NATURALITY AND DEFINABILITY, I

WILFRID HODGES anp SAHARON SHELAH

Eilenberg and Mac Lane [1] explained the notion of a ‘natural’ embedding by
giving a categorical definition. Starting from their examples, we argue that one could
equally well explain natural as meaning ‘uniformly definable in set theory’. But do
the categorically natural embeddings coincide with the uniformly definable ones? This
is partly a technical question about whether certain well-known algebraic constructions
are definable in set theory. It can also be seen as a test of the adequacy of ZFC as
a foundation for algebra.

After laying out the groundwork in Section 1, we analyse some examples (such
as divisible hulls of abelian groups) in Section 2, and in Section 3 we formalise the
main problem. The first partial answer is in Section 4: naturality does imply uniform
definability with parameters, provided only a set of isomorphism types are involved.
The proof also partially answers a model-theoretic question of Gaifman about
definable operations. In Section 5 we prove a partial converse: uniform definability
can imply naturality if urelements are allowed. Section 6 puts an upper bound on
possible strengthenings of this result by showing that if uniform definability implies
definable naturality in a model M of set theory, then M has a global choice function.
In part IT of this paper we hope to give an example of an unnatural but uniformly
definable construction.

The results of Section 6 are due to the second author. The first author takes
responsibility for the rest; he thanks the Royal Society for a grant which took him
to Jerusalem for three weeks in 1981, where the results in the paper were assembled
in discussion between the authors.

1. Naturality

Let L be a finite-dimensional vector space over the real numbers and let 7(L) be
its dual space. We quote:

(1) ‘For the iterated conjugate space T(7(L)). .. it is well known that one can exhibit
an isomorphism between L and T(7(L)) without using any special basis in L. This
exhibition of the isomorphism L =~ T(T(L)) is “natural” in that it is given
simultaneously for all finite-dimensional vector spaces L. This simultaneity can be
further analyzed. ...’

This passage occurs in the opening paragraphs of ‘General theory of natural
equivalences’ by S. Eilenberg and S. Mac Lane [1], the paper which founded category
theory.

In the ‘further analysis’ that they refer to, Eilenberg and Mac Lane go on to show
that T can be defined on linear maps as well as on vector spaces, so that it forms a
functor. Then they point out that the family 4 of natural isomorphism A, : L — T(T(L))
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is a natural isomorphism from the identity functor to T; in other words, all the
following diagrams commute.

L L T(L)
#) s T*(s)

M= T*(M)

They describe the commutativity of (2) as the naturality condition for h.

Now any set theorist, asked to formalise (1), would come up with something quite
different from what Eilenberg and Mac Lane proposed. In the first place, to ‘exhibit
an isomorphism between L and T(T(L))’, if it means anything, means to define such
an isomorphism. Next, to say that it is given ‘simultaneously for all L’ is to say that
the same definition works uniformly for all L. Finally, to say that the isomorphism is
exhibited ‘without using any special basis in L’ means something like: the definition
refers only to L and not to any other parameters depending on L. So (1) above already
has a perfectly reasonable formalisation in terms of set-theoretic definability, as
follows:

(3) Thereisaformula ¢(x, y) of set theory such that for every finite-dimensional vector
space L over the reals there is a unique A, such that ¢(L, h) is true; for each such
L this h,, is an isomorphism from L to T(T(L)).

True, there are models M of set theory in which (3) holds for irrelevant reasons. If
M has a definable well-ordering < of the universe, then ¢(x, y) need only say that y
is the < -first isomorphism from x to T?%(x). In M there are even uniformly definable
isomorphisms i;, from finite-dimensional vector spaces L to their first duals 7(L). These
maps i, are certainly not natural. But it is clear how we can remove this irrelevance:
we should require that ¢(x, y) satisfies (3) in all models (or perhaps all transitive
models) of ZFC.

So now there is a mathematical question whether (3) (made precise in a suitable
way) is equivalent to the commutativity of (2). Putting it in more general terms: are

the natural constructions precisely the definable ones? From a set-theoretic point of
view the more interesting half of this question is whether definability implies

naturality. This for two reasons: first, if definability does imply naturality, then a
number of well-known algebraic constructions cannot be defined in set theory, because
they are known not to be natural. Some examples are given in the next section. One
would expect these constructions not to be definable, but we do not know how to prove
it, and the problem seems hard. Secondly, if definability in ZFC does not imply
naturality, this will have foundational implications: it can be understood as saying
that ZFC imposes an internal structure on mathematical objects which clashes with
the proper generality of algebra.

Eilenberg’s and Mac Lane’s example of vector spaces is atypical in several ways.
For a start one should drop the restriction to finite dimension; then 4; becomes a
natural embedding instead of an isomorphism. But before presenting a general
analysis we turn to look at some rather different examples.
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2. Examples

In all the examples of this section, a class K of algebraic objects is given, and for
each algebra A in K we construct an algebra F(A4) which contains A as a part; F(4)
is specified up to isomorphism over 4. The embedding map 4,:4 — F(A4) is just
inclusion, so it is always definable at once from 4 and F(A). The rub is that F(4) may
not be uniformly definable from A4, even though it is definable up to isomorphism.

Following Eilenberg and Mac Lane, we shall say that Fis natural on automorphisms,
or for brevity just natural, if and only if for every 4 in K and every automorphism a
of A there is an automorphism f{«) of F(A) such that (4) and (5) hold:

(4) the diagram A —» F(A)

al 1f(a)

commutes; A — F4)

(5) f'is functorial, that is, f{1,4) = 14 and flaf) = fx)-f() for all automorphisms
o f.

We count the embedding of 4 in F(4) as part of the structure of F(A4). Thus every
automorphism # of F(A) restricts to an automorphism p 4(f) of A. Writing Aut for
automorphism group, this defines a homomorphism p 4: Aut (F(4)) — Aut(A).

LEMMA 1. For F as above the following are equivalent:
(a) Fis natural,

(b) for every A€ K there is a group embedding f,: Aut(4) — Aut (F(A)) such that
pafa=1

Proof. If F is natural then f:Aut(4)— Aut(F(4)) as in (4) is a group
homomorphism by (5), and for each ae Aut(4), p, flae) = a by (4). Hence p, f = 1,
and this implies that f'is an embedding. The converse is immediate.

Here follow some examples.

ExaMPLE 1. Divisible hulls of abelian groups. Every abelian group A can be
extended to a divisible hull F(4) which is unique up to isomorphism over 4. If 4 is
torsion-free then F(A) can be constructed from A essentially as one constructs the
rational numbers from the integers, and so there is a uniform and explicit set-theoretic
definition of F(A4) in terms of 4. Also when A4 is torsion-free, each automorphism of
A extends uniquely to an automorphism of F(A), and it follows that F is natural on
torsion-free groups. Thus far, naturality and definability go hand in hand.

However, Fis not natural on all abelian groups. Let us prove this. We need some
preliminaries on linear groups. Let p be a prime and » a positive integer. Now GL(2, p™)
is the general linear group of invertible 2 x 2 matrices over the ring Z/(p™). The natural
homomorphism A:Z/(p"*') - Z/(p™) induces a map ¢:GL(2,p"*') —» GL(2, p").
Since h preserves the ring operations, ¢ is a group homomorphism; its kernel
consists of those matrices which equal 7modp®. Thus we have a short exact

sequence I+p" GL(2, p"*') — GL(2, p™*+1) —5 GL(2, ™).

The following lemma tells us that this sequence need not split.
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LEMMA 2. There is a matrix N in GL(2,5) of order 5, such that every pre-image
of N under ¢:GL(2,25) - GL(2, 5) has order 25.

v=(i 1)

The pre-images of N under ¢ are the matrices M in GL(2, 25) of the form

1 0 a b
M=(] l>+5<c d)’ a,b,c,de{0,...,4}.

A straightforward but tedious calculation shows that whatever the values of a, b, ¢, d,

we have
1 0
M= (5 1)

which has order 5, so that M has order 25.

Proof. Take

To show that the divisible hull construction is not natural, we apply Lemma 2 as
follows. The abelian group 4 = Z, ® Z, has divisible hull Z(5®) @ Z(5®). Any
automorphism of this hull restricts to an automorphism of the characteristic subgroup
B=2Z,,®Z,, so it suffices to show that some automorphism of A4 cannot be
extended to an automorphism of B of the same order. Let ¢, d be generators of B,
so that Sc, 5d generate A. Let M e GL(2, 25) be the matrix of an automorphism « of
B, using ¢, d as basis. Then a induces an automorphism of 4 with matrix ¢(M) with
respect to the basis 5S¢, 5d. Since S¢, Sd have order 5, #(M) will be the matrix ‘M mod 5’
in GL(2,5), so that ¢ is precisely the homomorphism of Lemma 2. Then the
automorphism of 4 with matrix N as in the lemma has order 5, but every
automorphism of B which extends it has order at least 25, and so the same holds
for the divisible hull of A4. It follows that there is no group embedding
f:Aut(A4) - Aut(F(A)) satisfying Lemma 1(b), and so by that lemma F is not
natural.

Is the divisible hull construction F set-theoretically definable? It would be amazing
if it was. But virtually all we know is that if ¢(x, y) is a Z, formula which (provably
in ZF) defines a function, then there is a model of ZFC in which ¢(x, y) fails to define
divisible hulls (cf. [6], where a slightly stronger result is proved).

EXAMPLE 2. Algebraic closures of fields. Thereis no natural construction for these.
By a theorem of Artin and Schreier [7, p. 316] if a is a non-trivial automorphism of
an algebraically closed field and o has finite order, then « has order 2 and switches
the two square roots of — 1. Hence if 4 is a field with an automorphism of order 3
(for example a pure transcendental extension of the prime field, with transcendence
basis of cardinality 3), then 4 has an automorphism which cannot be extended to an
automorphism of its algebraic closure with the same order. Now apply Lemma 1 as
in Example 1.

As for set-theoretic definability of algebraic closures, we know exactly the same
as we know for divisible hulls of abelian groups (cf. [5]). Again it would be astonishing
if there was a set-theoretic formula which uniformly defined them.
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ExaMmpLE 3. Left adjoints. If G is a forgetful functor on structures and F is left
adjoint to G, then F defines a natural construction as follows. Let 4:1 — GF be the
unit of the adjunction. Then for each structure A in the domain of F, h, maps A
homomorphically to GF(A).. Thus from 4 we construct a two-part structure (4, F(A))
with a map A, from the elements of A4 to the elements of F(A4). Condition (5) in the
definition of naturality comes at once from the fact that 4 is a natural transformation.
This recipe includes most of the natural constructions that one first thinks of, such
as the free group on the set 4 of generators, or the abelianisation 4/[A4, A] of the
group A (considered as a two-part structure (4, A/[A4, A]) with the so-called ‘natural
homomorphism’ connecting them). Another example is the construction which takes
each set A to its power-set boolean algebra 2(A4) together with the obvious map from
A to the set of atoms of #(4). Divisible hulls of torsion-free groups are an example
too.

Every construction of this sort is set-theoretically definable from a parameter. This
is because it is a pointwise right Kan extension along a small functor (cf. Mac Lane
[8]; Hodges [4] works out the details).

EXAMPLE 4. Projective covers of R-modules for a perfect ring R. Projective covers
are the dual of injective hulls. They need not exist; the condition ‘ R is perfect’ means
simply that they do (cf. [2, Vol. II, Chapter 22]).

In general there is no natural projective cover construction. For let R be the perfect
commutative ring Z/(25). Then if A and B are as in the discussion after Lemma 2
above, 4 is an R-module whose projective cover is the surjective homomorphism

6 B— A4,
g

where g operates by killing the elements of order 5. As in Example 1 we can represent
automorphisms of B by matrices in GL(2,25), using a basis ¢,d of B. Any
automorphism of B with a matrix M induces an automorphism of 4 whose matrix
with respect to the basis gc¢, gd is ¢(M) as defined for Lemma 2. So Lemma 2 again
shows that some automorphism of 4 of order 5 cannot be extended to an automorphism
of order 5 of the whole diagram (6), and it follows by Lemma 1 again that projective
covers are not natural.

3. What is a construction?

The following definitions are relative to a model M of set theory; M can be the
real world of sets, V.

Let K be a class of structures. To avoid coding-in irrelevant information, we always
assume that K is closed under isomorphism. A representing formula is a formula ¢(x, y)
of set theory, possibly with parameters from M, such that

(7) for each structure 4 in X there is a structure F(4) containing A as a distinguished
part, such that M = ¢(A4, F(4));

(8) for each structure A4 in K and each element B of M, M = ¢(4, B) if and only if B
is a structure containing 4 and isomorphic to F(A) over 4;

(9) if A, C are isomorphic structures in K and M = ¢(4, B) A¢(C,D) then B is
isomorphic to D.
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Thus a representing formula ¢ defines a construction F on K, but only up to
isomorphism. We say that ¢ represents F. In algebraic contexts we can speak of ‘the
structure F(A4)’ when only the isomorphism type of F(4) over 4 matters.

We could have strengthened (9) to require that any isomorphism from 4 to C
extends to an isomorphism from B to D. But nothing below needs this stronger
assumption.

Let F be a construction on K, represented by the formula ¢. We say that the
formula y(x, y) defines F if and only if for every structure 4 in K,

(10) M E (Fyd(4,y) = 3-,yw(4, ) AV (w(4,y) = §(4, ).

In other words, y uniformises ¢. We say that Fis definable if and only if some formula
defines it.

By (7) every automorphism o« of F(A) restricts to an automorphism p 4(a) of A4.
In line with Lemma 1 above, we say that Fis natural if and only if for every structure
A in K there is a group embedding f,: Aut (4) - Aut (F(4)) in M such thatp, f, = 1.

Eilenberg’s and Mac Lane’s second duals of vector spaces are actually rather hard
tofitinto this framework. One way of encashing the algebraic definition of ‘ dual space’
is to make it a two-part structure (4, T(A4)) with relations R; for the scalars A, such
that if ae 4 and ye T(A) then R;(a,y) holds if and only if y(a) = A. Then the second
dual will be a three-part structure (4, T(A4), T3(A4)) with suitable relations, and the
natural embedding 4, will run from A4 to T2(A4) in this structure. The complication
is that T(A4) is needed for the definition of h, but embeddings from Aut(4) to
Aut (T(A4)) are irrelevant to the naturality of h,. The definitions of representing
formula etc. could be adjusted to deal with this point, but no matter of principle is
involved and it seems hardly worth the effort.

4. Natural implies definable?

THEOREM 3. Let M be a model of set theory (ZFC, or possibly with urelements).
Suppose some formula represents the construction F on the class K in M. If F is natural
and there is only a set of isomorphism types of structures in K, then F is definable in
M with parameters.

Proof. We begin with the case where all structures in K are isomorphic. First
choose a structure A in K and a corresponding structure F(A4). Choose an embedding
f:Aut(4) - Aut(F(A4)) in M as in Lemma 1. The parameters in the definition of F
will be A, F(A), f and any parameters in the formula representing F.

If Bis any structure in Kand §: 4 — B anisomorphism, we build a structure F(B, f)
in M as follows. The elements of F(B,f) are the ordered pairs {d, ) such that d is
an element of F(4), and relations are defined so that the map d— {(d,$) is an
isomorphism from F(A4) to F(B, f).

Unfortunately there is generally no canonical choice of §. So we have to choose
an average of the various F(B, f) as f ranges over the set Iso (4, B) of isomorphisms
from A to Bin M. Suppose that 8, yeIso(4, B). Then y~!fe Aut (4), and so f{y~'p)
is an automorphism of F(A4). Define a relation ~ by

(d,B) ~ {e,y> ifand onlyif fy—1B)(d)=e.

We claim that ~ is an equivalence relation.
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First {f~'f) = 1p4), and so ~ is reflexive. Next, since f is a homo-
morphism, f{y~'f)~!=ff"'y) and hence ~ is symmetric. For transitivity,
suppose that {c,a) ~ (d,8) ~ {e,y>. Then f{f~'a)(c)=d, y~'p)(d) =e and
hence f{y~—'a) (¢} = f(y BB~ a)(c) = e, whence {c,a) ~ {e, ) as required.

Now suppose that f,yelso(4, B). The relation ~ sets up a bijection between
F(B,p) and F(B,y), and it can be checked that this bijection is an isomorphism. So
we can define the elements of F(B) to be the equivalence classes of ~, and a unique
structure is induced on this set to make it isomorphic to F(4). We define
i:dom B — dom F(B) by i(fd) = {d,B)~. This map is well defined. For suppose that
fpd = ye. Then e = y~'fd = f{y—*f)d and so {d, ) ~ {e,y). Hence we can identify B
with i(B) inside F(B). This gives an explicit definition of F(B) from B and the stated
parameters.

Finally when K has a set of isomorphism classes, we use the axiom of choice in M
to choose a family A, (iel) of representatives of these classes, together with
appropriate F(A4,) and f;, and then proceed as before on each class separately. The
choice set will be a parameter in the definition of F.

The proof of Theorem 3 shows more than we stated. We can define F in M so
that for each isomorphism y:B — C between structures in K, an isomorphism
F(y): F(B) — F(C) extending y is also given; moreover this defined map F'is functorial
in the sense that F(8y) = F(B)-F(y) and F(1g) = 1z, for all structures B in K and
isomorphisms S,y between them. If A4 is as in the proof and f:4— B is an
isomorphism, we define F(f) (d) to be {d, >~ for each element d of F(A4). Then, given
any isomorphism y: B — C, we define F(y) to be F(yf) F(B)~!; this is independent of
the choice of f: 4 — B. In short F is definably natural on isomorphisms as well as
automorphisms.

PrOBLEM A. Can the restriction that K contains only a set of isomorphism types
be removed in Theorem 3?

REMARK. For any model M of ZFC, the answer to Problem A is Yes if and only
ifthe following holds. If X'is a definable classin M, and every element of X is a non-empty
set of pairwise isomorphic structures, then there is a definable function G in M such
that for each xe X, G(x) is a structure isomorphism to the elements of x.

ProBLEM B. Under the hypotheses of Theorem 3, if F has representing formula
¢, is it always possible to define F by a formula y whose parameters are those in ¢
and those needed to define K?

REMARK. For any model M of ZFC, the answer to Problem B is Yes if and only
if the following holds. If X is a set each of whose elements is a set of isomorphic
structures, and X is definable by a formula with parameter c, then there is a formula
with parameter ¢ which defines a set Y of structures containing, for each x € X, just
one structure isomorphic to those in x.

Haim Gaifman raised the following question in several unpublished preprints. Let
T be a complete theory in a first-order language L, with a 1-ary relation symbol P,
and let L, be a language < L,\{P}, such that every model B of T is determined by
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the L,-reduct of the substructure defined by P, B¥ | L,, up to isomorphism over B | L.
We call such a theory T an operation (it operates on BP | L, to produce B). When does
there exist a theory T+, in a language got by adding to L, a finite number of new
function symbols g;, so that (1) every model B of T expands to a model B* of T+,
(2) every element of B+ is of form g,(@) for some i and some tuple @ in BF|L,, and
(3) T states that the formulas satisfied by any sequence (a,, g,(@,), ..., £i,(@,)) in B¥
are determined by the formulas satisfied by (@,, a,, ...,a,) in BF|L,?

The method of Theorem 3 answers this question when the models of T are finite.

THEOREM 4.  Let T be an operation such that for each model B of T, BP | L, is finite.
Then T+ exists as above if and only if for some (or, equivalently, every) model B of T
there is a group embedding f:Aut(BF|L,) —» Aut(B) such that each ae Aut(B*|L,)
is the restriction to BY | L, of fl®).

Proof. If T+ exists, then define f by putting flo) (g,(@)) = g,(aa). The finiteness
condition is not needed for this.

For the converse, since T is complete and the structures B | L, are finite, they are
all isomorphic to some fixed L,-structure 4. List the elements of 4 as a fixed n-tuple
a. Choose a model D of T such that DP|L, = A. Since T is an operation, D is also
finite. All models of T are isomorphic to D. We define T+ as the theory of an expansion
D™ of D, as follows.

For each element d of D, introduce a new n-ary function symbol g,. If € Aut (4),
put g,(Ba) = f(P)d. If b is an n-tuple in 4 which is not of the form fa for any
BeAut(4), put g (b) = b,. This defines D*, and (1), (2) are automatically satisfied.

For (3) it suffices to check that if

) (A,dy,a,, ...,8,) = (4,by,b,,...,b,)
then, for all y,d,, ..., d,,
(12) D* = w(@y,84,(@,); - - 84,,(@m)) = W(Bo, 8a,(B1); - > 84, (Bm))-

By (11) and some rearrangement, we can assume that @, is @ and b, is fa for some
BeAut(A4). By (11) again, if some g, is not of the form ya for any ye Aut(4), then
neither is b;, and so we can eliminate g, in (12). Finally by (11) again, there are
&, ...,0, € Aut(4) such that (a,,...,d,) is (@ oa,...,o,a) and (by,...,b,) is
(pa,pa, a, ..., Ba,, a). Now we use the fact that fis a group homomorphism:

(13) 8a,(b;) = ga (P @) = flBo) d; = i) Al) d; = f1B) & 1wy a, (@)

and similarly g,(@;) = g7, 4,(@). Next we use the fact that f{f) extends B, to see that
the right-hand formula of (12) holds in Dt if and only if

149 D*Ey(P)a, B &5 a,(@; - B &ram a (@)
Applying f{8)~!, we deduce (12).

Theorem 4 is unlikely to be true without the finiteness condition, but no
counterexamples are known.
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5. Definable implies natural?

For the next theorem we shall work in Fraenkel-Mostowski set theory with a
proper class of atoms, FMP for short. Atoms are elements which are not sets. The
axioms of FMP are the same as those of ZFC except that extensionality is restricted
to sets, and a new function symbol U.., is added to the language, together with the
following new axioms:

(V ordinals i) (U; is a set and | U;| = | i}),
Vij(i#j->UnU;=0),
Vx (x is an atom — 3i (xe U))).

It is routine to show that FMP is consistent relative to ZFC. In fact if ZFC has
transitive models (as we shall assume) then so does FMP.

In any model ¥ of FMP we put U = ( J; U;. We define the transitive closure of x,
TC(x), as the least transitive set containing x. We write V; for the class of all elements
x such that TC(x) N U < | Ji <; Uy. Then V = J; V..

THEOREM 5. If V is a transitive model of FMP then any construction defined in V
is natural.

Proof. Let F be a construction defined in V by a formula y(x, y, @), where a are
the parameters. Without loss we can assume that the domain K of F consists of all
structures isomorphic to a certain fixed structure 4. Using the axiom of choice we
can launder K and y so that the symbols in the similarity type of K are simply an
initial segment j, of the ordinals. Then every structure in K can be written as a pair
B = (dom B, g) where g is a map from j, to the set of all relations on dom B. Likewise
we can assume that the symbols in the similarity type of F(A4) are an initial segment
J» of the ordinals.

Consider B=(dom B, g) in K, and let § be an automorphism of V such that
B(dom B) = dom B. Then f fixes every ordinal, and hence it pointwise fixes the domain
of g. It follows that f(B) = B if and only if the restriction of # to dom B is an
automorphism of B. The same applies to structures isomorphic to F(A).

Choose an ordinal i > |dom A4 | such that the parameters a lie in V;. In V there
is some structure B which is isomorphic to 4 and has domain < U,. Since y defines
F, there is a unique structure C = F(B) such that V' |= w(B, C, @).

Each automorphism a of B extends to a permutation o«* of U so that a*u=u
for all ue U\(dom B). Then oa* extends to an automorphism of V by writing
o*(x) = {a*(y):yex} for every set xe V. Thus Aut(B) acts on V; in fact the map
a—a* is a group embedding from Aut (B) to Aut (V).

Let ae Aut (B). Then o*(B) = B. If x€ V; then a*x = x, and in particular a*a = a.
Since o* is an automorphism of V, we have V= yw(a*B,a*C, a*a), in other words
V= w(B,a*C,a). But y defines F, and hence a*C = C. In particular o* permutes the
elements of dom C, and so by remarks above, a* | C is an automorphism of C which
extends the automorphism « of B. The map « +— o*| C is the required embedding of
Aut (B) in Aut (F(B)).

Unfortunately Theorem 5 is a triviality. The significant question is the following.
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ProBLEM C. Does ZFC have transitive models in which every definable con-
struction is natural?

We have no idea how to answer this. The nearest approach so far is a result
of Harvey Friedman [3]. He shows that ZFC has models in which every definable
construction F has the following property, which we may call semi-naturality. For all
A, B in the domain of F and every isomorphism a: A4 — B there is an isomorphism
from F(A) to F(B) extending «. This is equivalent to the property that if 4 is in the
domain of F and « is an automorphism of A then a extends to an automorphism of
F(A).

Despite appearances, semi-naturality is a long way short of naturality. Most
reasonable constructions are semi-natural anyway, including all the examples in
Section 2 above.

6. Definable implies definably semi-natural?

Though we have no information on Problem C, we can at least show that one
plausible improvement of it is false.

Let M be a model of set theory and F a construction defined in M by a formula
w. Then for every structure A in the domain of F there is a unique B such that
M = y(A, B); wewrite F, for the function 4 +— B. Wesay that F,, is definably semi-natural
if and only if there is some formula y(x, y) such that for each 4, y(4,-) defines in M
amap f: Aut(4) - Aut (f,(4)) (not necessarily a group embedding) such that each f{a)
extends a. We say that F is definably semi-natural if and only if there is some formula
y defining F, such that F,, is definably semi-natural.

THEOREM 6. There is a formula w(x, y) of set theory such that if M is any model
of ZFC then

(a) w defines a natural construction F in M, and

(b) if F, is definably semi-natural then M has a definable global choice function.

Proof. Let K be the class of all structures 4 of the following form: 4 has an
equivalence relation E, with two classes, these classes are of equal size, and A has
no other functions or relations. Then F(A4) is formed by adding to each equivalence
class of E, the same number of elements as it already contains, and then supplying
a new l-ary relation symbol P to pick out the old elements. Clearly we can write down
a formula w(x, y) which defines such a construction F in any model M of ZFC, and
F will be natural. This gives (a).

To get (b) we specify  more precisely. It should say that if the equivalence classes
of 4 happen to be the sets {a} U|a| and {|a|} U {1} x| a|, for some infinite set a, then
the equivalence classes of F,(4) are {a} U|a|Uaand {|a|} U {1,2} x|a|. Now suppose
that F, is definably semi-natural. Then there is a definable function G which takes
each automorphism  of 4 to an automorphism G(p) of F,(4) extending . Now given
any infinite set a, let 4 be as above, and let §,, be the automorphism of 4 which switches
the equivalence classes, taking a to | a| and each ie|a| to {1, i). Then G(f,) switches
the equivalence classes of F,(4), and hence it maps a bijectively to {2} x|a|. Since
{2} x| a| is well ordered, G(f,) defines a well-ordering of a. But G(f,) is uniformly
definable from a. Thus (b) holds.
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COROLLARY 7. There is no model of ZFC in which, whenever a formula y defines

a construction F, there is a definable map taking each A in the domain of F to a group
embedding f,: Aut (4) — Aut(F,(A4)) as in Lemma 1.

Proof. Suppose to the contrary that M is such a model, and consider y from
the theorem. Since F, is definably semi-natural by supposition, M has a definable
global choice function by the theorem. But then we can use this choice function to
define constructions which are not natural.

Can Corollary 7 be improved to say that there is no model of ZFC in which every
definable construction is ‘definably natural’? This seem likely. Theorem 8 below
improves the relevant part of Theorem 6 from °‘F, definably semi-natural’ to
‘F definably semi-natural’; but the construction used is not natural, so that we had
to assume a weak global choice in order to make it definable.

THEOREM 8. Let M be a model of ZFC with a definable global choice function for
finite sets. Then in M there is a definable construction F, which is definably semi-natural
if and only if M has a definable global choice function.

Proof. InM,letGbeanabelian groupandzn:G — Z, a surjective homomorphism.
We define A(G,n) to be a structure with three parts: A(G, n) = ({a, b}, G, Z;), where
a, b are two distinct elements; besides the operations on G and Z,, A(G, ) carries a
function 6 4(¢, 5): G = Z, which coincides with z. We define K to be the class of all
structures isomorphic to structures of form A(G, ).

For each structure 4 = A(G, n) we define a structure B = B(G, ) as follows. B is
a four-part structure ({a, b}, G, Z,, D), where {a, b}, G, Z, are as in 4, and D is the set
of all ordered pairs g* = (G, g)> with geG. Besides the operations of 4, B carries
functions qz:DxG—D and pg:D —{a,b} defined by ggz(g*, h) = (gh)*, and
pg(g*) = a if and only if n(g) = 0.

CLamM. If y is an automorphism of B(G, ) which fixes G pointwise, then there
is a unique s € G such that, for every g* € D, y(g*) = g, n(g*, h).

For let 4* be p(1*). Then for each ge G we have

(15) 7g*) = v(gs(1*,8)) = qp(h*,8) = q5((hg)*, 1) = q5(g*, h).

The last equation uses the fact that G is abelian. This proves existence; uniqueness
is immediate.

There is a formula yw(x, y) such that for all G and =, w(A(G, n),—) defines B(G, n).
Moreover we can choose y so that it defines a construction F with
F,(A(G,n)) = B(G, n). The only problem in choosing this ¢ is to determine, given a
structure ({¢, d}, G, Z,) = A(G, =), which of ¢, d corresponds to a. But global choice
for pairs makes this decision for us.

Next, for any cardinal x let R, be the set of sets of rank less than «, let S, be the
set of all well-orderings of R, and let J, be the set of finite subsets of S,. We can
make J, into an abelian group by putting a+b = (a\b) U (b\a); the identity 0 is the
empty set. We define a surjective homomorphism =,:J, —» Z, by setting n,(a) = 0 if
and only if |a| is even.
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Now if the construction F'is definably semi-natural, then it is defined by a formula
0 such that Fyis definably semi-natural. Therefore there is a definable function G such
that for each cardinal x, G maps Aut (4(J,, n,)) into Aut (F(A(J,, 7,))) so that each
G(p) extends . For brevity we write C, for Fy(A(J,, n,)). Now C, forms a quadruple
({a, b}, J, Z,, D,) with functions a,, p,, g, besides the group operations in J, and Z,.

For a fixed k, let § = B, be the automorphism of A(J,, z,) which fixes J,. pointwise
but transposes a and b. Then G(f) is an automorphism of C, which fixes J, pointwise
and transposes a and b. For each de D,

(16)  od) = 0<p(d) = a<p(G(B)d) = B(a) = b<>0,(G(B)d) # 0.

It follows that d # G(p)d for all de D,. So by the claim, there is some unique A, # 0
in J, such that for all de D,, G(f) (d) = q,(d, h,). By global choice for finite sets, we
can select an element x, of A,, uniformly for all x. In short, for each cardinal « we
can uniformly define a well-ordering of R,. Clearly this supplies a definable global
choice function for M.

Conversely it is straightforward to show that if M has a definable global choice
function, then for any formula @ defining F, F, is definably semi-natural.
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