the measured, clinical 
plans and sites is shown in Table 7.

Figure 4 shows the effect of collimator rotation with and without field-shaping with the MLC. 
To evaluate the effects of collimator rotation and the MLC, the measured PDs is normalized 
to the central axis dose (CAX) at a depth of dmax. Figure 4(a) shows the PD with the MLC 
retracted, and Fig. 4(b) shows the PD with the MLC shaped around the field aperture at col-
limator rotations of 0° and 90°. The PD measurements were acquired for a 10 x 10 cm2 field 
size at distances of 5 to 40 cm from the field edge.

Figures 5(a) and 5(b) show the measured and calculated PDs normalized to the CAX at the 
same depth and field size as a function of distance from the field edge. The calculated PDs 
decrease as the distance from the field edge increases; however, compared to measurements 
for static fields, at 10 cm from the field edge the calculated PD was underestimated on average 
by 48% and 44% for the AAA and AXB algorithms, respectively. The underestimation of PD 
by the dose calculation algorithms increases as the distance from the field edge increases. At 

Table 4. Percent ratio of the measured PD normalized to the central axis (CAX) dose at depths of 1.5, 5, and 10 cm for 
varying field sizes and depths at distances ranging from 5 to 40 cm from the field edge in the absence of the fetal shield.

 Distance From the Field Edge
 Field size Depth  Collimator Angle (cm)
 (cm) (cm) MLC Status (degree) 5 10 15 20 30 40

 6×6 1.5 Shaped 90 0.46 0.15 0.06 0.03 0.01 0.01
 6×6 5 Shaped 90 0.65 0.20 0.08 0.04 0.02 0.01
 6×6 10 Shaped 90 1.00 0.30 0.12 0.06 0.02 0.01
 10×10 1.5 Retracted 0 2.22 0.87 0.55 0.31 0.12 0.06
 10×10 5 Retracted 0 2.35 0.91 0.53 0.31 0.13 0.06
 10×10 10 Retracted 0 2.86 1.03 0.54 0.34 0.12 0.05
 10×10 1.5 Retracted 90 1.47 0.68 0.34 0.17 0.07 0.03
 10×10 5 Retracted 90 1.75 0.73 0.37 0.18 0.07 0.03
 10×10 10 Retracted 90 2.32 0.87 0.43 0.21 0.08 0.03
 10×10 1.5 Shaped 0 0.94 0.31 0.15 0.10 0.04 0.04
 10×10 5 Shaped 0 1.27 0.42 0.20 0.14 0.05 0.03
 10×10 10 Shaped 0 1.91 0.62 0.27 0.20 0.05 0.03
 10×10 1.5 Shaped 90 0.93 0.36 0.15 0.07 0.02 0.01
 10×10 5 Shaped 90 1.26 0.46 0.21 0.10 0.03 0.01
 10×10 10 Shaped 90 1.90 0.64 0.28 0.13 0.04 0.02
 15×15 1.5 Shaped 90 1.47 0.59 0.30 0.15 0.04 0.02
 15×15 5 Shaped 90 1.98 0.76 0.37 0.20 0.06 0.02
 15×15 10 Shaped 90 2.96 1.07 0.50 0.26 0.07 0.03
 20×20 1.5 Shaped 90 1.91 0.79 0.40 0.23 0.07 0.03
 20×20 5 Shaped 90 2.63 1.04 0.51 0.29 0.09 0.03
 20×20 10 Shaped 90 3.91 1.46 0.70 0.37 0.12 0.04
 25×25 1.5 Shaped 90 2.24 0.95 0.48 0.28 0.11 0.04
 25×25 5 Shaped 90 3.18 1.29 0.64 0.36 0.14 0.05
 25×25 10 Shaped 90 4.74 1.82 0.88 0.47 0.16 0.06
 30×30 1.5 Shaped 90 2.57 1.09 0.56 0.32 0.14 0.06
 30×30 5 Shaped 90 3.70 1.50 0.75 0.42 0.16 0.07
 30×30 10 Shaped 90 5.56 2.14 1.05 0.57 0.20 0.09
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distances of  ≥ 15 and 20 cm from the field edge for AAA and AXB, respectively, the calculated 
PD values were zero.

Figure 6 shows the percent ratio of the measured PD to the prescribed planning target volume 
(PTV) dose for each body site. When considering brain radiotherapy, the presence of the fetal 
shield reduced this percent ratio, on average, from 0.04% to 0.03%. For head and neck and lung 
treatment plans the percent ratio of PD to the prescribed PTV dose was reduced, on average, 
from 0.19% to 0.17% and from 0.13% to 0.08%, respectively. A summary of the PDs measured 

Table 5. Percent ratio of the measured peripheral dose normalized to the central axis (CAX) at depth of 1.5 cm dose for 
varying field sizes and depths at distances ranging from 5 to 40 cm from the field edge in the presence of the fetal shield.

 Distance From the Field Edge
 Field size Depth  Collimator Angle (cm)
 (cm) (cm) MLC Status (degree) 5 10 15 20 30 40

 6×6 1.5 Shaped 90 0.32 0.12 0.06 0.03 0.01 0.00
 6×6 5 Shaped 90 0.56 0.19 0.08 0.04 0.01 0.00
 6×6 10 Shaped 90 0.88 0.26 0.11 0.05 0.01 0.00
 10×10 1.5 Retracted 0 0.73 0.31 0.16 0.08 0.02 0.01
 10×10 5 Retracted 0 1.21 0.43 0.21 0.10 0.03 0.01
 10×10 10 Retracted 0 1.73 0.58 0.26 0.13 0.04 0.01
 10×10 1.5 Retracted 90 0.71 0.30 0.15 0.07 0.02 0.01
 10×10 5 Retracted 90 1.20 0.42 0.20 0.06 0.03 0.01
 10×10 10 Retracted 90 1.73 0.57 0.25 0.12 0.04 0.01
 10×10 1.5 Shaped 0 0.65 0.26 0.13 0.06 0.02 0.01
 10×10 5 Shaped 0 1.10 0.39 0.18 0.09 0.02 0.01
 10×10 10 Shaped 0 1.64 0.54 0.23 0.12 0.03 0.01
 10×10 1.5 Shaped 90 0.65 0.26 0.13 0.06 0.01 0.01
 10×10 5 Shaped 90 1.13 0.39 0.18 0.09 0.02 0.01
 10×10 10 Shaped 90 1.66 0.54 0.23 0.11 0.03 0.01
 15×15 1.5 Shaped 90 1.13 0.45 0.22 0.11 0.02 0.01
 15×15 5 Shaped 90 1.81 0.66 0.31 0.16 0.04 0.02
 15×15 10 Shaped 90 2.78 0.92 0.41 0.20 0.06 0.02
 20×20 1.5 Shaped 90 1.67 0.62 0.32 0.17 0.03 0.02
 20×20 5 Shaped 90 2.56 0.92 0.45 0.23 0.06 0.02
 20×20 10 Shaped 90 3.76 1.29 0.60 0.30 0.09 0.03
 25×25 1.5 Shaped 90 2.21 0.80 0.41 0.22 0.04 0.02
 25×25 5 Shaped 90 3.33 1.20 0.59 0.31 0.08 0.03
 25×25 10 Shaped 90 4.73 1.67 0.77 0.40 0.12 0.04
 30×30 1.5 Shaped 90 2.60 0.96 0.50 0.27 0.05 0.02
 30×30 5 Shaped 90 3.92 1.42 0.71 0.38 0.10 0.05
 30×30 10 Shaped 90 5.45 2.01 0.94 0.48 0.15 0.05

Table 6. Percent ratio of the measured PD to the prescribed PTV dose for several clinically relevant body sites that 
were generated for this study. The PD data are shown both with and without the fetal shield.

   Without Shield With Shield
  PTV Volume Ratio of PD to PTV Dose Ratio of PD to PTV Dose
  (cm3) (%) (%)

 Brain 3D 336 0.015 0.013
 Brain 3D FFF 336 0.012 0.011
 Brain IMRT 336 0.059 0.041
 Brain VMAT 336 0.042 0.032
 Whole Brain 2505 0.072 0.066
 Head and Neck 3D 721 0.111 0.075
 Head and Neck IMRT 721 0.278 0.258
 Head and Neck VMAT 721 0.169 0.162
 LUL 3D 211 0.117 0.085
 LUL IMRT 211 0.138 0.084

LUL = left upper lobe of lung.
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for the clinically relevant plans are provided in Table 6. On average, the fetal shield reduced 
the percent ratio of the PD to prescribed PTV dose by 28% and 14% for three-dimensional 
conformal and IMRT treatment plans, respectively, for all body sites considered in Table 2.

 

Table 7. The estimated fetal doses with and without the fetal shield based on the measured clinical plans listed in 
Table 2. A distance of 50 cm was maintained between the CT reference and the ion chamber used for these measure-
ments, as shown in Fig. 2(a). The distance displayed in this Table is the measured distance between the center of the 
PTV and the ion chamber for each clinical setup.

  Distance Total PTV (or CAX) Dose PD Without Shield PD With Shield PD
  (cm) (Gy) (cGy) (cGy)

 Brain 3D 50 54 8.10 0.70
 Brain 3D FFF 50 54 0.65 0.59
 Brain IMRT 50 54 3.19 2.21
 Brain VMAT 50 54 2.27 1.73
 Whole Brain 50 30 2.16 1.98
 Head and Neck 3D 40 66 7.33 4.95
 Head and Neck IMRT 40 66 18.35 17.03
 Head and Neck VMAT 40 66 11.15 10.69
 LUL 3D 30 60 7.02 5.10
 LUL IMRT 30 60 8.28 5.04

LUL = left upper lobe of lung.

Fig. 4. Measured PDs from a 10 × 10 cm2 field normalized to the central axis dose (CAX) at a depth of dmax for a 6 MV 
photon beam with the MLC (a) retracted and (b) shaped to the field aperture. The PD for the 0° collimator rotation is 
shown in the solid lines, and the 90° rotation is shown in the dashed lines.

Fig. 5. Measured and calculated PDs normalized to the central axis dose (CAX) at a depth of 1.5 cm. PD was measured at 
depths of 1.5, 5.0, and 10.0 cm as a function of distance from the field edge and compared to PD calculated with Eclipse’s 
(a) anisotropic analytical algorithm (AAA) and (b) Acuros XB (AXB). All PD measurements and calculations were per-
formed with a collimator angle of 0° and with the MLC retracted for the field size of 10 × 10 cm2.
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IV. DISCUSSION

Commissioning measurements were divided into PDs measured from simple, static square 
fields and clinically relevant treatment plans. For static fields, we found that in the absence of 
the fetal shield, the PD trends were consistent with measurements performed by other investi-
gators.(5-12,26) The PD decreased as the distance from the field edge increased due to the lower 
contribution of collimator scatter, head leakage, and patient scatter as determined by Stovall 
et al.(1) Additionally, it was noted that at the same distance from the field edge, a higher PD 
was measured as the field size increased. This behavior results from an increase in head scatter 
(e.g., scatter from the collimators and flattening filter) and is consistent with previous find-
ings.(1,5,6,9,10,12) As suggested in previous publications(5,9,10) as well as the current study, when 
compared to measurements with a 0° collimator rotation, PD decreases when the collimator is 
rotated to 90°, where the direction of motion of the lower jaws are parallel to the cranial-caudal 
axis of the patient. As such, the lower jaws provide additional shielding in the cranial-caudal 
axis, which is relevant when considering treatment strategies to reduce fetal dose. Shaping the 
field aperture with the tertiary MLCs also reduced the PD by reducing the head leakage and 
head scatter.

Several studies recommend the use of MLCs combined with an appropriate collimator rota-
tion.(9,10,20,27) Although a collimator rotation (90° vs. 0°) in the absence of MLC field-shaping 
will reduce PD, our results showed that when the MLC shapes the field aperture, the applica-
tion of a 90° collimator rotation is not clinically significant as was previously suggested by 
Mutic et al.(5) This has important implications for treatment planning and supports the use of 
techniques such as field-in-field.

The measured treatment plans also demonstrated that as the distance between the treatment 
site and measurement point increased, the PD decreased. This was again due to the lower con-
tribution of collimator scatter, head leakage, and internal scatter as the distance from the field 
edge increased. Additionally, as the volume of the PTV increased, the PD increased. This is 
due to the fact that larger PTVs require larger field apertures and as the field size increases, PD 
increases due to increased collimator scatter.(5,6,9-12,26) When the plans for individual sites were 
compared, it was found that the measured PD for head and neck treatment plans were higher 
than the measured PD for lung treatment plans, even though the lung PTVs were closer to the 

Fig. 6. Percent ratio of the measured PD to the prescribed PTV dose for each body site. The red bars represent the percent 
ratios with the fetal shield in place, while the blue bars show the ratio in the absence of the shield. The volume of each 
PTV in cubic centimeters is noted above each treatment site. 3D = three-dimensional conformal treatment planning; FFF = 
flattening filter free; IMRT = intensity-modulated radiation therapy; VMAT = volumetric-modulated arc therapy; HN = 
head and neck; LUL = left upper lobe of lung.
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PD measurement points. We believe this effect was due to the larger treatment volumes and 
higher beam modulation in the head and neck treatment plans that were considered for this study.

By introducing the fetal shield, the PD was found to decrease, as expected, and the PD reduc-
tion increased with increasing distance from the field edge. Additionally, the shielding effect 
was observed to be greater for larger field sizes (on average, 44% for a 30 × 30 cm2 compared 
to 35% for a 6 × 6 cm2 at a distance of 30 cm from the field edge). It was shown that in areas 
near the field edge, collimator and internal scatter are the main contributors to PD;(1,12) but at 
larger distances from the field edge (i.e., beyond 30 cm), head leakage is the dominant factor in 
PD. External shields are effective in reducing the contribution of head scatter and head leakage 
to PD. Therefore, at greater distances from the field edge and for larger field sizes, the fetal 
shield has a greater effect in PD reduction.(1,6,12)

The largest potential sources of uncertainty in the PD measurements include the variation 
in individual point measurements and the variation in phantom and equipment setup, given the 
data collection was acquired over several months. As noted, multiple measurements for each 
data point were acquired early in the study, and the variation was determined to be less than 
0.5%. To ensure the applicability of single measurements over the timeframe of the study, a 
subset of data points were acquired during each measurement session. The reproducibility of 
these repeat measurements at each session was consistent with the initial stable behavior of 
the linear accelerator.

The accuracy of PD calculations with the algorithms available in commercial TPSs are 
generally poor, as demonstrated by several investigators.(28-30) Howell et al.(30) observed that 
Eclipse’s AAA version 8.6 underestimated PD on average by 40% over a distance of 3.75 to 
11.25 cm from the field edge and up to 55% at a distance of 11.25 cm. This was confirmed in a 
previous study from our group,(31) where we found that Eclipse’s AAA version 11.0.31 and AXB 
version 11.0.30 underestimated PD on average, by 33% and 17%, respectively. Additionally, 
Huang et al.(29) reported that the PD was underestimated by an average of 50% using Pinnacle 
version 9.0. The reported deviations between measured and calculated PDs is due in part to 
inadequate modeling of head leakage, head scatter and patient scatter.(29) Kry et al.(32) simulated 
a complete Varian Clinac 2100 linac head including all head shielding using MCNPX. They 
reported an average 16% dose difference between their Monte Carlo simulation and measure-
ments for a 6 MV photon beam over a range of 50 cm from the field edge. Based on our cur-
rent study, the observed difference between the measured and calculated PD increases as the 
distance from the field edge increases. Furthermore, the calculated PD approaches zero in the 
Eclipse TPS for distances beyond 12 cm from the field edge for the AAA and AXB algorithms. 
AAA underestimates dose due to the algorithm limiting the size of the dose matrix to minimize 
the number of calculation point used. AXB calculates dose to the entire volume but is limited 
by the input fluence margins. The reader can find a detailed summary on the limitations of the 
dose calculation in the Varian Eclipse Photon and Electron Algorithms Reference Guide.(33) 

The newly designed fetal shield can reduce the PD for the pregnant patients and is safe and 
easy to set up. Due to its design, we are able to use a broad range of treatment techniques and 
beam angles without needing to shift the patient or shield during treatment. Additionally, the 
comprehensive PD dataset that was collected in this study allows our treatment team to assess 
fetal dose without the need to perform pre-treatment PD measurements, which could potentially 
delay the patient’s start date.

 
V. CONCLUSIONS

We performed a comprehensive set of PD measurements for a range of static and clinically 
relevant treatment plans with and without the fetal shield. This dataset is intended to be used 
by the prescribing physician and treatment team to estimate fetal dose limits and help guide 
decisions on treatment technique as needed.
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