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Abstract 

Despite wide applications of high-throughput biotechnologies in cancer research, many 

biomarkers discovered by exploring large-scale omics data do not provide satisfactory 

performance when used to predict cancer treatment outcomes. This problem is partly 

due to the overlooking of functional implications of molecular markers. Here, we present 

a novel computational method that uses evolutionary conservation as prior knowledge 

to discover bona fide biomarkers. Evolutionary selection at the molecular level is 

nature’s test on functional consequences of genetic elements. By prioritizing genes that 

show significant statistical association and high functional impact, our new method 

reduces the chances of including spurious markers in the predictive model. When 

applied to predicting therapeutic responses for patients with acute myeloid leukemia 

and to predicting metastasis for patients with prostate cancers, the new method gave 

rise to evolution-informed models that enjoyed low complexity and high accuracy. The 

identified genetic markers also have significant implications in tumor progression and 

embrace potential drug targets. Because evolutionary conservation can be estimated as 

a gene-specific, position-specific, or allele-specific parameter on the nucleotide level 

and on the protein level, this new method can be extended to apply to miscellaneous 

“omics” data to accelerate biomarker discoveries.  

 

Keywords: Genomics/Proteomics, Transcriptomics, Molecular Evolution, Evolutionary  

Medicine  
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Introduction 

In the past two decades, high-throughput biotechnologies have greatly accelerated 

cancer research and become an indispensable component in scientific and clinical 

practices. “Omics” data combined with advanced computational modeling, hold promise 

in discovering novel biomarkers to help improve cancer medicine (Kristensen et al. 

2014). However, models constructed from global molecular profiles often consist of a 

large number of biomarkers that have no obvious functional relevance to the biological 

processes under investigation (Berger et al. 2013). These biomarkers are usually 

selected based on statistical association, which is pestered with false positive results in 

large-scale analysis. Inclusion of these excessive markers renders a model prone to 

overfitting (Cawley 2010; Liu et al. 2014; Ludwig and Weinstein 2005; Sham and Purcell 

2014). In fact, biomarkers discovered by mining these “omics” data often show 

unsatisfactory performance when used to assist disease diagnosis, prediction of cancer 

outcomes, or identification of therapeutic targets (Brooks 2012; Kulasingam et al. 2010; 

Kwon et al. 2012; Massuti et al. 2013). Thus, many researchers advocate informed 

analysis that combines biological knowledge, such as functional annotations and 

biological pathways, with computational modeling to interpret “omics” data, hoping to 

identify bona fide biomarkers to facilitate biomedical research (Chen et al. 2009; Hill et 

al. 2012; McDermott et al. 2013). 

Cancer is an evolutionary disease (Greaves and Maley 2012), but cancer 

biomarker discovery rarely integrates evolutionary selection. Sequence conservation 

inferred from genomes of evolutionarily diverse species represents a valuable resource 

of biological knowledge. As mutations disrupting critical molecular functions have been 

consistently purified from the species pool over eons, sequences of functionally 

important genes remain conserved across species. The expression of conserved genes 

is also under more stringent regulation than variable genes (Liao and Zhang 2006; 

Podder and Ghosh 2010). Thus, evolutionary conservation has been used as an 

effective indicator of functional importance (Kumar et al. 2011; Kumar et al. 2012; Pei 

and Grishin 2001). Evolutionary conservation has left comprehensible signatures in 

cancers. It has been shown that proto-oncogenes and tumor suppressor genes are 
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among the most highly conserved genes (Shilo and Weinberg 1981). A majority of 

somatic cancer driver mutations interrupt positions that do not tolerate germline 

mutations (Dudley et al. 2012). Therefore, evolutionary conservation of genetic 

elements can provide valuable guidance to cancer biomarker discovery by eliminating 

spurious markers that show fortuitous statistical associations but little biological 

relevance. 

Not all conserved genes contribute to carcinogenesis and cancer progression, 

and not all cancer genes are evolutionarily conserved (Ballard-Barbash et al. 2012). 

Applying evolutionary conservation on cancer biomarker discovery also requires 

simultaneous consideration of statistical association to achieve high predictive power.  

In this study, we present a computational method that uses evolutionary conservation 

as prior knowledge within a machine learning framework to assist biomarker selection. 

We applied this new method to predict therapeutic responses in acute myeloid leukemia 

(AML) patients and to predict metastasis in prostate cancers. The results show that 

evolution-informed models enjoy high predictive accuracy using only a few functionally 

important biomarkers, thus ameliorated the risk of overfitting. We further show that the 

identified genetic markers are involved in tumor progression and embrace potential drug 

targets. These experiments demonstrate that evolution-informed modeling successfully 

improves biomarker selection to go beyond statistical association and seek biological 

implications.  

 

Materials and methods 

Cancer datasets

Noren et al. 2016

: We first developed this method to participate in the DREAM 9 Acute 

Myeloid Leukemia (AML) Challenge ( ). A total of 31 teams from 

around the world, including our team, participated in this challenge. Provided by the 

challenge 

organizers and available from their official website 

(https://www.synapse.org/#!Synapse:syn2455683/wiki/64007), this dataset consisted of 

291 patients who were newly diagnosed with AML and received induction therapy. 
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Treatment outcomes were recorded as complete response or resistance to induction 

therapy. Each patient was measured on 40 clinical covariates  describing demographic, 

cytogenic, mutation status, and the results of several standard blood tests. Proteomic 

data were available for each patient sample obtained prior to treatments. The proteomic 

features represent levels of 231 total or phosphorylated proteins, focusing on proteins 

involved in apoptosis, cell-cycle, and signal-transduction pathways. Seventy-nine of 

these proteins have confirmed roles in oncogenesis and cancer progression (i.e., 

cancer driver genes), as annotated by the Cancer Gene Consensus list in the COSMIC 

database (Forbes et al. 2015).  The goal was to predict if a patient will have a complete 

response or resistance to chemotherapy using clinical and proteomic markers. Of the 

total 291 patient samples, the DREAM organizer provided 191 samples to us for 

biomarker selection and model training. The other 100 samples were depleted of 

treatment outcome labels and used for blind testing.  

The second cancer dataset was downloaded from NCBI GEO database 

(accession number: GSE10645). This dataset consisted of 401 patients who were 

diagnosed with prostate cancer and received prostatectomy (Nakagawa et al. 2008). 

Treatment outcomes were recorded as metastatic recurrence after surgery or no 

evidence of disease progression within 5 years. However, all patients have increased 

level of prostate-specific antigen (PSA) that is routinely used to monitor disease 

recurrence. For each patient, a panel of 1,021 oncogenes, tumor suppressor genes and 

genes in their associated pathways was interrogated using Agilent custom gene 

expression microarrays. In particular, 604 genes on this panel have previously been 

associated with prostate cancer progression. No clinical covariate was available for 

these patients. The goal was to predict metastatic recurrence using genetic markers. 

Estimate evolutionary conservation Kumar et al. 2012: Using the Fitch algorithm ( ), we 

computed the absolute substitutional rate (r ) of each position in a human protein 

sequence. Given a human protein, we retrieved multiple sequence alignments of its 

orthologs in 46 species available from the UCSC Genome Browser (Fujita et al. 2011). 

These species form a timetree that contains representatives from all major groups of 

vertebrates (Fig. 1). These species include 10 primates, 13 placental mammals, 3 non-
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placental mammals and 9 other vertebrates that collectively represent over 500 million 

years of evolutionary history. The branch length between two species was set to their 

divergence time obtained from the TimeTree database, in the unit of million years 

(Hedges et al. 2006). The total branch length of this timetree is 5.8 billion years. For 

each position in the alignments, a new tree was created containing only taxa that do not 

have a gap at this position. The evolutionary time span, t of a position equals to the sum 

of branch lengths in this new tree. The number of substitutions s is the count of different 

amino acids at this position. We computed absolute substitution rate r = 1000 × s t⁄  in 

the unit of substitution / billion years. For a protein of length �, the evolutionary rate (�) 

was estimated as the average � over all positions (� =  
1�∑ ����=1 ).  

Evolution-informed modeling

Composite weighting schema: Because fast evolutionary rate indicates low 

conservation, we used its reciprocal (1/�) as the evolutionary weight (WE). For clinical 

covariates, there is no meaningful score of evolutionary conservation. Because clinical 

features tend to have higher predictive power than molecular features in general (

: The purpose of evolution-informed modeling is to prioritize 

evolutionarily conserved, and thus functionally important genes during biomarker 

discovery (i.e. feature selection in the machine learning field). The selected biomarkers 

are then used to build a predictive model (i.e. classification). It can be achieved by 

employing (1) a deliberately designed weighting schema, (2) an effective feature 

selection algorithm, and (3) a robust classification model.  

Falini 

et al. 2007; Thiede et al. 2006; Walter et al. 2015a; Walter et al. 2015b), we assigned 

the maximum value of all WEs in the dataset to clinical features. To assess statistical 

significance, we performed a Student’s t-test for each feature between two clinical 

outcome classes (poor outcome as the positive class, good outcome as the negative 

class). In the presence of multiple classes, other statistical tests such as F test can be 

used. P values from these tests were transformed via negative logarithm (-log(P)) and 

used as the statistical weight (WS). For each feature i, the final weight was the sum of 

evolutionary weight and statistical weight (W i = WE i + WS i). In this paper, we assumed 

equal contribution of evolutionary conservation and statistical association to the final 
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weights. However, their relative contributions can be adjusted based on the 

understanding of a specific cancer phenotype. 

Feature selection: Within a cancer dataset, we first normalized each clinical and 

molecular feature by computing z-scores that have a distribution with a mean of 0 and a 

standard deviation of 1. Let a feature matrix f ij denote the normalized values of the ith 

features for the jth sample (Figure 2a). We then transformed this feature matrix by 

multiplying W i for each feature. This weighted feature matrix f ij
w was subject to feature 

selection (Figure 2b). In particular, we used the l1

Liu 2009

-norm regularized logistic regression, 

as implemented in the SLEP package ( ). Our purpose is to solve the following 

problem: 

min� ∑ log �1 + exp �−�������� + ���� +  �‖�‖1��=1    [1] 

Where y j and f j
w are the class label and the weighted feature vector for the jth sample, 

respectively, c is a constant corresponding to the intercept in a linear model, λ is the 

regularization parameter and x is the solution. By assigning higher weights to 

evolutionarily conserved and/or statistically significant features, we increased the 

absolute value of f j
w

min� ∑ log �1 + exp �−������� + ���� +  �∑ 1�� |��|���=1   [2] 

. In fact, the formulation is [1] is equivalent to the following problem:  

In equation [2], a larger penalty is imposed on features with a small weight. 

Consequently, the solution will favor the features with a large weight.  

In equation [1] and [2], the calculation of x requires the selection of the most appropriate 

regularization parameter (λ), which dictates the number of features selected (receiving 

non-zero x values). To reduce such dependence, we employed a stability selection 

method. In particular, 100 bootstraps were performed to identify features that are 

consistently selected in more than 50% of runs of the algorithm with different λ values. 

Classification: A classification model was constructed with selected features 

(Figure 2c). In this step, the un-weighted feature matrix f ij was used to avoid biases. 

The classification model was a random forest with 50 trees, as implemented in the 
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TreeBagger function in Matlab (version R2013a). While we chose to use random forest 

for classification, other linear or non-linear algorithms can be employed as well.  

Bootstrapping: To avoid bias caused by the imbalance of class size (García et al. 

2007), we wrapped a bootstrapping process around the above feature selection and 

classification steps. Specifically, a subset of equal numbers of samples was randomly 

selected from each class. This number was determined as 90% of samples in the 

under-represented class. For each bootstrap, a classification model was obtained, 

which is called a sub-model. By repeating this procedure 100 times, an ensemble of 100 

sub-models were produced.  

Prediction: To classify an unknown sample, 100 predictions were made, one from 

each sub-model. The final prediction was derived by computing a confidence score, 

which equals to the percentage of sub-models that predict the sample as the positive 

class label (Figure 2d).  

Performance Evaluation: We used balanced accuracy (BAC, defined as the 

average of true positive rate and true negative rate) and area under the receiver 

operating characteristic (AUROC) to assess the predictive accuracy of a model. These 

two parameters are robust to the imbalance of class size, and thus commonly used and 

well-documented (García et al. 2007; Noren et al. 2016). 

Results 

We first examined the distributions of evolutionary weights and statistical weights in the 

AML training dataset that consisted of 191 patient samples. Both showed left skewness 

(Fig. 3a, 3b), indicating that most proteins were not functionally critical and not 

statistically associated with the treatment outcome. Therefore, only a small number of 

biomarkers were present (i.e., sparse solution). We then applied the new method to 

build an evolution-informed model. When evaluated on the held-out testing samples that 

consisted of 100 unseen patient samples, our evolution-informed model achieved the 

highest performance among a total of 31 participating teams from around the world, with 

Predict therapeutic responses in acute myeloid leukemia (AML) 
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balanced accuracy of 77.9% and AUROC of 0.796. The runner-up had a slightly lower 

AUROC (0.783) but much lower balanced accuracy (72.8%) (Noren et al. 2016). 

To further understand the impact of evolutionary weighting on feature selection 

and classification accuracy, we compared four different models (Me+s, Me, Ms and M0), 

in which composite weight, only evolutionary weight, only statistical weight or no weight 

was used during feature selection, respectively. The rest of the algorithm was kept the 

same. Our results showed that Me+s achieved the highest performance, with up to 11.0% 

increase on balanced accuracy and 0.102 increase on AUROC as compared to other 

models (Fig. 3c, 3d). Interestingly, Ms

Liu et al. 2014

 that used only statistical weight showed the 

lowest performance. In an effort to understand this, we split the training dataset into two 

random subsets and performed a Student’s t-test within each subset. The correlation of 

p-values between these two subsets was only moderate (coefficient = 0.37), reflecting 

high noise level in proteomic data. Therefore, algorithms that solely rely on statistical 

associations to choose biomarkers from “omics” data may suffer from over-fitting, as 

reported by other studies as well ( ). Evolutionary information, as 

demonstrated in our method, can help effectively reduce the noise level and prioritize 

genes that are biologically important. 

Applying weights during feature selection also helped reduce the complexity of 

the model, as measured by the number of features included in each sub-model (Fig. 3e). 

In the feature selection step, features that were selected in >50% bootstrapping runs 

with a wide range of regularization parameters are regarded as important and 

informative. Under this setting, Me+s achieved an accuracy of 77.9% with an average of 

30 features in each sub-model. Contrarily, in M0

Several studies showed that clinical features were more informative than 

proteomic features in predicting AML outcomes (

, the accuracy dropped to 68% and the 

average number of features increased to 43 in each sub-model. These excessive 

features are likely false positive markers. The fact of significantly fewer features 

achieving significantly higher accuracy demonstrates the power of using evolutionary 

and statistical weights to assist feature selection and classification for predicting AML 

outcomes. 

Cilloni et al. 2008; Gulley et al. 2010; 
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Moon et al. 2010; Noren et al. 2016), which was also reflected in our model. Among the 

most frequently used features that were included in more than 80% of sub-models, only 

two are proteomic (Figure 3f, Supplementary Table 1). However, these two proteins, 

namely PIK3CA and GSK3, both have strong implications in AML therapies. PIK3CA is 

a well-known proto-oncogene (Zhu et al. 2012). The PIK3CA signaling pathway is a 

drug target in treating several hematologic malignancies (Jabbour et al. 2014). GSK3 

plays a role in the control of several regulatory proteins including the proto-oncogene 

JUN, and in the WNT and PI3K signaling pathways that are critical in tumor progression. 

Recently, GSK3A has been suggested as a potential target for treating AML (Banerji et 

al. 2012). Selection of these two potential drug targets without knowing such information 

in priori demonstrated that evolution-informed modeling is capable of identifying 

biomarkers that are computationally powerful and biologically meaningful as well. It is 

also worth noting that both PIK3CA and GSK3 are conserved proteins although they are 

not the most conserved ones in this assay. Similarly, their statistical associations are 

significant but not among the top ones either. Therefore, evolutionary and statistical 

weights do not over-dominate the selection of features. This gave us the desired effect 

on the feature selection process, in which functional importance and statistical 

significance are emphasized, but other factors, such as minimization of classification 

errors still play essential roles.  

In this study, we applied the evolution-informed modeling and evaluated its performance 

by followed a strict cross-validation procedure. Specifically, we randomly chose 80% of 

the samples for training and used the other 20% for independent testing. This procedure 

was repeated 10 times and the averages of balanced accuracy and AUROC values 

estimated from the test datasets were reported. For each iteration, we built an M

Predict metastasis in prostate cancer 

e+s 

model that incorporated evolutionary and statistical weights, and an M0 model that did 

not employ any weight. In addition to finding the optimal model with the highest 

prediction accuracy, this dataset allowed us to examine the performance of models with 

varying complexity, as measured by numbers of features included. We found that Me+s 

achieved the largest improvement over M0 when the models are the simplest (Figure 
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4a, 4b). If only 10 to 20 genes were allowed for each sub-model, Me+s had 4% higher 

accuracy (paired t(19) = 4.95, p = 4.5x10-5) and 4% higher AUROC values (paired t(19) 

= 4.08, p = 3x10-3) than M0. The improvement became insignificant when the complexity 

of a model increased and reached 40 genes in each sub-model. While the best 

performance of Me+s is similar to that of M0 (balanced accuracy: 70.8% vs. 70.1%, 

AUROC: 0.721 vs. 0.731), M0 used twice as many features as Me+s

We further examined genes used in models with the best performance. 

Summarized over all sub-models, 128 and 319 unique genes were included in at least 

one sub-model in the top-performing M

 (number of features 

included in each sub-model: 40 vs. 20). 

e+s model and in the top-performing M0 model, 

respectively. Most genes (80%) in Me+s were also present in M0, while M0 contained 

217 additional genes (Figure 4c). Compared to all genes assayed, these additional 

genes are less conserved (t-test on log(evolutionary rate), t(396) = 3.11, p = 0.002, 

Figure 4d) and have weaker statistical associations (t test on log(p value), t(499) = 3.30, 

p = 0.001, Figure 4e). Because including them in the predictive models negatively 

affected the accuracy, they are probably irrelevant to the metastasis phenotype. Indeed, 

GeneOntology analysis showed that these additional genes are not enriched in any 

biological process. Contrarily, genes in Me+s have higher conservation (t-test on 

log(evolutionary rate), t(150) = -5.33, p = 10-7) and stronger statistical association (t-test 

on log(p value), t(144) = -10.1, p = 10-18

Discussion 

). They are significantly enriched in biological 

processes that have been previously implicated in metastasis and tumor progression, 

such as DNA repair, cell cycle, DNA metabolism, and etc. (Supplementary Table 2).  

As one of the leading causes of morbidity and mortality in the modern world, cancer has 

become a major problem in public health. Accurate prediction of a patient’s response to 

treatment and prognosis can greatly assist clinicians to choose appropriate therapy and 

help improve patient care. High-throughput biotechnologies have generated a large 

amount of “omics” data that can be used for this purpose. However, the high noise level 

in these data impairs the usage in identifying reliable biomarkers. Further, the number of 

samples tested in an “omics” study is usually several orders of magnitudes smaller than 
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the number of molecular features measured, which makes traditionally derived 

statistical models prone to overfitting. In fact, our analysis showed that statistical scores 

tended to describe random error or noise instead of the true underlying relationship in 

omics data. Consequently, these models are hard to interpret and lack generalization 

capability. 

To reduce the noise, we studied the possibility of using evolutionary conservation to 

prioritize functionally important genes as predictive biomarkers. Evolutionary selection 

at the molecular level is nature’s test on functional impact of genetic elements (Kimura 

1983). Compared to other functional annotations, such as functional domains and 

pathways that vary across tissue and developmental stages, sequence conservation is 

directly associated with functional consequence and rigorously tested over eons of 

evolutionary history (Pei and Grishin 2001). In this study, we developed a mathematical 

framework that favorably includes conserved genes for biomarker discovery. By 

applying this new method to predict treatment outcomes for a hematological cancer 

(AML) and for a solid tumor (prostate cancer), we demonstrated that evolution-informed 

models indeed improved the prediction accuracy on cancer outcomes. This helps 

eliminate irrelevant features that are often included due to stochastic factors. Thus, 

more reliable biological inferences can be made using features selected in the 

evolution-informed procedure.  

Gene expression profiles and protein expression profiles modelled in this study are 

molecular changes downstream of genomic alterations. Genomic aberrations play 

critical roles in carcinogenesis and fuel tumor heterogeneity in and between patients. 

Such high molecular heterogeneity forms the foundation of diverse clinical outcomes 

and other cancer phenotypes, as well as makes hunting of cancer driver mutations very 

challenging (Heng 2015). Our previous study showed that frequently observed cancer 

mutations are enriched at evolutionarily conserved positions (Dudley et al. 2012). Thus, 

evolutionary conservation estimated at the nucleotide level may help prioritize cancer 

driver mutations. This suggests that genomic profiles, transcriptomic profiles and 

proteomic profiles of cancer patients can be integrated and prioritized simultaneously 

under a common evolutionary framework.  
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Another aspect of cancer evolution is subclonal evolution within a tumor (Greaves and 

Maley 2012). An increasing number of studies have reported that drug resistance and 

disease relapse in various types of cancers are attributed to expansion of pre-existing or 

newly emerged subclones (Landau et al. 2014; Ding et al. 2012; Burrell and Swanton 

2014).  Given the highly dynamic characteristic of subclones, similar challenges exist in 

identifying driver subclones as in identifying driver mutations. Since cancer is a disease 

of evolution that accumulates genetic mutations while it progresses, it is attractive to 

use mutational load to prioritize subclones. However, we may also argue that functional 

impact of a subclone is more informative than mutational load. In this sense, species-

level evolutionary conservation can be used to derive a composite weight that 

represents aggregated functional impact of all mutations in a subclone. Integrating 

evolutionary signatures on species-level and on individual-level would be a promising 

and exciting new direction of research. 

Meanwhile, biomarker discovery shall not leave out clinical covariates that have been 

associated with cancer treatment outcomes in numerous studies. One difficulty we 

encountered in incorporating clinical covariates in evolution-informed modeling was the 

calculation of meaningful and distinctive priorities for them. Currently, we rely on 

statistical weights computed from the training data, which do not reflect the rich domain 

knowledge. In the future, we will consider deriving scores from meta-analysis, which 

may serve as a better surrogate of priori knowledge aggregated from existing studies. 

By integrating multi-source omics data and clinical features and comparing evolutionary 

contributions and statistical contributions to clinical outcomes, we will gain new insights 

into the causes of cancer formation and progression.  
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Figure Legends 

Figure 1. Timetree of the 46 species used in computing evolutionary parameters. 

Branch length is proportional to species divergence times obtained from the timetree 

database (Hedges et al. 2006). 

Figure 2. Graphical representation of the workflow of evolution-informed 

modeling. (A) Input matrix. Each row represents a sample, with positive samples (i.e. 

with poor clinical outcomes) labeled as “1” and negative samples (i.e. with good clinical 

outcomes) labeled as “0”. Each column represents a feature, as indicated by different 

symbols. (B) Feature selection. Subsets of the input data are generated using under-

sampling that randomly chooses equal numbers of positive and negative samples. For 

each subset, feature values are transformed with composite weights. Feature selection 

is then applied on the weighted features. Using stability selection and sparse logistic 

regression, informative features are selected. Open symbols represent un-weighted 

features. Solid symbols represent weighted features. (C) Classification model. For each 

subset, un-weighted values of selected features are used to build a random forest 

classifier (a sub-model). Collectively, these sub-models comprise the ensemble model. 
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(D) Prediction. For an unknown sample, each sub-model produces a predicted label. 

The majority rule is used for the final prediction. The percentage of sub-models that 

predict the sample as the positive class label is used as the confidence score of the final 

prediction.  

Figure 3. Evolution-informed modeling to predict treatment outcomes for AML 

patients. Distributions of evolutionary weights (A) and statistical weights (B). Balanced 

accuracy (C) and AUROC (D) value of models that uses composite weight, only 

evolutionary weight, only statistical weight and no weight. (E) Distribution of the number 

of features in each sub-model when composite weight (solid line) or no weight is used 

(broken line). Number of features is an indicator of the complexity of a model. (F) 

Number of sub-models in which a clinical feature (black bars) or a proteomic feature 

(gray bars) is included. Plot consists of 85 features that were included in at least one 

sub-model when composite weight is used. 

Figure 4. Evolution-informed modeling to predict metastasis for prostate cancers. 

Balanced accuracy (A) and AUROC values (B) for evolution-informed models (solid 

lines) and for un-weighted models (broken lines) that include various numbers of 

features. Average values with standard errors are plotted. * and ** indicate significant 

difference with t-test p value < 0.05 or < 0.01, respectively. (C) Venn diagram of 

proteins included in the top-performing evolution-informed model and in the top-

performing uninformed model. Box plots to compare the distributions of evolutionary 

rate (D) and statistical significance (E) between all proteins, proteins included in the top-

performing evolution-informed model, proteins included in the top-performing 

uninformed models, and proteins unique to the top-performing uninformed model. ** 

indicates significant difference with t-test p value < 0.01.  
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