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Introduction

Let C be a curve of genus g ^ 2 defined over a number field k. Faltings's proof of
the Mordell conjecture [5] guarantees that C(k) is finite, yet no practical effective
procedure is known for bounding either the heights of the ^-rational points or their
number.

If n: C -* D is a /c-morphism to another curve, then rj carries /c-points to /r-points.
The problem of computing C{k) is thus reduced to determining D(k). However, such
a cover is unlikely to exist if the genus of D is greater than 0, since the Jacobian of
D would have to be isogenous to a factor in the Jacobian of C. On the other hand,
there are arbitrarily many curves which cover C. Unfortunately, there is no a priori
way to determine over which field the inverse image of A>rational points will be
defined.

When n: D -* C is an unramified cover, a classical theorem of Weil and Chevalley
[2] determines a finite extension k' of/: such that n~x{C(k)) is contained in D{k'). Since
D might well cover another curve E, knowledge of the arithmetic of E can be used to
study the arithmetic of C. Indeed, this method was used by Chabouty [1] to bound
the number of integer points on elliptic curves, and by Kubert and Lang [7] to study
rational points on hyperelliptic and superelliptic curves. But in practice, for
producing curves on which one can be certain that all rational points are known, the
Weil-Chevalley theorem is difficult to use. Extending the groundfield makes it harder
to compute rational points.

The purpose of this paper is to introduce a method by which all the rational points
on certain curves can be found, not only in theory, but also in practice. We introduce
certain auxiliary curves called heterogeneous spaces. These are unramified geo-
metrically abelian covers n.D -*• C. The main result is Theorem 1.4, which produces
finite sets of heterogeneous spaces r\i:Di-*C such that every A>point of C is the image
of a /:-point on one of the Dv Often, each D{ will cover another curve E{, whose
arithmetic is known. In this way, we can sometimes determine C{k) completely
without extending the ground field.

The basic results are presented in the first section, and are not very difficult to
prove. The interest in the method comes from its practical applications. In Section 2
we find heterogeneous spaces which are double covers of hyperelliptic curves, and use
them in Sections 3 and 4 to find all the rational points on certain curves of genus 2
and 3. Section 4 also contains the equations needed to carry out a three-descent on
a general elliptic curve with a rational three-torsion point. In the final section, we use
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heterogeneous spaces which are triple covers of a genus 2 curve to determine all of its
rational points.

Numerous references are made in this paper to computations of the points on
elliptic curves using a descent via an isogeny of degree two. Contrary to the overriding
spirit of the paper, these computations are not included. They were carried out on a
Sun 3/50 workstation which was paid for by a grant from the National Science
Foundation. The software to compute these descents was written by the authors of
this paper, based on mathematics which is explained carefully in [14]. Also, the
equations of three-descents in Section 4 were made tractable while running MACSYMA

on the same Sun workstation.

1. Basic results

Let Xbe a smooth, projective, geometrically irreducible variety over a perfect field
k. A morphism rj: Y -> X will be called geometrically abelian if Y is a geometrically
irreducible A>variety and the induced morphism over the algebraic closure k is a
Galois cover with abelian Galois group.

DEFINITION 1.1. A pair {Y,n) is called a heterogeneous space for X over k if
rj: Y -»• X is an unramified geometrically abelian cover defined over k.

Although the morphism is an essential part of the structure, we shall frequently
abuse notation and refer simply to a heterogeneous space Y for X. The adjective
'heterogeneous' was chosen because these spaces play a roje in descent arguments
analogous to that played by principal homogeneous spaces for abelian varieties. In
fact, heterogeneous spaces for abelian varieties are, in a slightly skewed sense, just
homogeneous spaces.

LEMMA 1.2. Let (H, 0) be a heterogeneous space, defined over afield k, covering
an abelian variety A. Then there is an isogeny y/:B-^A defined over k such that H is
a principal homogeneous space for B and the cover <fi is a twisted form of the cover y/.

Proof. Let B be the Albanese variety of H. Then B is an abelian variety defined
over k, and there is a natural isogeny y/ arising from the universal property of the
Albanese. Moreover, H becomes isomorphic to B as a cover after base extension,
since the only unramified abelian covers of abelian varieties are themselves abelian
varieties [10].

Heterogeneous spaces for varieties other than abelian varieties usually get more
complicated. For instance, a non-trivial heterogeneous space for a curve of genus
g ^ 2 will have genus strictly larger than g. This situation is very different from the
use of torsors in the study of the arithmetic of rational surfaces [3]. Torsors over a
rational surface with structure group a torus are more likely to be /^-rational, and thus
simpler, than the original surface. Nevertheless, heterogeneous spaces have two
redeeming features. On the one hand, geometrically more complicated varieties
should (in some deliberately vague sense growing out of MordelFs conjecture and
Vojta's conjecture [17]) have fewer rational points over number fields. On the other
hand, heterogeneous spaces are essentially twisted forms of torsors with structure
group a finite commutative groupscheme.

PROPOSITION 1.3. Let C be a curve over k with C(k) non-empty. Every heterogeneous
space for C is isomorphic to the pullback of a heterogeneous space for its Jacobian.
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Proof. Let n: D -* C be a heterogeneous space and let Jc denote the Jacobian of
C. Suppose first that there is a twisted form 9:D1-^Cofn which is actually abelian
over k. Then, by [13], Dx is a pullback of an isogeny <p:B->Jc along an embedding
of the curve in its Jacobian. Let G denote the Galois group ofk/k, and let B[(j)] denote
the kernel of 0. Since D becomes isomorphic to Dx over k, it defines a class in

H'iCAutiDJQ) = H\G, Aut(5//C)) = H\G,B[^\).
Let H be the heterogeneous space over J defined by this class. Then D is the pullback
oiH.

Thus, it suffices to find a twist of D which is already abelian over k. Since D
becomes abelian over Jc, it also becomes isomorphic to the pullback of an isogeny
<j)\B-+Jc. It is enough to show that 0 is already defined over k.

Let JD denote the Jacobian of D, and let a: Jc -> JD be the natural map on Jacobians
induced by pulling back divisors along n. Write X=Ker(a). Then K is a k-
groupscheme. It now suffices to show that K, viewed over the algebraic closure, is the
kernel of the dual isogeny 0: Jc -* B.

Assume, therefore, that k is algebraically closed. Let d be the degree of n. The
abelianized fundamental group of C is isomorphic to the Tate module of its Jacobian
[6]. Since D/C is an abelian cover, there is therefore an exact sequence

JD[d] > Jc[d] > Aut (D/C) • 0.

The map on Jacobians here is the natural one which arises from identifying them with
the Albanese varieties of the curves. Its transpose [8] is the natural map on Jacobians
in the other direction whose kernel is K. The result follows.

Certain heterogeneous spaces for curves or abelian varieties are more closely
related than others. If (j>:B-*A is an isogeny with kernel B[<j>\, then there is a
heterogeneous space over A , corresponding to a twist of 0, for each cohomology class
in HX(G, B[<f>]). Similarly, when A = Jc is the Jacobian of a curve C, the same
cohomology group parametrizes pullbacks of twists of 0. Two heterogeneous spaces
which are twists or pullbacks of twists of the same isogeny 0 will be said to be
associated to 0.

THEOREM 1.4. Let C be a curve defined over a number field k. Let 0 : A -> J be an
isogeny to the Jacobian J of C. Then there exist finitely many heterogeneous spaces
rj^.X^ C, each of which is associated to 0, such that

Proof If C(k) is empty, there is nothing to prove. Otherwise, consider the
diagram c ( j t )

0 > J(k)/<f>(A(k)) > H\G,

Each A>point PeC determines a cohomology class which represents a heterogeneous
space for J associated to 0. Pulling back defines a heterogeneous space for C also
associated to 0, which, by definition, has a point lying over P. As in the proof of the
weak Mordell-Weil theorem (see, for example, [14]), the cohomology classes which
arise from this construction are unramified outside the set of infinite primes, primes
of bad reduction, and primes dividing the degree of the cover. The theorem follows.
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Let S be the set of primes which arises in the proof of the theorem. That is, for
a given curve C and a given isogeny 0, let S be the finite set of primes consisting of
all infinite primes, all primes of bad reduction of C, and all primes which divide the
degree of <j). Then S gives an upper bound for the set of primes where cohomology
classes corresponding to heterogeneous spaces with rational points can be ramified.
In fact, we shall see below that this bound can sometimes be improved upon.

2. Double covers of hyper elliptic curves

Let A be an abelian variety over a perfect field k of characteristic not two, with
dual abelian variety A. Geometrically irreducible, unramified, double covers of A
over k are classified by H\A, 1/21.) = Hl{A,^ = A[2]. By taking Galois invariants,
we see that such covers over k are determined by the choice of a ^-rational two-
torsion point on A.

Let C be a hyperelliptic curve of genus g defined by y2 =f{x). Since the Jacobian
J of C is self-dual, heterogeneous spaces of degree two over C can only arise from
rational two-torsion points on J. These, in turn, are generated by the Weierstrass
points (where f[x) = 0, or possibly infinity). Hence, heterogeneous spaces of degree
two are only defined when f{x) factors over k.

Suppose thaty^x) = g(x)h(x). For each tek, define an unramified double cover Dt

by the system of equations

tu2 = h(x), tv2 = g(x), tuv = y.

The Dt are associated heterogeneous spaces for C. Let rjt:Dt-+C be the natural
covering map.

Let k be a number field. The arithmetic of the covers enters through the choice of
/. By the proof of Theorem 1.4, we only need to consider values of / such that k(t*)
is ramified at primes of bad reduction or primes dividing 2. The fundamental feature
of the Dt is that each one covers another curve of smaller genus. For instance, let Et

be the curve defined by
tu2 = h(x).

Then there is a natural projection At:Dt-+ Et. Moreover, every rational point of Ccan
be found by lifting a rational point from some Et to a rational point on Dt, and then
projecting to C.

The simplest case arises when g(x) = x, and h(x) has even degree. Then Dt is a
hyperelliptic curve of genus 2g— 1 defined by

Dt: tu2 = h(tv2),
but it covers a new curve

(•) Et:tu
2 = h(x)

of genus g—\.

PROPOSITION 2.1. Let h(x) be a monic polynomial of degree 2g over the ring of
integers Ok of a number field k, such that the curve C defined by

y2 = xh(x)

has genus g. Let a = h(0), and let S be the set of prime divisors of 2a. Then the k-rational
points on C are contained in

where the union is taken over t€&k such that k{P) is unramified outside S.
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Proof. Let tek be such that k(t*) is ramified at a prime outside S. Localizing at
this prime and absorbing squares into u, we may assume that / is a uniformizing
parameter. Since Et is defined by (•) and h(x) is monic of even degree, the
incompatibility of orders of poles forces any f-adic point to be integral. But the same
result must hold on Dt, where we also have x = tv2. Thus, the integer x must be
divisible by /. Now reducing (•) modulo t shows that there can only be points locally
if / divides a.

The following result is perhaps more whimsical than useful. In order to state it
precisely, we need a definition. We shall say that a class of curves satisfies an effective
version of Mordell's conjecture if, for every curve C of genus g in that class, defined
over a number field k by equations whose coefficients have absolute height bounded
by //, there exists an effectively computable constant c = c(k,g,H) such that every
point in C(k) has height bounded by c.

COROLLARY 2.2. Suppose that the class of curves of genus 2 satisfies an effective
version of MordelFs conjecture. Then the class of hyperelliptic curves also satisfies an
effective version of MordeWs conjecture.

Proof. Let the curve be defined by y2 =f[x). By adjoining roots off[x), we may
assume that we are in the situation of the proposition. Doing this replaces k by an
explicit finite extension. But then the computation of points on this curve of genus g
is determined by the computation of points on a finite, effectively computable list of
hyperelliptic curves of genus g— 1. The result follows by induction.

Certain standard facts about the arithmetic of hyperelliptic curves of genus g will
be used in the sequel. Any such curve has a model either in the form y2 =j\x), where
f{x) is a monic polynomial of degree 2g+ 1, or in the form dy2 =f[x), where/(x) is
a monic polynomial of degree 2g + 2. These models are singular at infinity. In the
former case, the corresponding non-singular model has a single point at infinity,
which is rational. In the latter case, the corresponding non-singular model has a pair
of points at infinity, which are rational if and only if d is a square. Finally, if k is a
number field, then we may assume that d and the coefficients of fix) lie in the ring of
integers of k.

3. Double covers of genus 2 curves

Consider the curve C of genus 2 defined by

y2 = xb+px,

where p is a positive prime number. By Proposition 2.1, every rational point on C is
the image of a rational point on one of four heterogeneous spaces

Dt:tu
2 = t*xs+p,

where te{± 1, ±p). Setting w = tx2, we find that each Dt covers a curve of genus 1
defined by

Et:tu
2 = w4+p.

If / is negative, then Et has no real points. If t = 1, then Et is a principal
homogeneous space for the elliptic curve [14]

Fi: y2 = x3 — 4px.
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Since El has rational points at infinity, it is a trivial homogeneous space. Thus, E1 is
isomorphic to Fv Similarly, if t = p , then Et is a trivial homogeneous space for the
elliptic curve

Fp:y
2 = x3-4p3x.

So, Ev and Fp are isomorphic.
The curves Fx and Fp are of the type studied extensively in [14]. Indeed, it is shown

there that
(1) ^(Q)tor a Z/2Z,
(2) Fx is isogenous to Gx\y* = x3+/?.*, and
(3) rankjCG^Q)) = 0 if p = 7,11 mod 16.
The Mordell-Weil rank of Gx is calculated by a descent carried out via a degree-

two isogeny [14]. A similar calculation shows that
(1) Fp{Q\0T ~ Z/2Z,
(2) Fp is isogenous to Gp:y

2 = x3+p3x, and
(3) rankz(Gp(Q)) = 0 if p* = 7,11 mod 16.

THEOREM 3.1. ///? is a positive prime, p = l mod 16, //ien f/ie Q-rational points on

y2 = x5 +px

are precisely the point at infinity and the point (0,0).

Proof. When p = 7 mod 16, so is p3. So Ex has two Q-rational points, both at
infinity. Hence, the only rational points on Dx are the two points at infinity. Also, the
only rational points on Ep are (w, u) = (0, ±1), and thus Dp has only the rational
points (x, u) = (0, ± 1). Since these four points map onto the rational points of C, the
only rational points on C are the point at infinity and the point (x,y) = (0,0).

COROLLARY 3.2. If p = 7 mod 16, then the Q-rational points on

/ = x
in+1 +px

are precisely the point at infinity and the point (0,0).

Proof. The associated heterogeneous spaces cover the same elliptic curves as in
the proof of the theorem.

The careful reader will have already noticed that the Jacobian of the curve C in
Theorem 3.1 has complex multiplication by the eighth roots of unity. Since a
biquadratic field has no simple CM-types [9], C must cover a pair of elliptic curves.
It might appear that the rational points on C could have been more easily computed
by studying this pair of elliptic curves. But these curves are only defined over a field
containing a fourth root of p—precisely the kinds of fields which our method is
designed to avoid.

For those who, nevertheless, would think it always preferable to descend from a
curve of genus 2 to an elliptic curve, we provide the following example. Consider the
curve

/ 5 3

Over Q, the curve C covers the elliptic curves

El:w
2 =

and
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A descent via a two-isogeny shows that each elliptic curve has Mordell-Weil rank at
most 1. The points (v, w) = (2,6) on Ev and (v, w) = (2,2) on E2, are easily seen to be
non-torsion. Thus, since both curves have rank 1, they cannot be used directly to find
the rational points on C. Since they are not isomorphic over Q, neither can the
method of Dem'janenko [4] be used.

However, by Proposition 2.1, all the rational points on C lie in the image of
rational points on the heterogeneous spaces

and
D_1:-u

2 =

The latter has no real points, and the former covers the elliptic curve

Putting E into Weierstrass form shows that it has rational two-torsion, and a two-
descent shows that it has rank zero. The torsion on E is easily seen to consist of the
two points at infinity and the points (w,u) = (0, ± 1). Tracing these points up to D1

and down to C, one finds that the only rational points on C are the point at infinity
and the point (x,y) = (0,0).

4. Double covers of genus 3 curves

Consider the hyperelliptic curve C of genus 3 defined over Q by the equation

y2 = x1 +px.

Here we assume that p is a positive prime. This curve has complex multiplication by
the 12th roots of unity. Over some extension field, it covers curves of lower genus. But
it is not easy to see how to use this fact to compute the rational points on C.
Nevertheless, Proposition 2.1 can be used to construct heterogeneous spaces. Let
t£{± 1, ±p}- The heterogeneous spaces Dt cover the genus 2 curves Et defined by

tu2 = x6 +p.

If / is negative, then Et clearly has no real points, and thus no rational points. So, there
are only two heterogeneous spaces to consider.

By setting w = x2, we can view Et as a cover of the elliptic curve

tu2 = w3 +p.

Multiplying this equation by t3 and making a scale change on the variables, this
elliptic quotient can be written in Weierstrass form as

u2 = w3 +pt3.

When t = p, this curve has a rational three-torsion point at (0,p2).
On the other hand, we can also set w = x2 and z = ux to get a different elliptic

curve covered by Et:
tz2 = wi+pw.

By setting y = pz/w2, x = p/w, this elliptic quotient becomes isomorphic to the curve
defined by

ty
2 = x3+p2.

When t = 1, this elliptic curve also has a rational three-torsion point, at (0,p).
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In summary, the problem of finding rational points on C has been reduced to the
problem of finding rational points on a pair of elliptic curves. Each elliptic curve has
a rational three-torsion point, and hence has a three-isogeny defined over Q. The
structure of the group of rational points can be assessed by carrying out a three-
descent. Satge [11, 12] has worked out the equations for a three-descent in a special
case which would be adequate for our purposes. However, we do not know a good
reference for the equations necessary to carry out a general three-descent, so they are
included here.

LEMMA 4.1. The general elliptic curve with a rational three-torsion point is defined
by

= r5.

Proof. After writing the equation in Weierstrass form, move the three-torsion
point to (0,0) and choose coordinates so the tangent line is defined by y = 0. Also
notice that the discriminant of this curve is b3(a3 — 21b).

LEMMA 4.2. Let E be an elliptic curve with a rational three-torsion point, as in the
previous lemma. The three-isogenous elliptic curve E is defined by

Proof. See also [16]. Introduce a homogenizing variable z. In projective
coordinates, the automorphism defined by adding the three-torsion point to a general
point is

(0:0: \) + (x:y:z) = (x:bz: -(ax+y + bz)/b).

It is easiest to see the next step by introducing new coordinates

X' = y, Y = bz, Z = —ax—y — bz.

In these coordinates, adding the three-torsion point is a cyclic permutation, while the
curve itself is defined by

The map to the isogenous curve must be given by cyclically invariant cubics. The
cyclically invariant cubics

r = XYZ,

s = X2Y+Y2Z+Z2X, t = XY2+YZ2

define a cubic surface

stq — 3r2q - rq2 = sz +13 - 6rst + 9r3

in P3. Equation (*) defines the isogenous elliptic curve as the hyperplane section

This curve can be identified with the projectivization of the one in the statement of
the lemma by setting

u = b(X+ Y+Z)(XY+XZ+ YZ),
v = ab{XY2 + YZ2 + ZX2 + 6XYZ), w = -aXYZ.
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An interesting facet of this proof is that the intermediate change of variables does
not make sense when a = 0. Nevertheless, the composite

u = x(axy + abxz+y2 + byz + b2z2),

v = a2bx2z-axy2-4abxyz + 2ab2xz2-y*-6by2z-3b2yz2 + b3z3,

w = yz(ax+y + bz)

is well defined and identifies the isogenous curve correctly even in this case.
To carry out a three-descent completely, we must be able to twist both the

isogeny (j>:E-*E and its dual <p:E^E. These will necessarily differ in character.
Because Ker [<p] = Z/3Z, the Galois invariance of the Weil pairing [8] implies that
Ker[0] = /u3. These are different Galois modules if the cube roots of unity do not lie
in the ground field. This difference shows up arithmetically in that H1(G,Z/3Z)
classifies cyclic cubic field extensions, but H1(G, ^3) classifies radical cubic extensions.

As remarked in [13], it is easy to see that every cyclic cubic extension is defined by
an irreducible polynomial of the form

where jek is not a sixth root of unity. The fundamental fact underlying this
observation is that the roots can be normalized to have the form

1 r - 1

LEMMA 4.3. Let jek determine a cyclic cubic extension. The twisted form of E
corresponding to this cyclic cubic field as an element of H1(G, 2/3Z) is defined by

a -21b X3

Proof. Begin by writing each of the variables x, y, z in the general form of an
element of the cyclic extension. For instance,

x = xo + 1 2

Let a denote the generator of the Galois group which acts on the root r by
a(r) = 1/(1 — r). One gets a system of linear equations in the subscripted variables by
setting

a(x:y:z) = (x:bz: -(ax+y + bz)/b),

and equating corresponding coefficients of powers of r. Solving this system of
equations leads to the twisted form of the curve, by setting

x = 3bX,

-3j)Y+2Z) + ((3j+\)Y+(3j-2)Z)r-(Y+Z)r2),

-2)Y+(\-6j)Z)r-(Y-2Z)r2.

LEMMA 4.4. For each tek, the twist of E corresponding to the radical cubic
extension k(t*) is defined by

t2V3 = atUVW.
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Proof. To obtain this result, first adjoin a cube root of unity co to the ground
field. Now there is a three-torsion point

a2 276(3-
3 ' 18 )

on the isogenous curve. Rewrite the isogenous curve in the standard form of Lemma
4.1 and twist it by a cyclic cubic extension as in Lemma 4.3. In order to ensure that
this twist is by a radical cubic extension of the original ground field, it is enough to
take j = — co(t—co)/(t— 1). Finally, rewrite the twisted curve to remove extraneous
roots of unity. The result is the curve described above, obtained by setting

u = 9bU+a2W9 + a2V92, v = 9abU+a*W9 + 21bV92,

w = -aU-3W9-3V92,
where 9 = t*.

THEOREM 4.5. Let p = 2 mod 3 be a positive rational prime such that 2 is not a cube
modulo p. Then the only rational points on the curve

y2 = x1 +px

are the point at infinity and the point (0,0).

Proof. As noted above, we must find all points on the heterogeneous spaces Dx

and Dp, each of which covers an elliptic curve with a three-torsion point. These are
the only rational torsion points on the curves; the result will follow if we can show
that each curve has Mordell-Weil rank zero. The elliptic curves can be written in the
form

where a = 1,2. These curves can be rewritten in the form of Lemma 4.1 with a = 0
and b = 2pa. Thus the set of places where ramification can occur is

S = {2,3,p,co}.

Since p = 2 mod 3, the only cyclic cubic extension which is unramified outside S is the
maximal real subfield of the extension generated by the ninth roots of unity, which
corresponds toy" = 0 in Lemma 4.3. So, the only twist of Ea which must be looked at
is

Because of the congruence condition which we assumed to hold on p, adjoining the
ninth roots of unity is an extension of Z/pZ of full degree. Since the roots of
z3 — 3z+ 1 generate the maximal real subfield of Q(M9), this curve cannot have p-zdic
points.

We must now consider the twists

of the isogenous curve
v2-\8p*v+l0Sp2ci = u\

by elements /e<Q*/Q*3 supported at the primes 2, 3, and p. We must show that the
set of twists having rational points is isomorphic to a copy of Z/3Z.
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When the 3-adic valuation of t is equal to 1, the twist cannot have any 3-adic
points. This follows because the three terms in the equation have distinct valuations
modulo 3, so can never cancel. The same argument applies when the 3-adic valuation
of t is equal to 2.

We have shown so far that the set of twists with rational points is contained inside
the copy of (Z/3Z)2 generated by 2 and p. It suffices to show that one of the remaining
twists does not have any rational points. When t = pa, the twist becomes

2U3+W3+p*Vz = 0.

Since we have assumed that 2 is not a cube modulo p, the result follows.

5. Triple covers of genus 2 curves

Let A be an abelian variety over a perfect field k of characteristic different from
three. Geometrically irreducible, unramified, abelian covers of degree three of A over
Jc are classified by H\A, Z/3Z). The Galois invariants of this group are given by
A[3]x*, where #3 is the character giving the action of Gal (k/k) on //3. If //3 cj: k, then
such covers over k are determined by three-torsion points on the dual abelian variety
which are rational over k(p.3), but not over k.

Let C be a hyperelliptic curve of genus 2 defined by y2 = J{x), where J{x) is a sex tic
polynomial with coefficients in k. Since the Jacobian J of C is self-dual, heterogeneous
spaces of degree three over C can only arise from three-torsion points on J which are
rational over k(ji3), but not over k.

Let oo! and oo2 denote the two points at infinity on C. Every point on /other than
the origin can be uniquely represented by a divisor

P1 + P2-co1-co2,

where P15 P2 e C. If a divisor defines a non-zero three-torsion point, then it is easy to
verify that neither P1 nor P2 can be a point at infinity.

Hence, non-trivial three-torsion on the Jacobian comes from a function on C with
a pole of order three at each point at infinity, and zeros of order three at a pair of
points. All such functions must be of the form y — c(x), where c(x) is a cubic
polynomial in JC. The condition that y—c(x) have triple-order zeros implies that

where q(x) is a quadratic polynomial in JC, and d is a constant. Finally, the three-
torsion point will have the appropriate rationality if c(x), q(x) and d are defined over
k(ji3), but at least one of these is not defined over k.

It would be a computational nightmare to write out the equations defining the
degree-three isogeny onto the Jacobian corresponding to this three-torsion. So we
shall be content to build a degree-three cover D of C defined over k, which is
unramified and abelian over k. By Proposition 1.3, we shall know that D is a
heterogeneous space associated to some isogeny of the Jacobian. Then all
heterogeneous spaces are obtained by twisting this cover over the cubic number fields
classified by //^(Gal (£/&), Z/3Z); that is, over cyclic cubic extensions of A:.

In practice, it is easier to build abelian three-covers of C and their twists over
k(p.z). We use the fact that heterogeneous spaces defined over k can be identified with
heterogeneous spaces defined over k(ji3) which descend to k.
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One such cover is

u3 = y - c(x), dv3 = y + c(x), uv = q(x).

All cyclic cubic extensions of k(pi3) are of the form k{p.z, t*) for some tek. It follows
as in the proof of Lemma 4.3 that each twist over k(jiz, $) is isomorphic to

u3 = t(y-c(x)), dv3 = t2(y + c(x)), uv = tq{x).

As an example, we take k = Q, q{x) = x2, c(x) = 18V — 3, and d = 1.

PROPOSITION 5.1. Let C be the curve defined by

y
2 = x6-912.

The only Q-rational points on C are the two points at infinity.

Proof. The curve C has bad reduction at 2 and at 3. Thus, we need only consider
twists over cyclic cubic extensions of Q ramified over 2 and 3. The only such extension
is the maximal real subfield of Q(pi9). Hence the only heterogeneous spaces over Q(//3)
that we must consider are the ones where t = coi1, for co = f( — 1 + y/ — 3) and / = 0, 1
or 2.

Write G — Gal (Q(JI3)/Q). The descended curves are found by writing u, v, x and
y in terms of the basis 1, y/ — 3 of the vector space of Q(//3)-functions on Dt over the
G-invariant functions, and then equating G-isotypical parts. For the cover to be
defined over Q, both x and y must be G-invariant. Since t2 is the conjugate of /, we
see that v differs from the conjugate of u by a cube root of unity. Write
« = a + ^ V ~ 3 , and v = wcoi. Then uw = x2, so w = (a—fly/ — 3). Equating
G-isotypical parts when t = co yields

x2 = aa + 3/?2, 36 = a 2 -

It is easy to see this curve has no 3-adic points. When / = co2, we get a curve
isomorphic to the one above, which again has no 3-adic points.

When t = 1, equating G-isotypical parts yields

This covers the elliptic curve
#c2 = 4£ 3 -6 .

Setting m = 6x/fi, e = — 6/0 gives the isomorphic curve

m2 = e3+l44.

This is isogenous to the curve D = 3 on Stephens's table [15], which has Mordell-Weil
rank zero. It is easy to see that the elliptic curve has just three torsion points,
(e,m) = (0, ± 12), and the point at infinity. Tracing these upward, we see that the
only rational points on Dx are points at infinity, hence the only rational points on
C are the two points at infinity.
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