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Abstract

Erdős asked how frequently 2n has a ternary expansion that omits the digit 2. He conjectured that
this holds only for finitely many values of n. We generalize this question to consider iterates of two
discrete dynamical systems. The first considers truncated ternary expansions of real sequences
xn(λ) = �λ2n�, where λ > 0 is a real number, along with its untruncated version, whereas the
second considers 3-adic expansions of sequences yn(λ) = λ2n, where λ is a 3-adic integer. We
show in both cases that the set of initial values having infinitely many iterates that omit the
digit 2 is small in a suitable sense. For each nonzero initial value we obtain an asymptotic
upper bound as k → ∞ on the number of the first k iterates that omit the digit 2. We also
study auxiliary problems concerning the Hausdorff dimension of intersections of multiplicative
translates of 3-adic Cantor sets.

1. Introduction

Erdős [5] asked the question, ‘When does the ternary expansion of 2n omit the digit 2?’ This
happens for 20 = (1)3, 22 = 4 = (11)3, and 28 = 256 = (100111)3. He conjectured that it does
not happen for all n � 9 and commented that: ‘As far as I can see, there is no method at
our disposal to attack this conjecture.’ This question was initially studied by Gupta [14], who
found by a sieving procedure that there are no other solutions for n < 4374. In 1980 Narkiewicz
[17] showed that the number

N1(X) := #{n � X : the ternary expansion (2n)3 omits the digit 2}

has N1(X) � 1.62Xα0 with α0 = log3 2 ≈ 0.63092. The Erdős question remains open and has
appeared in several problem lists, for example, Erdős and Graham [6] and Guy [15, Problem
B33]. In this paper we call the ‘conjecture of Erdős’ the weaker assertion that there are only
finitely many exponents n such that the ternary expansion (2n)3 of 2n omits the digit 2.

This paper considers analogues of the conjecture of Erdős for iterates of two discrete
dynamical systems, one acting on the real numbers and the other acting on the 3-adic integers,
with an additional degree of freedom given by a parameter λ specifying the initial condition. In
both dynamical systems the parameter value λ = 1 recovers the original sequence {2n : n � 0}
of Erdős as a forward orbit of the dynamics.

The first dynamical system is y �→ 2y acting on the real numbers, which is a homeomorphism
of R that is an expanding map. It produces a sequence of iterates yn = 2ny0 starting from
y0 = λ. The real dynamical system concerns the iterates yn. We also consider an associated
dynamical system that gives integers, by applying the floor operator, obtaining the sequence
xn = �yn�; that is,

xn = xn(λ) := �λ2n� for n � 0. (1.1)
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We call this the truncated real dynamical system. Strictly speaking, the truncated real
dynamical system has forward orbits involving two variables O+(λ) := {(yn(λ), xn(λ)) : n � 0},
with {yn(λ)} driving the dynamics. However, the expanding nature of the map y �→ 2y implies
that the integer sequence {xn(λ) : n � 0} contains enough information to uniquely determine
the initial condition λ of the iteration; here we consider the ternary expansions of the xn(λ).

The second dynamical system is y �→ 2y acting on the 3-adic integers Z3, which is a 3-
adic measure-preserving homeomorphism of Z3. It produces a sequence of iterates yn = 2ny0

starting from the initial condition y0 = λ. We write

yn = yn(λ) = λ2n for n � 0. (1.2)

In this case we study the membership of the values yn(λ) in the subset Σ3,2̄ of all 3-adic integers
whose 3-adic expansion omits the digit 2; this is the multiplicative translate 1

2Σ3,1̄ of the 3-adic
analogue Σ3,1̄ of the classical ‘middle-third’ Cantor set.

In the real number case, dynamical systems of a related nature have been studied by several
authors. Flatto, Lagarias, and Pollington [9] introduced a parameter λ in similar questions
concerning the fractional parts of the sequences {{λξn}}, for fixed ξ > 1, with the aim of
proving results for the parameter value λ = 1 by proving universal results that are valid
for all parameter values λ > 0. Recently, Dubickas and Novikas [4] considered the prime or
compositeness properties of integers occurring in truncated recurrence sequences, including
�λ2n� as a particularly simple case. Dubickas [3] further extended both of these results to
certain λ that are real algebraic numbers.

Now we state the main results, and formulate some conjectures.

1.1. Truncated real dynamical system: results

For the truncated real dynamical system xn = �λ2n�, we show that there is a uniform
asymptotic upper bound that is valid for all nonzero λ on the number of n � X for which
(�λ2n�)3 omits the digit 2. Let (k)3 denote the ternary digit expansion of the integer k.

Theorem 1.1. For each λ > 0, the upper bound

Nλ(X) := #{n : 1 � n � X and (�λ2n�)3 omits the digit 2} � 25X0.9725 (1.3)

holds for all sufficiently large X � n0(λ).

In the complementary direction, the function Nλ(X) is not always bounded. The next result
shows that there exist uncountably many λ > 0 such that the sequence xn(λ) contains infinitely
many integers omitting the digit 2 in their ternary expansion.

Theorem 1.2. There exists an infinite sequence S = {nk : k � 1}, satisfying n1 = 2 and

21/14(nk−1+2k−7) � nk � 227(nk−1+2k+6), (1.4)

having the following property: the set of real numbers Σ(S) consisting of all λ > 0 for which
all of the integers {xn(λ) := �λ2n� : n ∈ S} have ternary expansions omitting the digit 2 is an
uncountable set.

The set of exponents produced in this theorem forms a very thin infinite set. One can show
that (1.4) implies that, for X � 2, its cardinality satisfies

#{nk : 1 � nk � X} � log∗(X) − 4, (1.5)
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in which log∗(X) denotes the number of iterations of the logarithm function starting at X
necessary to get a value smaller than 1. Thus we obtain for all λ ∈ Σ(S), that

Nλ(X) � log∗(X) − 4. (1.6)

Next we consider properties of the set of λ that have infinitely many such integers. We define
the truncated real exceptional set ET (R+) by

ET (R+) := {λ > 0 : infinitely many ternary expansions(�λ2n�)3 omit the digit 2}. (1.7)

We prove the following result.

Theorem 1.3. The truncated real exceptional set has Hausdorff dimension

dimH(ET (R+)) = log3(2) =
log 2
log 3

≈ 0.63092.

It has nonzero log3(2)-dimensional Hausdorff measure.

This result gives an indication of why it may be a hard problem to tell whether there are
infinitely many exceptional powers of 2 for any particular λ, such as λ = 1; namely, it is likely
to be a hard problem to decide whether any particular real number belongs to this ‘small’
exceptional set.

1.2. Real dynamical system: conjecture

Consider the real dynamical system y �→ 2y on R+, without truncation, having forward orbits
O+(λ) := {yn = λ2n : n � 0}. We define the real exceptional set E(R+) by

E(R+) := {λ > 0 : infinitely many ternary expansions(λ2n)3 omit the digit 2}. (1.8)

This set is much more constrained than the truncated exceptional set ET (R+) discussed above.
As far as we know, it could even be the empty set. The conjecture of Erdős is equivalent to
the assertion that 1 �∈ E(R+).

Concerning this exceptional set, we make the following conjecture.

Conjecture 1.4. The real exceptional set

E(R) := {λ ∈ R+ : infinitely many ternary expansions(λ2n)3 omit the digit 2}

has Hausdorff dimension zero.

A stronger form of this conjecture would be that the exceptional set is countable; even
stronger would be the assertion that the real exceptional set is empty. Thus, for the moment,
there remains the possibility that the conjecture of Erdős might hold for all initial conditions
λ > 0, for the full ternary expansions (λ2n)3 as real numbers.

Note that, if the real exceptional set is nonempty, then it will necessarily be an infinite set,
because it is forward invariant under multiplication by 2, that is, 2E(R+) ⊂ E(R+). It is clearly
also forward invariant under multiplication by 3, that is, 3E(R+) ⊂ E(R+). Thus it is forward
invariant under two commuting semigroup actions. However, the real exceptional set is not
known to be a (topologically) closed set, so that known results implying Hausdorff dimension
zero for closed sets invariant under certain commuting semigroup actions cannot be directly
applied.
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1.3. 3-adic dynamical system: results

For a 3-adic integer λ =
∑∞

j=0 dj3j , with each dj ∈ {0, 1, 2}, we write (λ)3 = (. . . d2d1d0)3 for
its 3-adic digital expansion. Our first observation is an upper bound on the number of solutions
that are valid for all nonzero λ ∈ Z3, which extends the result of Narkiewicz [17] for λ = 1,
using essentially the same proof.

Theorem 1.5. For each nonzero λ ∈ Z3, the 3-adic integers, and each X � 2, we have

Ñλ(X) := #{n � X : (λ2n)3 ∈ Z3 omits the digit 2} � 2Xα0 , (1.9)

with α0 = log3 2 ≈ 0.63092.

Next we study the 3-adic exceptional set

E(Z3) := {λ ∈ Z3 : infinitely many 3-adic expansions λ2n omit the digit 2}. (1.10)

This set seems hard to study directly, so, as approximations to the 3-adic exceptional set, we
define for k � 1 the sequence of sets

E(k)(Z3) := {λ ∈ Z3 : at least k values of λ2n omit the digit 2}. (1.11)

These sets clearly form a nested family under inclusion:

E(1)(Z3) ⊃ E(2)(Z3) ⊃ E(3)(Z3) ⊃ . . . ,

and their intersection contains the exceptional set E(Z3). These sets are somewhat easier
to study.

We consider the problem of estimating the Hausdorff dimension of the sets E(k)(Z3) (with
respect to the 3-adic metric) and show the following result.

Theorem 1.6. (i) The exceptional set E(1)(Z3) has Hausdorff dimension

dimH(E(1)(Z3)) = α0 ≈ 0.63092. (1.12)

(ii) The exceptional set E(2)(Z3) has Hausdorff dimension bounded as follows:

1
2

log3(2) � dimH(E(2)(Z3)) � 1
2
. (1.13)

(iii) The exceptional set E(3)(Z3) has positive Hausdorff dimension bounded as follows:

1
6

log3 2 � dimH(E(3)(Z3)) � dimH(E(2)(Z3)). (1.14)

This result is only a beginning of the study of dimH(E(k)) for general k. The (not necessarily
closed) set E(k)(Z3) is a countable union of closed sets C(2m1 , 2m2 , . . . , 2mk) consisting of those
λ for which {λ2mj : 1 � j � k} all have 3-adic expansions that omit the digit 2. One can use
this to obtain upper and lower bounds on the Hausdorff dimension of these sets by analysing the
Hausdorff dimension of the individual sets C(2m1 , 2m2 , . . . , 2mk). These sets are intersections
of multiplicative translates of the 3-adic Cantor set, which we discuss in Section 1.4. In
Theorem 1.6 the upper bound in (ii) is deduced using Theorem 1.8 below.

It is not clear whether dimH(E(k)(Z3)) > 0 for all k � 1. Proving or disproving this assertion
already seems a subtle question.

Since E(Z3) ⊆ E(k)(Z3) for each k � 1, any upper bound on the Hausdorff dimension of
E(k)(Z3) gives an upper bound for the Hausdorff dimension of the 3-adic exceptional set E(Z3).
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Each condition λ2mj ∈ Σ3,2̄ imposes more constraints, apparently lowering the Hausdorff
dimension. This motivates the following conjecture concerning the 3-adic exceptional set E(Z3),
which parallels Conjecture 1.4.

Conjecture 1.7. The 3-adic exceptional set

E(Z3) := {λ ∈ Z3 : infinitely many 3-adic expansions λ2n omit the digit 2}
has Hausdorff dimension zero.

As in the real dynamical system case, we do not know much about this exceptional set,
except that it contains 0. Again, the conjecture of Erdős is equivalent to the assertion that
1 �∈ E(Z3). The 3-adic exceptional set E(Z3) is forward invariant under multiplication by 2 and
3, but is not known to be a closed set.

1.4. Intersection of multiplicative translates of Cantor sets: results

The study of the exceptional sets E(k)(Z3) leads to auxiliary questions concerning the Hausdorff
dimensions of intersections of multiplicative translates of the 3-adic Cantor set Σ3,2̄, defined
by

Σ3,2̄ := {λ ∈ Z3 : the 3-adic expansion (λ)3 omits the digit 2}. (1.15)

For integers 1 � M1 < M2 < . . . < Mk we study the multiplicative intersection sets

C(M1,M2, . . . ,Mk) := {λ ∈ Z3 : (Mjλ)3 omits the digit 2 for 1 � j � k}

=
k⋂

j=1

(
1

Mj
Σ3,2̄

)
. (1.16)

These sets are closed sets. The standard ‘middle third’ Cantor set

Σ3,1̄ := {λ ∈ Z3 : the 3-adic digit expansion (λ)3 omits the digit 1} (1.17)

has Σ3,1̄ = 2Σ3,2̄, so that all of the results given below for Σ3,2̄ convert to equivalent results
for multiplicative translates of Σ3,1̄.

Multiplicative intersection sets arise in studying sets E(k)(Z3) because they are given by
countable unions of such sets, namely

E(k)(Z3) =
⋃

0�m1<m2<...<mk

C(2m1 , 2m2 , . . . , 2mk).

What can be said about the Hausdorff dimension of sets C(M1,M2, . . . ,Mk)? This dimension
depends in a complicated manner on the 3-adic expansions of the Mi, and leads to various
problems that seem interesting in their own right.

Theorem 1.8. Let M be a positive integer that is not a power of 3. Let Σ3,2̄ be the ternary
Cantor set. Then the Hausdorff dimension of C(1,M) = Σ3,2̄ ∩ (1/M)Σ3,2̄ satisfies

dimH(C(1,M)) � 1
2
. (1.18)

We do not know if this bound is sharp. However, it is possible to show that

dimH(C(1, 7)) = log3

(
1 +

√
5

2

)
≈ 0.438.
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For lower bounds on the Hausdorff dimension of such sets, we give the following simple
sufficient condition for positivity of the Hausdorff dimension.

Theorem 1.9. Let 1 � M1 < M2 < . . . < Mk be positive integers. Suppose that there is
a positive integer N belonging to the 3-adic Cantor set Σ3,2̄ ∪ Z such that all of the integers
NMi satisfy

NMi ∈ Σ3,2̄ ∩ Z, 1 � j � k. (1.19)

Then

dimH(C(M1,M2, . . . ,Mk)) � log3(2)
�log3(NMk)� . (1.20)

This result is proved by the direct construction of a Cantor set of positive Hausdorff
dimension inside C(M1,M2, . . . ,Mk). It gives a possible approach to obtaining a nonzero lower
bound for dimH(E(k)(Z3)) for k = 4 or larger, if suitable Mi = 2ni can be found that fulfil
its hypotheses. However, it can be shown that the sufficient condition of Theorem 1.9 is not
necessary; for example, N = 1 and M1 = 1 and M2 = 52 does not satisfy the hypothesis of this
theorem, nevertheless C(1, 52) has positive Hausdorff dimension. Thus further strengthenings
of this approach may be possible.

Determining the structure and Hausdorff dimension of the sets C(M1, . . . ,Mk) leads to many
open problems.

Problem 1.10. Let

MC := {M � 1 : there exist integers N1, N2 ∈ Σ3,2̄ with N1M = N2}.

Obtain upper and lower bounds for the number of integers 1 � M � X in MC .

Problem 1.11. Let

MH := {M � 1 : dimH(C(1,M) > 0}.

Obtain upper and lower bounds for the number of integers 1 � M � X in MH .

These are different problems, because it can be shown that the inclusion MC ⊂ MH is strict.

1.5. Generalized Erdős conjecture

We formulate the following strengthening of Erdős’s original question, by analogy with a
conjecture of Furstenberg [11, Conjecture 2′], which is reviewed in Section 5.

Conjecture 1.12. Let p and q be multiplicatively independent positive integers, that is,
all {piqj : i � 0, j � 0} are distinct. Then the base q expansions of the powers {(pn)q : n � 1}
have the property that any given finite pattern P = a1a2 . . . ak of consecutive q-ary digits
occurs in (pn)q, for all sufficiently large n � n0(P ).

Conjecture 1.12 generalizes Erdős’s original problem, which is the special case p = 2 and q = 3
with the single pattern P = 2. Furstenberg’s conjecture concerns d-ary expansions of {(pn)d :
n � 1} with d = pq in which p and q are multiplicatively independent, that is, his conjecture
would apply to the 6-adic expansion {(2n)6 : n � 0}, rather than the 3-adic expansion above.
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This conjecture might more properly be formulated as a question, since we present no
significant new evidence in its favour. However, we think that any mechanism that forces
a single pattern to appear from some point on should apply without exception to all patterns.

1.6. Summary

First, this paper places the original Erdős problem in a more general dynamical context. The
two dynamical generalizations seem to give restrictions on the original Erdős question of roughly
equal strength, as formulated in Theorems 1.1 and 1.5; that is, they each reduce the number
of candidate 1 � n � X to at most Xc for some 0 < c < 1. What is interesting is that these
arguments appear to use ‘independent’ information about the ternary expansions of 2n. The
method used for the real dynamical system estimates the number of n with (2n)3 omitting 2 in
its log3 X most significant ternary digits, whereas for the 3-adic dynamical system the method
estimates the omission of 2 in the log3 X least significant ternary digits of 2n. Heuristically, the
most significant digits and least significant digits seem uncorrelated; this is the ‘independence’
referred to above. Furthermore, since the ternary expansion (2n)3 has about α0n ternary digits,
the vast number of digits in the middle of the expansion (2n)3 are not exploited in either
method; only a logarithmically small proportion of the available digits in the ternary expansion
(2n)3 is considered.

It seems a challenging problem to find a method that effectively combines the two approaches
to find better upper bounds on N1(X) than that given by Narkiewicz. Can one obtain an upper
bound of O(Xβ) for some β < log3 2 in this way? Can one show that the high-order digits and
the low-order digits in the ternary expansion (2n)3 are ‘uncorrelated’ in some quantifiable way?

Second, we put forward Conjectures 1.4 and 1.7, which assert Hausdorff dimension zero of
exceptional sets. These seem more approachable questions than the original question of Erdős.
A much harder question seems to be to resolve whether the exceptional sets E(R+) and E(Z3)
might be countable or finite.

Third, our analysis leads to a variety of interesting auxiliary problems in combinatorial
number theory. These concern the Hausdorff dimension of intersections of multiplicative
translates of 3-adic Cantor sets. These Hausdorff dimensions depend in a complicated
arithmetic way on the values of the integer multipliers. These sets seem worthy of further study.

Finally, we observe analogies with work of Furstenberg [10, 11] on actions of multiplicative
semigroups and intersections of Cantor sets. These analogies suggest Conjecture 1.12.

1.7. Contents and notation

The contents of the remainder of the paper are as follows. In Section 2 we prove results for the
truncated real dynamical system. In Section 3 we prove results for the 3-adic dynamical system.
In Section 4 we establish auxiliary results on the Hausdorff dimensions of intersections of a
finite number of multiplicative translates (by positive integers) of the 3-adic Cantor set, and
include several examples. These results are used to complete the proofs of one result in Section
3. In Section 5 we discuss the work of Furstenberg. This includes a conjecture that motivates
Conjecture 1.12, and his formulation of a notion of transversality of semigroup actions on a
compact space and implications for intersections of Cantor sets. In the concluding Section 6
we describe the history associated with Erdős’s original question.

Notation 1.13. Let

{{x}} := x − �x� = x (mod 1)
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denote the fractional part of a real number x. Let

〈〈x〉〉 :=
{{

x +
1
2

}}
− 1

2

denote the (signed) distance of x to the nearest integer.

Acknowledgements. I am grateful to A. Pollington, K. Soundararajan, and H. Furstenberg
for helpful comments and references. I thank the reviewer for helpful comments and suggestions.

2. Real dynamical systems: proofs

We consider the sequence of real numbers x∗
n := λ2n and consider the associated integers

xn(λ) = �x∗
n�.

On taking logarithms to base 3, we have

log3 x∗
n = log3 λ + n log3 2 = mn + wn,

in which mn = �log3 x∗
n� is the integer part and wn := log3 x∗

n (mod 1) is the fractional part,
with 0 � wn < 1. Now the digits in the ternary expansion of xn(λ) are completely determined
by knowledge of the real number wn, since xn(λ) = 3mn3wn ; so they are the first mn ternary
digits in the ternary expansion of 3wn , since multiplication by 3mn simply shifts ternary digits
to the left without changing them.

On the other hand, the sequence of wn forms an orbit under iteration of the map T : [0, 1] �→
[0, 1] given by

T (w) = w + log3 2 (mod 1), (2.1)

on taking the initial condition w0 = log3 λ, with wn+1 = T (wn). Since α0 = log3 2 is irrational,
the map T is an irrational rotation on the torus R/Z, which is known to be uniquely ergodic.
In particular, every forward orbit of iteration of T is uniformly distributed (mod 1), with the
convergence rate to uniform distribution determined by properties of the continued fraction
expansion of α0. We now examine the consequences of this property for the ternary expansions
of x∗

n.
First, the leading ternary digits of 3wn confine the position of wn in the interval [0, 1] to a

small subinterval. The property of omitting the digit 2 in a leading digit of a ternary expansion
of xn will prohibit wn from certain subintervals in [0, 1]; the allowed subintervals will have
small measure. Using the fact that the distribution of wn (mod 1) approaches the uniform
distribution fairly rapidly, one can show that most wn have some leading digit that is a 2;
Theorem 1.1 is deduced using this idea, where the number k of leading digits used will depend
on the interval [1,X] considered.

Second, one uses a construction that selects a rapidly growing set of values of n = nk, chosen
using the continued fraction expansion of α0, in such a way as to permit each wnk

to fall in
a ‘good’ interval where the initial ternary digits for a large set of short intervals have xnk

(λ)s
with ternary expansions avoiding any 2s. A recursive interval construction, which modifies λ
slightly at each stage while not disturbing the initial ternary digits already selected, produces
the sets in Theorem 1.2. Finally, we use a quantitative version of such an interval construction
producing the set of Hausdorff dimension α0 in Theorem 1.3.
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2.1. Diophantine approximation lemmas

We begin with two preliminary lemmas, the first on the spacings of multiples of an irrational
number (modulo one) and the second on Diophantine approximation properties of α0 = log3 2.

Lemma 2.1. Let θ be irrational and consider the N + 1 numbers

{x + jθ (mod 1) : 0 � j � N},
viewed as subdividing the torus R/Z (the interval [0, 1] with endpoints identified) into N + 1
subintervals (‘steps’).

(i) These subintervals take at most three distinct lengths. If three different lengths occur,
say L1, L2, and L3, then one of them is the sum of the other two, say L1 + L2 = L3.

(ii) Let θ have the continued fraction expansion θ = [a0, a1, a2, . . .], with partial quotients
ai and convergents pn/qn, whose denominators satisfy qn+1 = an+1qn + qn−1. Write uniquely

N = (j + 1)qn + qn−1 + k, 0 � k � qn − 1, (2.2)

with 0 � j � an+1 − 1. Then the subintervals have lengths

L1 = |〈〈qnθ〉〉|,
L2 = |〈〈qn−1θ〉〉 + (j + 1)〈〈qnθ〉〉|,
L3 = |〈〈qn−1θ〉〉 + j〈〈qnθ〉〉|,

and occur with multiplicities jqn + qn−1 + k + 1, k + 1, and qn − (k + 1), respectively. Here
L3 = L1 + L2, and L1 < L2 if 0 � j � an+1 − 2, whereas L2 < L1 if j = an+1 − 1. Intervals of
size L3 do not occur if and only if k = qn − 1.

(iii) For N = qn+1 − 1, there occur intervals of exactly two lengths L1 and L2 as above, and
these lengths satisfy

L2 < L1 < 2L2. (2.3)

Proof. Statements (i) and (ii) have a long history, which is detailed in Slater [22]. In
particular, (ii) implies (i) and the formulas in (ii) appear in Slater [22, Equation (33), p. 1120].
The ordering of L1 and L2 follows from the fact that the 〈〈qnθ〉〉 alternate in sign with
successive n.

(iii) Let N = qn+1 − 1. If an � 2 then the decomposition (2.2) is

N = (an+1 − 1)qn + qn−1 + (qn − 1),

with k = qn − 1 and j = an+1 − 1. Now (ii) says that there are steps of exactly two lengths L1

and L2 given by

L1 = |〈〈qnθ〉〉|,
L2 = |〈〈qn−1θ〉〉 + (an+1 − 1)〈〈qnθ〉〉|,

and L2 < L1. Next we have

〈〈qn+1θ〉〉 = 〈〈qn−1θ〉〉 + an+1〈〈qnθ〉〉 = (〈〈qn−1θ〉〉 + (an+1 − 1)〈〈qnθ〉〉) + (〈〈qnθ〉〉).
Since 〈〈qn+1θ〉〉 and 〈〈qnθ〉〉 have opposite signs, and

|〈〈qn+1θ〉〉| � L2,

we must have
L2 < L1 = L2 + |〈〈qn+1θ〉〉| < 2L2.
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(The fact that θ is irrational gives the strict inequality at the last step.)
There remains the case an+1 = 1. Now we find that the decomposition (2.2) is

N = qn + qn−1 − 1 = anqn−1 + qn−2 + (qn−1 − 1),

with k = qn−1 − 1 and j = an−1 − 1. As before, there are intervals of exactly two lengths

L1 = |〈〈qn−1θ〉〉|,
L2 = |〈〈qn−2θ〉〉 + (an − 1)〈〈qn−1θ〉〉|,

with L2 < L1. We deduce, as in the case an+1 � 2, that

L2 < L1 = L2 + |〈〈qnθ〉〉| < 2L2,

as required.

The point of Lemma 2.1 for our application is that for the choice N = qn − 1 the points
{x + jθ (mod 1) : 0 � j � N} are very close to uniformly spaced on the interval [0, 1]. The
next result obtains information on the denominators qn of the continued fraction convergents
of the irrational number α0.

Lemma 2.2. For the irrational number α0 = log3 2 the following hold.
(i) For all q � 1 and all integer p, there holds the Diophantine inequality∣∣∣∣α0 −

p

q

∣∣∣∣ � 1
1200

1
qc0+1

, (2.4)

with c0 = 13.3.
(ii) The denominators qn of the continued fraction convergents pn/qn of α0 satisfy

qn � 1200(qn−1)c0 . (2.5)

Proof. (i) The existence of a bound of this general form, apart from the precise constants,
follows from Baker’s results on linear forms in logarithms [2, Theorem 3.1], applied to the linear
form Λ = k + q log 2 − p log 3, taking k = 0, and noting that its height B := max{|p|, q} � 2q.

The particular bound (2.4) is obtained from a result of Simons and de Weger [21, Lemma 12],
who show, for k � 1 and all integers l, that

|(k + l) log 2 − k log 3| > exp(−13.3(0.46057))k−13.3 >
1

484
k−13.3.

Their result is proved using a transcendence result of Rhin [18, Proposition, p. 160] for linear
forms in two logarithms. We may suppose that k < k + l < 1.6k, and obtain∣∣∣∣ log3 2 − k

k + l

∣∣∣∣ >
1

log 3
exp(−13.3(0.46057))(k + l)−1k−13.3 � 1

1200
(k + l)−14.3,

which on taking p = k and q = k + l gives the needed bound.
(ii) Since α0 lies in the interval between two successive continued fraction convergents

pn−1/qn−1 and pn/qn, we obtain using (2.4) that

1
qnqn−1

=
∣∣∣∣pn

qn
− pn−1

qn−1

∣∣∣∣ =
∣∣∣∣α0 −

pn−1

qn−1

∣∣∣∣+
∣∣∣∣α0 −

pn

qn

∣∣∣∣ � 1
1200

1
(qn−1)c0+1

.

Multiplying by 1200qn(qn−1)c0+1 gives (2.5).

2.2. Interval constructions

We now construct sets where the truncated real dynamical system has infinitely many solutions
with (�λ2n�)3 omitting the digit 2.



572 JEFFREY C. LAGARIAS

Proof of Theorem 1.1. Let λ > 0. We study for 1 � n � X the ternary expansion of

xn = xn(λ) = �λ2n�.
We will study the first k leading ternary digits of the {xn : 1 � n � X}, where we choose k as
follows. If pj/qj are the convergents of the continued fraction expansion of α0 = log3 2, then
choose l such that ql−1 < X � ql, and then choose k to be the number of ternary digits in ql−1,
so that 3k−1 < ql−1 � 3k. Note that k = �log3 ql−1� � �log3 X�.

We now set wn := log3(λ2n) (mod 1), with 0 � wn < 1, so that

wn = nα0 + log3 λ (mod 1). (2.6)

We now observe that where wn falls in the interval [0, 1) specifies the first k ternary digits in
the ternary expansion of 3wn , with 1 � 3wn < 3, and we can partition the interval [0, 1) into
half-open intervals corresponding to each such ternary expansion. Consider a ternary expansion

b = [b0b1 . . . bk−1]3, bi ∈ {0, 1, 2}, b0 �= 0,

of length k, noting that there are 2 · 3k−1 such expansions. Set

β(b) =
k−1∑
j=0

bj

3j
, (2.7)

for which 1 � β(b) < 3, and associate the following subinterval of [0, 1):

J(b) :=
[
log3 β(b), log3

(
β(b) +

1
3k−1

))
. (2.8)

These 2 · 3k−1 subintervals partition [0, 1), from J([10 . . . 0]3) = [log3(1), log3(1 + 1/3k−1)) to
J([22 . . . 2]3) = [log3(3 − 1/3k−1), log3 3).

We claim that the following conditions (C1) and (C2) are equivalent for xn with 3m � xn �
3m+1, with m � k:

(C1) xn has a ternary expansion having the k leading digits b = [b0b1 . . . bk−1]3, that is,
xn =

∑m
j=0 bj3m−j , for some (bk+1, . . . , bm);

(C2) wn = log3 xn (mod 1) has wn ∈ J(b).
The claim follows because the definition of J(b) specifies the k-leading ternary digits of 3wn ,
while xn = 3m3wn and the effect of multiplying by 3m simply shifts all ternary digits m places
to the left without changing the leading digits.

Next we note that the intervals J(b) all have the same length to within a factor of 3, namely
1
3k

� |J(b)| � 1
3k−1

. (2.9)

This holds using

|J(b)| = log
(

β(b) +
1

3k−1

)
− log(β(b)) =

∫β(b)+(1/3k−1)

β(b)

dx

x
,

and the bounds (2.9) follow since 1
3 � 1/x � 1.

Next we examine the wn in consecutive blocks of length N = ql−1 − 1, that is, the set {wn :
j(ql−1 − 1) � n < (j + 1)(ql−1 − 1)}. By (2.6) we may apply Lemma 2.1(iii) to this sequence
of numbers, to infer that the spacings between them are of two lengths L1 and L2 that satisfy
L2 < L1 < 2L2. In particular, since 3k−1 � ql−1 � 3k, these block sizes satisfy

1
2 · 3k

� 1
2(ql−1 − 1)

� L1 < L2 � 2
ql−1 − 1

� 2
3k−1

.

We conclude using (2.9) that each subinterval J(b) contains at most six points wn from this
block. Thus at most six values of n in j(ql−1 − 1) � n < (j + 1)(ql−1 − 1) give an xn having
the given initial k-digit ternary expansion b = [b0b1 . . . bk1 ]3.
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We know that there are exactly 2k−1 values of b = [b0b1 . . . bk1 ]3 that omit the ternary digit
2, so the above shows that there are at most 6 · 2k−1 values of n in each such block giving an
xn whose initial k ternary digits avoid 2. There are �X/(ql−1 − 1)� + 1 such blocks covering all
1 � n � X, and hence we conclude that there are at most

M := 6 · 2k−1

(
X

ql−1 − 1
+ 1

)
� 6 · 2k−1

(
X

3k−1
+ 1

)

� 6

((
2
3

)k−1

X + 2k−1

)
� 12

(
2
3

)k−1

X

values of xn whose initial k ternary digits omit the digit 2. (In the last inequality we used
X � ql−1 > 3k−1.)

It remains to upper bound M as a function of X. Using Lemma 2.2(ii), we have

X � ql � 1200(ql−1)c0 � 1200(3k)c0 ,

with c0 = 13.3. We apply this bound to obtain(
3
2

)k

=
(
3c0k

)log3(3/2)c−1
0 �

(
1

1200
X

)((1−α0)/c0)

.

Here 1/37 < (log3(3/2))c−1
0 = (1 − α0)/c0 � 1/36, so we obtain(

2
3

)k

� (1200)1−α0/c0X−((1−α0)/c0).

Substituting this into the definition of M , we obtain

M � 18
(

2
3

)k

X � 18 · (1200)1/36X1−(1−α0)/c0 � 25X36/37 � 25X0.9725

and the result follows.

Proof of Theorem 1.2. We will construct a rapidly increasing sequence of integers S0 =
{mk : k � 1} having the form

mk = l0 + l1 + . . . + lk (2.10)

such that there is an uncountable set of real numbers Σ̃ such that all of the following numbers
λ ∈ Σ have the following property: for each k � 1, the integer Mk := �λ2mk� has a ternary
expansion that omits the digit 1.

We now claim that all of the integers Nk := �λ2mk−1� have ternary expansions (Nk)3 that
omit the digit 2. This holds because for each Nk either Mk = 2Nk or Mk = 2Nk + 1, but Mk is
necessarily an even integer since all of its ternary digits are 0 or 2, so we must have Mk = 2Nk.
Thus Nk has only digits 0 and 1 in its ternary expansion, so we have, for S = {mk − 1 : k � 1},
that

Σ̃ ⊂ Σ(S) := {λ : (�λ2nk�)3 omits the digit 2}.

Hence Σ(S) is an uncountable set.
We choose the lk recursively, taking l0 = m0 = 0 and successively choosing lk to be the

smallest integer satisfying lk � 2k with

0 < {{log3 2lk}} = {{lkα0}} < 2−mk−1−2k−4, (2.11)

with mk−1 = l0 + l1 + . . . + lk−1. We set

rk := �lkα0�, α0 = log3 2.
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The condition lk � 2k ensures that rk � k. Then we have

2lk = 3lkα0 = 3rk+{{lkα0}} = 3rk3{{lkα0}}.

Using ex � 1 + 2x for 0 � x � 1, we have

3{{lkα0}} = e{{lkα0}} log 3 � 1 + 2 log 3{{lkα0}} � 1 +
2 log 3

2mk−1+2k+4
.

Thus we obtain

3rk < 2lk < 3rk

(
1 +

2 ln 3
2mk−1+2k+4

)
� 3rk

(
1 +

1
3(mk−1+2k+2)α0

)
. (2.12)

This says that the ternary expansion (2lk)3 has leading digit 1 followed by a string of at least
(mk−1 + 2k + 2)α0 trailing zeros.

Given this choice of {lk : k � 1}, we define the set Σ to consist of all real numbers

Σ̃ :=

{
λ :=

∞∑
k=0

dk

2mk
: λ is admissible

}
, (2.13)

where λ is called admissible if, for all k � 1, it has the following two properties.
(P1) The digit dk satisfies

0 � dk � 3rk − 3rk−k. (2.14)

(P2) Let λk :=
∑k

j=0 dj/2mj . Then the integer

Mk := λk2mk (2.15)

has a ternary expansion (Mk)3 that omits the digit 1.

Claim 2.3. Any λ =
∑∞

j=0 dj/2mj with all dk satisfying (P1) satisfies

1 � λ < 2 (2.16)

and

Mk = λk2mk = �λ2mk� for all k � 1. (2.17)

Proof. To prove the claim, we observe that (P1) gives

1 � λ � 1 +
∞∑

k=1

1
2mk−1

(
3rk − 3rk−k

2lk

)

� 1 +
∞∑

k=1

1
2mk−1

(1 − 3−k) < 2. (2.18)

Next, (P1) gives

0 � λ − λk =
∞∑

j=k+1

dj

2mj
=

1
2mk

⎛
⎝ ∞∑

j=k+1

dj

2mj−mk

⎞
⎠

� 1
2mk

⎛
⎝ ∞∑

j=k+1

(
1 − 1

3j

)
1

2mj−1−mk

⎞
⎠

� 1
2mk

⎛
⎝ ∞∑

j=k+1

(
1 − 1

3j

)
1

2(j−k−1)(2j)

⎞
⎠ <

1
2mk

,

proving Claim 2.3.
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Claim 2.4. For any choice of {dj : 1 � j � k − 1} that satisfy both (P1) and (P2), there
are at least 2rk − 2rk−k choices of dk that satisfy (P1) and (P2).

Proof. To prove this, first note that

λk−12mk = Mk−12mk−mk−1 = Mk−12lk = Mk−13rk + Mk−1(2lk − 3rk). (2.19)

We assert that
0 � Mk−1(2lk − 3rk) � 3rk−k. (2.20)

The left inequality is immediate, and using (2.18) we have Mk−1 � λ2mk−1 � 2mk−1+1,
while (2.12) gives

Mk−1(2lk − 3rk) � 2mk−1+1

(
3rk

ln 3
2mk−1+2k+4

)

� 3rk
1

22k+3
� 3rk−k,

proving (2.20).
From (2.19) and (2.20) we see that the ternary expansion of λk−12mk repeats that of Mk−1

shifted rk positions to the left, then has a block of at least k zeros, and following this has the
ternary expansion of the integer Mk−1(2lk − 3rk). It follows that, choosing from the range of
values 0 � dk � 3rk − 3rk−k, and setting λk :=

∑k
j=0 dj/2mj , the integers

Mk := λk2mk = λk−12mk + dk (2.21)

can be selected to give all ternary integers that:
(i) have the ternary expansion matching Mk−1 to the left of the rkth position;
(ii) omit the digit 1; and
(iii) have at least one 2 and at least one 0 in positions between rk and rk − k;

we call these allowable values. In these k + 1 positions the largest allowed value is 222 . . . 20
and the smallest is 000 . . . 02. These produce exactly 2rk − 2rk−k such ternary integers Mk,
constructed by the choice of the same number of allowable values dk. This proves Claim 2.4.

Claim 2.5. The set Σ̃ contains uncountably many admissible λ, and each of them has the
property that every

Mk = �λ2mk�, k � 1, (2.22)

has a ternary expansion (Mk)3 that omits the digit 1.

Proof. Indeed, Claim 2.4 implies that there are uncountably many such λ, since the
construction has a Cantor set form that gives an infinite tree of values with branching at
least two at every node at every level k � 2. The relation (2.22) holds by Claim 2.3, and these
Mk have ternary expansions omitting 2 by (P2). Thus Claim 2.5 follows.

It remains to verify the upper and lower bounds (1.4) on the growth rate of the sequence
mk. The size of mk is determined by the Diophantine condition on lk given by equation (2.11).
(The numbers lk grow so rapidly that the side condition lk � 2k is automatically satisfied for
k � 2.) Note that we cannot directly use Dirichlet’s box principle to get an upper bound for
the size of the minimal lk satisfying (2.11) because this is a one-sided approximation condition.
Instead we have that the minimal lk will be no larger than that even-numbered convergent q2l

of the continued fraction expansion of α0 satisfying

q2l−2 � 2mk−1+2k+4 < q2l.
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Lemma 2.2(ii) gives the bound

q2l � 1
C2

0

(q2l−2)2c1 = (1200)2(q2l−2)26.6 � 227mk−1+54k+132. (2.23)

Since nk = mk − 1, we obtain

nk � mk � mk−1 + q2l � mk−1 + 227mk−1+54k+132 � 227(nk−1+2k+6),

which is the upper bound in (1.4).
Lemma 2.2 implies a lower bound on how small lk+1 can be to make (2.11) hold, namely we

must have

(lk+1)c0 � 2mk+2j−7, (2.24)

with c0 = 13.3, to avoid contradicting Lemma 2.2(i). This yields the lower bound in (1.4), which
holds for nk = mk − 1 produced in this construction, and completes the proof of Theorem 1.2.

2.3. Hausdorff dimension of truncated exceptional set

We recall basic facts on Hausdorff dimension; see [7, 8, 19]. It is a notion defined for any metric
space (X, ‖ · ‖); here we take (R, ‖ · ‖) with the Euclidean metric. Given a set S, its diameter is
diam(S) = sup{‖x − y‖ : x, y ∈ S}. We consider finite or countable coverings of S with closed
sets C := {Ij ; j ∈ A}, so S ⊂

⋃
α Iα. The diameter diam(C) of a covering C is

diam(C) := sup
Ij∈C

[diam(Ij)].

The Hausdorff dimension dimH(S) of a set S is the infimum of all α such that, for arbitrarily
small ε > 0, there exists a covering of S with sets of diameter at most ε, such that

Vα(C) :=
∑

j

(diam(Ij))α < ε.

Alternatively, for any value α one defines the α-dimensional Hausdorff (outer) measure of S
to be

Hα(S) := lim inf
ε→0

(
inf

diam(C)<ε
Vα(C)

)
,

where C runs over allowable covers of S. The Hausdorff dimension dimH(S) is determined as
the unique value of α such that Hα′

(S) = 0 for α′ > α and Hα′
(S) = ∞ for 0 � α′ < α. In the

critical dimension α, a set S can have zero, positive, or infinite Hausdorff measure. In the case
of (R, ‖ · ‖), we get the same notions on restricting coverings to consist of closed intervals. An
important property of Hausdorff dimension is that if S =

⋃∞
j=1 Sj then

dimH(S) = sup
j

[dimH(Sj)]. (2.25)

Proof of Theorem 1.3. We consider the truncated exceptional set ET (R+) . We first establish
the upper bound dimH(ET (R+)) � α0. We have

ET (R+) =
∞⋃

M=2

(
ET (R+) ∩

[
1
M

,M

])
.

Since the Hausdorff dimension of a countable union of sets is the supremum of the Hausdorff
dimensions of the separate sets, it suffices to show that

dimH

(
ET (R+) ∩

[
1
M

,M

])
� α0 = log3 2. (2.26)
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To show this we find suitable coverings of these sets. For each n � 1, we have

ET (R+) ∩
[

1
M

,M

]
⊂ Sn(M) :=

∞⋃
j=N

Σj

([
1
M

,M

])
, (2.27)

with

Σj

([
1
M

,M

])
:=

{
λ : − 1

M
� λ � M and (�λ2j�)3 omits the digit 2

}
.

The set Sn(M) thus encodes a ‘tail event’ that there are arbitrarily large j for which (�λ2j�)3
omit the digit 2. We will eventually let n → ∞, so we suppose that n � log3 M + 2, so that
λ2j � 1 for any j � n. Now consider such j as fixed, and note that �λ2j� takes a fixed integer
value on an interval of length 1/2j . Letting b = (�λ2j�)3, we see that allowable values of b
satisfy 1 � b � M2j . As λ varies over [1/M,M ] these integers vary over a subset of [1,M2j ]
and, of these, the number of such ternary expansions b that omit the digit 2 is at most (counting
integers over successive blocks [3k−1, 3k))

1 + 2 + . . . + 2�log3(2
jM)� � 2log2(2

jM)+2

� 2jα0+log3 M+2 � 4M2jα0 .

Thus we obtain a collection

Ij(M) :=
{

Ij(b) : b gives an admissible interval for �λ2j�, 1
M

� λ � M

}
of at most 4M2jα0 intervals of length 1/3j , and these intervals cover the set Σj([1/M,M ]).
Summing over all j � n, we obtain an infinite collection of intervals

I(n,M) :=
∞⋃

j=n

Ij(M),

which cover the set ET (R+) ∩ [1/M,M ]) by (2.27), and every interval included has length at
most 1/2n. Now fix ε > 0 and observe that

∑
I∈I(n,M)

|I|α0+ε =
∞∑

j=n

⎛
⎝ ∑

I∈Ij(M)

(
1
2j

)α0+ε
⎞
⎠

�
∞∑

j=n

4M2jα0

(
1
2j

)α0+ε

= 4M

⎛
⎝ ∞∑

j=n

2−jε

⎞
⎠ =

(
4M

1 − 2−ε

)
2−nε.

Letting n → ∞, the diameter of the covering I(n,M) goes to zero, and the scaled length goes
to zero as well, which establishes

dimH

(
ET (R+) ∩

[
1
M

,M

])
� α0 + ε.

Now we can let ε → 0 to obtain (2.6), and the upper bound dimH(ET (R+)) � α0 follows.
To establish the lower bound dimH(ET (R)) � α0 is more difficult, as it requires controlling

all coverings of the set. We will actually establish the stronger result that

measα0(Σ̃) >
1
16

, (2.28)

where Σ̃ ⊂ [1, 2] is the set constructed in (2.13) in Theorem 1.2. The set Σ̃ had a construction
resembling a Cantor set, with two differences. The first difference is that the dissection at each
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layer k depended on the previous layers, and the second difference is that the layer at level k
involved denominators 2mk with

mk = l0 + l1 + . . . + lk,

with the lk growing extremely rapidly. We can, however, adapt an argument given in Falconer
[8, Example 2.7, p. 31] for the Cantor set to show (2.28).

To begin, we claim that Σ̃ has a representation as

Σ̃ =
∞⋂

s=1

Xs, (2.29)

in which Xs consists of a union of a collection Js of disjoint intervals of size proportional to
3−s, and the sets are nested:

. . . X3 ⊂ X2 ⊂ X1.

Here the intervals in Js will play the role of the Cantor set dissection into intervals at level s,
for each power of 3s.

We first define the collection Js for those levels s = sk with

sj := �mjα0�, (2.30)

which are directly given in the construction of Theorem 1.2. Then we show that one can fill in
all of the intermediate layers sk � s < sk+1.

We have 3sk < 2mk < 3sk+1, and the set Jsk
is the union of all closed intervals:

Jsk
:=

⎧⎨
⎩
[

M

2mk
,
M + 1
2mk

]
: M = λk2mk with λk =

k∑
j=0

dj

2mj
admissible

⎫⎬
⎭ ,

with admissibility in the construction in Theorem 1.2. Here we have

2mk = 2l1+...+lk = 3l1α0+...+lkα0 = 3r1+r2+...+rk · 3{{l1α0}}+...+{{lkα0}} � 2 · 3r1+...+rk ,

using the fact that
∞∑

k=1

{{lkα0}} �
∞∑

k=1

2−mk−1−2k−2 � 1
2
,

using (2.11). This also establishes that

sk = r1 + r2 + . . . + rk. (2.31)

Inside each interval at level s = sk−1 there fit exactly 2rk − 2rk−k subintervals at ternary level
s = sk, each of length 2−mk , and we now know that 1

23−sk � 2−mk � 3−sk . This dissection
of an interval at ternary level sk−1 into subintervals at ternary level sk is exactly that of the
Cantor set, except that the two ends of the interval are trimmed off by a small amount, to a
relative distance 3−k from each end of the interval.

We now fill in the intermediate levels Xs for sk−1 < s < sk by gluing together all intervals in
Jsk

that have matching initial ternary expansions [M ]3 of M = λk2mk , disregarding the last
sk − s ternary digits of [M ]3, and filling in the space between them. The resulting intervals of Js

all have size exactly 3sk−s2−mk (except possibly for two subintervals adjacent to the truncated
ends); their size lies between 1

23−s and 3−s. Also, the gaps between any two adjacent intervals
at ternary level s are of size at least as large as

Gs = 3sk−s2−mk � 1
2
3−s. (2.32)

This fact holds because this construction uses ternary integers omitting the digit 1; the set of
ternary integers omitting the digit 2 has some intervals of this kind that are adjacent, so the
gap size would be zero in that case.
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The above construction defines the intervals in Js at level s for all s � 1. This dissection
imitates the Cantor set in that each interval at level s contains at most 2s′−s subintervals at
any deeper ternary level s′ � s. It may contain fewer subintervals, due to the trimming at ends
of the subinterval, but it always contains at least 2s′−s−1 such subintervals.

The set Σ̃ is a compact set contained in the interval [1, 2]. To bound its α0-dimensional
Hausdorff measure from below, we must show that, in every covering {Ui} by closed intervals,
there holds ∑

i

|Ui|α0 � 1
16

. (2.33)

By enlarging the intervals slightly (by 1 + ε) and observing that their interiors give an open
cover of Σ̃, we can extract a finite subcover. Since we can extract a finite subcover for any
ε > 0, it suffices to verify that (2.33) holds for every finite cover {Ui} of Σ̃ by intervals.

Given an interval Ui in a covering, define s by

3−s � |Ui| < 3−s+1. (2.34)

Then Ui can touch at most two subintervals at level s because all subintervals in Js are
separated by gaps of size at least 1

23−s. If s′ � s then Ui intersects at most 2 · 2s′−s subintervals
at level s′ − s; by (2.34) this number is bounded above by

2 · 2s′−s � 2s′
3−α0s � 2 · 2s′

(3α0 |Ui|α0) = 4 · 2s′ |Ui|α0 . (2.35)

Given a finite cover, choose s′ = sk large enough so that |Ui| � 3−s′
for all i. Then the collection

{Ui} necessarily covers all subintervals at level s′ = sk. By construction, Isk
contains at least

k∏
i=1

(2ri − 2ri−i) = 2r1+...+rk

n∏
i=1

(1 − 2−i) � 1
4
2sk (2.36)

intervals, since
∏k

i=1(1 − 2−i) �
∏∞

i=1(1 − 2−i) � 1
4 . Now we count how many intervals at level

sk are covered. Since Ui intersects at most 4 · 2sk |Ui|α0 such intervals, we must have

∑
i

4 · 2sk |Ui|α0 � |Jsk
| � 1

4
2−sk .

This yields ∑
i

|Ui|α0 � 1
16

,

which establishes (2.28).

Remark 2.6. More generally, we may consider the real dynamical system y → βy, where
β > 1, and consider the truncated ternary expansions {(�λβn�)3 : n � 0}. The methods above
should extend to those β such that α := log3 β satisfies a Diophantine condition∣∣∣∣α − p

q

∣∣∣∣ � c2
1

qc1+1
for all p, q with q � 1, (2.37)

for constants c1 > 1 and c2 > 0. The conclusions of the results require appropriate modification,
with constants depending on the Diophantine condition.
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3. 3-adic integer dynamical systems: proofs

We consider the 3-adic integers Z3 and write the 3-adic expansion of λ ∈ Z3 as

λ =
∞∑

j=0

dj3j with each dj ∈ {0, 1, 2}. (3.1)

We write the 3-adic digit expansion as (λ)3 = (. . . d2d1d0)3.
For this dynamical system we consider the sequence of 3-adic integers yn = λ2n, where

λ is a given nonzero 3-adic integer. For n � 0 these form the forward orbit of the first-
order linear recurrence yn = 2yn−1, with initial condition y0 = λ. The map T : x → 2x is an
automorphism of the 3-adic integers Z3 that leaves each of the sets Σj := 3j

Z
∗
3, for j � 0,

invariant. (Here Z
∗
3 are the 3-adic units.) These sets partition Z3 and this map acts ergodically

on each component Σj .
We are interested in the possible ways that the orbit {yn : n � 0} can intersect the set

Σ3,2̄ := {w : w =
∑∞

j=0 aj3j ∈ Z3, with each aj = 0 or 1}.

3.1. Quantitative upper bound

We upper bound the number of n � X such that (λ2n)3 falls in the set Σ3,2̄.

Proof of Theorem 1.5. Let λ ∈ Z3 with λ �= 0. We study the set

Ñλ(X) := #{1 � n � X : (λ2n)3 omits the digit 2}. (3.2)

Write λ = 3jλ∗, with λ∗ ∈ Z
×
3 := {λ ∈ Z3 : λ �≡ 0 (mod 3)}. Then we have Ñλ(X) = Ñλ∗(X),

since multiplication by 3j simply shifts 3-adic digits to the left. Thus to prove the desired
inequality there is no loss of generality in requiring λ �≡ 0 (mod 3), by replacing λ with λ∗.

The proof is based on the fact that 2 is a primitive root (mod 3k) for each k � 1. Thus, for
each k � 1, we have that

{λ2n (mod 3) : 1 � n � φ(3k) = 2 · 3k−1} (3.3)

runs over all 2 · 3k−1 invertible residue classes (mod 3k). Of these, exactly 2k−1 residue classes
have a 3-adic expansion that omits the digit 2. Now, given X, choose k such that

2 · 3k−2 < X � 2 · 3k−1.

Then, applying (3.3) over 1 � n � 2 · 3k−1, we have exactly 2k−1 values of n with (λ2n)3
omitting the digit 2 in its first k 3-adic digits (dk−1 . . . d1d0)3. Thus

Ñλ(X) � 2k−1 = 2 · 2k−2 = 2 · 3α0(k−2)

= 21−α0(2 · 3k−2)α0 � 2Xα0 ,

which is the desired upper bound.

3.2. Hausdorff dimension bounds

The objective of Theorem 1.6 is to establish upper bounds on the Hausdorff dimension of the
3-adic exceptional set E(Z3) through upper bounds on various sets E(j)(Z3) that contain it.

The notion of Hausdorff dimension for subsets S of 3-adic integers using the 3-adic metric is
quite similar to Hausdorff dimension for real numbers on the interval [0, 1] (cf. Abercrombie [1]).
In fact, we have a continuous (and almost one-to-one) mapping ι : Z3 → [0, 1] that sends a 3-
adic number λ = (. . . d2d1d0)3 to the real number with ternary expansion .d0d1d2 . . .. We can
show that this mapping preserves the Hausdorff dimension of sets, that is, a 3-adic set X and
its image ι(X) have the same Hausdorff dimension. This holds because we can expand each set
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in a 3-adic covering of a set X to a closed-open disk

B(m, 3j) = {x ∈ Z3 : x ≡ m (mod 3j)}
(which has diameter 1/3j), with at most a factor of 3 increase in diameter, and similarly we can
inflate any real covering to a covering with ternary intervals [m/3j , (m + 1)/3j ] with at most a
factor of 3 increase in diameter. However, these special intervals are assigned the same diameter
under their respective metrics, and this can be used to show that the Hausdorff dimensions of
X and ι(X) coincide. In particular, the standard 3-adic Cantor set Σ3,1̄ maps under ι to the
usual Cantor set in [0, 1], and hence it has Hausdorff dimension dH(Σ3,1̄) = log3(2) ≈ 0.63092.
Now Σ3,1̄ = 2Σ3,2̄, and hence dimH(Σ3,2̄) = log3(2) as well.

Proof of Theorem 1.6. This proof assumes that Theorem 1.8 is proved in order to deduce
the upper bound in (ii).

(i) We have

E(1)(Z3) =
∞⋃

m=0

C(2m),

with C(2m) := {λ : (λ2n)3 omits the digit 2}. Then

C(2m) =
1

2m
C(1) =

1
2m

(Σ3,2̄) =
1

2m+1
(Σ3,1̄).

Each C(2m) is a linearly rescaled version of the Cantor set Σ3,1̄ and so has Hausdorff dimension
log3 2. Thus

log3 2 = dimH(C(1)) � dimH(E(1)(Z3)) � sup
m�0

dimH(C(2m)) = log3 2,

as required.
(ii) We have

E(2)(Z3) =
⋃

0�m1<m2

C(2m1 , 2m2),

with C(2m1 , 2m2) := {λ : (λ2mi)3 omits the digit 2}. Now

C(2m1 , 2m2) =
1

2m1
C(1, 2m2−m1),

which gives dimH(C(2m1 , 2m2)) = dimH(C(1, 2m2−m1)). Since m2 − m1 � 1, Theorem 1.8
applies to give

dimH(C(1, 2m2−m1)) � 1
2

for all m2 > m1 � 0.

This yields the upper bound

dimH(E(2)(Z3)) = sup
0�m1<m2

dimH(C(2m1 , 2m2)) � 1
2
.

To establish the lower bound, we use the fact that 4 = (11)3. Then the set

ΣA := {λ = (. . . d2d1d0)3 : all blocks d2n+1d2n ∈ {00, 01}} ⊂ Σ3,2̄

satisfies
4ΣA = {λ = (. . . d2d1d0)3 : all blocks d2n+1d2n ∈ {00, 11}} ⊂ Σ3,2̄,

which shows that ΣA ⊂ C(1, 4). Now ΣA is given by a Cantor set construction, which permits
its Hausdorff dimension to be computed in a standard way. We obtain

dimH(E(2)(Z3)) � dimH(C(1, 22)) � dimH(ΣA) =
log3(2)
log3(9)

=
1
2

log3(2) ≈ 0.31596.
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(iii) We have

E(2)(Z3) =
⋃

0�m1<m2<m3

C(2m1 , 2m2 , 2m3).

The upper bound dimH(E(3)(Z3)) � dimH(E(2)(Z3)) is immediate. To establish the lower
bound, we use the facts that 4 = (11)3 and 256 = (100111)3. Then

ΣB := {λ = (. . . d2d1d0)3 : all d6n+5d6n+4d6n+3d6n+2d6n+1d6n ∈ {000000, 000001}} ⊂ Σ3,2̄

has

4ΣB = {λ = (. . . d2d1d0)3 : all d6n+5d6n+4d6n+3d6n+2d6n+1d6n ∈ {000000, 000011}}⊂Σ3,2̄,

256ΣB = {λ = (. . . d2d1d0)3 : all d6n+5d6n+4d6n+3d6n+2d6n+1d6n ∈ {000000, 100111}}⊂Σ3,2̄.

Thus ΣB ⊂ C(1, 4, 256) ⊂ E(3)(Z3). Now ΣB has a Cantor set construction, showing that

dimH(ΣB) =
log3(2)
log3(36)

=
1
6

log3(2) ≈ 0.10515,

which gives the asserted lower bound.

Remark 3.1. The proof of Theorem 1.6 exploited the known solutions to Erdős’s problem.
Consequently, this approach does not extend to give a nonzero lower bound for dimH(E(k)(Z3)),
for any k � 4. Theorem 1.9 offers more flexibility in finding ternary expansion identities for
integers that could potentially yield nonzero lower bounds in these cases.

4. Intersections of multiplicative translates of the 3-adic Cantor set: proofs

We study the 3-adic Cantor set Σ3,2̄, defined by

Σ3,2̄ := {λ ∈ Z3 : the 3-adic digit expansion (λ)3 omits the digit 2}. (4.1)

For integers 1 � M1 < M2 < . . . < Mk, we define the intersection set

C(M1,M2, . . . ,Mk) : = {λ ∈ Z3 : (Miλ)3 omits the digit 2} (4.2)

=
k⋂

i=1

1
Mi

Σ3,2̄. (4.3)

In Section 3 we used integers Mi = 2mi , but here we allow arbitrary positive integers Mi.
We study C(1,M) for general M and note first that C(1, 3jM) = C(1,M). Thus, without
loss of generality, we may reduce to the case gcd(M, 3) = 1. Another simple fact is the
following.

Lemma 4.1. Let M be a positive integer.

(i) If M ≡ 2 (mod 3) then C(1,M) = {0}.
(ii) If M ≡ 1 (mod 3) then C(1,M) is an infinite set.

Proof. (i) Suppose M ≡ 2 (mod 3). If C(1,M) �= {0}, then it necessarily contains some λ
with λ �≡ 0 (mod 3), since we may divide out any powers of 3, and multiplication by 3j simply
shifts digits to the left. Then λ ∈ Σ3,2̄ implies that λ ≡ 1 (mod 3). Then Mλ ≡ 2(mod 3), so
Mλ �∈ Σ3,2̄, contradicting membership in (1,M). Hence no such λ exists, and C(1,M) = {0}.
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(ii) Suppose that M ≡ 1 (mod 3). To show that C(1,M) is an infinite set it suffices to exhibit
one nonzero element λ ∈ C∗(1,M), because 3jλ ∈ C∗(1,M) for all j � 0. We may construct
such an element λ = (. . . d2d1d0)3 recursively, starting with the choice d0 = 1. Write M =∑n

j=0 aj3j , with a0 = 1. Let Mλ =
∑∞

j=0 cj3j . Then the kth digit satisfies

ck ≡ dk +

⎛
⎝ n∑

j=1

ajdn−j

⎞
⎠+ ek−1 (mod 3)

(with the convention d−1 = d−2 = . . . = d−n = 0), and with ek−1 encoding the ‘carry digit’
information, from the previous terms, which is completely determined by (d0, d1, . . . , dk−1).
Since we have two choices 0 or 1 for dk, at least one of them will force ck �≡ 2 (mod 3). Thus
we can recursively construct an admissible λ by induction on k � 1.

It is possible to make a detailed analysis of the structure of C(1,M) with M ≡ 1 (mod 3),
and to determine their Hausdorff dimensions, which we will consider elsewhere. We can show
that the infinite set C(1,M) can be either countable or uncountable; for example, C(1, 49) is
countably infinite, whereas C(1, 7) is uncountable.

Now we upper bound the Hausdorff dimension of C(1,M). For M = 3j (j � 0), we have
C(1, 3j) = Σ3,2̄, where dimH(C(1, 3j)) = log3(2) ≈ 0.63. The following result treats all other
M � 1.

Proof of Theorem 1.8. We suppose that M > 1 is an integer that is not a power of 3, that
is, its ternary expansion (M)3 contains at least two nonzero ternary digits. Our objective is to
upper bound the Hausdorff dimension of

C(1,M) := Σ3,2̄ ∩ MΣ3,2̄

by 1
2 . By the discussion above, we may reduce to the case that gcd(M, 3) = 1, and by Lemma 4.1

we may suppose that M ≡ 1 (mod 3), since the Hausdorff dimension is 0 if M ≡ 2 (mod 3).
Thus we can write

(M)3 = b0 + bm3m +
n∑

j=m+1

bj3j , bj ∈ {0, 1, 2}, with b0bm �= 0, (4.4)

and b0 = 1, where the mth digit is the first nonzero ternary digit after the 0th digit.
We will study the minimal covers of C(1,M) with 3-adic open sets of measure 3−r−1 that

specify the first r + 1 digits of the 3-adic expansion of a number λ ∈ C(1,M). These sets are
congruence classes (mod 3r+1) and they have diameter 3−(r+1). We call a congruence class
λ (mod 3r+1) admissible if C∗(1,M) contains at least one element in this congruence class.
Our objective is to bound above the number of admissible congruence classes λ (mod 3r+1).

Set λ =
∑∞

j=0 dj3j ∈ Σ3,2̄, so that each dj = 0 or 1. Now define the digits aj by

Mλ =
∞∑

j=0

aj3j , aj ∈ {0, 1, 2}.

The condition that Mλ ∈ Σ3,2̄ means that each aj = 0 or 1, which imposes extra constraints
on the djs.

Claim 4.2. Suppose that (d0, d1, . . . , d2lm+k−1), with 0 � k < m, of λ ∈ C(1,M) are fixed.
Then at least one of the following conditions holds.

(i) There is at most one admissible value for d2lm+k in λ (mod 32lm+k+1).
(ii) There are two admissible values for d2lm+k for λ (mod 32lm+k+1) and for any fixed

choices of (d2lm+k+1, d2lm+k+2, . . . , d(2l+1)m+k−1) at most three of the four possible values of
(d2lm+k, d(2l+1)m+k) give admissible sequences for λ (mod 3(2l+1)m+k+1).
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Proof. To prove the claim, suppose that condition (i) does not hold. We then examine the
digit a(2l+1)m+k using (4.4) to obtain

Mλ ≡ b0d(2l+1)m+k3(2l+1)m+k + bmd2lm+k3(2l+1)m+k + M

⎛
⎝2lm+k−1∑

j=0

dj3j

⎞
⎠

+ b0

⎛
⎝(2l+1)m+k−1∑

j=2lm+k+1

dj3j

⎞
⎠+ b0d2lm+k32lm+k

(
mod 3(2l+1)m+k+1

)
. (4.5)

Define the digits rj by

M

⎛
⎝2lm+k−1∑

j=0

dj3j

⎞
⎠+ b0

⎛
⎝(2l+1)m+k−1∑

j=2lm+k+1

dj3j

⎞
⎠ =

(2l+1)m+k+n∑
j=0

rj3j , rj ∈ {0, 1, 2}.

We assert that (4.5) then gives the congruence

a(2l+1)m+k ≡ b0d(2l+1)m+k + bmd2lm+k + r(2l+1)m+k (mod 3); (4.6)

that is, we assert that there cannot be any extra ‘carry digit’ from lower-order terms that affects
the ((2l + 1)m + k)-th 3-adic digit, coming from the addition of b0d2lm+k32lm+k in (4.5). By
our assumption that (i) does not hold, both values d2lm+k = 0 and 1 occur for admissible
λ (mod 32lm+k+1) for these digits. Since b0 = 1 and the 3-adic digit a2lm+k of Mλ is 0 or 1,
this digit must have been 0 when d2lm+k = 0, and 1 when d2lm+k = 1, so there can be no ‘carry
digit’ in the addition of b0d2lm+k3k, as asserted.

Now consider the pairs (d2lm+k, d(2l+1)m+k). Of the four values (00), (01), (10), and (11)
that these may take, the quantities b0d(2l+1)m+k + bmd2lm+k, with b0 = 1 and bm = 1 or 2, will
cover all residue classes (mod 3). In particular, at least one choice will result in a(2l+1)m+k ≡
2 (mod 3) in (4.6), and so give a non-admissible set of digits (mod 3(2l+1)m+k). This proves
(ii), and the claim.

Claim 4.3. For M having the ternary expansion (4.4) and a given r = 2lm for some l � 1,
there are at most 3r/2 admissible congruence classes in C(1,M) (mod 3r).

Proof. To prove the claim, we suppose j � 0 and that the initial block (d0, d1, . . . , d2jm−1)
of 2jm digits of λ is fixed, such that Mλ is admissible to level 2jm in the sense of having its
first 2jm ternary digits 0 and 1 only. We then make the sub-claim that the number of possible
admissible extensions (d2jm, d2jm+1, . . . , d(2j+2)m−1) of the initial block to the next 2m digits
of this sequence is at most 3m. Assuming the sub-claim is shown for all j � 0, we may conclude
by induction on j that for r = 2lm, there are at most 3lm = 3r/2 admissible sequences of the
first r digits, proving the claim.

To prove the sub-claim, we first define the digits si by

M

(
2jm−1∑

i=0

di3i

)
=

2jm+n∑
i=0

si3i, si ∈ {0, 1, 2}.

The admissible extensions are then described by paths in a rooted unary–binary tree, whose
branch (or branches) at the first level from the root node gives the admissible choices of d2jm,
the next level gives the allowed extensions d2jm+1, and so on down to depth 2m, where the
allowed values of d(2j+2)m−1 occur. We label the nodes of the tree at the first level by the
value of d2jm; those at the second level d2jm+1, and so on to the leaf node labels d(2j+2)m−1.
The number of nodes Ni of this tree at level i counts the number of admissible extensions
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(d2jm, d2jm+1, . . . , d2jm+i−1) of length i of the initial block. The sub-claim asserts that for any
initial block, the number of leaves N2m of this tree satisfies N2m � 3m.

We now assert that the branching at the first m levels is uniform at level i (1 � i � m) with
all branches being in case (i), or else all branches being in case (ii) of Claim 4.2, that is, either
there is no branching at this level or else all nodes branch to two descending edges. We prove
this assertion by induction on i. It is trivially true at the first level, the base case. For the
induction step from level i to level i + 1, we note that the digit a2jm+i of Mλ at level i + 1
satisfies

a2jm+i ≡ b0d2jm+i + s2jm+i + c2jm+i(mod 3),

in which c2jm+1 is a possible ‘carry digit’ from the previous level i which takes the value 0 or
1, and a priori depends on the node at the previous level. Here b0 = 1 and the allowed choices
of d2m+i = 0, 1 are those giving a2mj+i ≡ 0 or 1 (mod 3). The assertion will follow by showing
that the ‘carry digit’ must be the same for every node at the previous level. We add this as an
additional induction hypothesis on i, noting that the base case i = 1 holds because there is no
‘carry digit’ at the root node. Now at level i we have (using the fact b0 = 1)

a2jm+i−1 ≡ d2jm+i−1 + s2jm+i−1 + c2jm+i−1(mod 3).

Here s2jm+i−1 takes a constant value which may be 0, 1, 2, and, by the carry digit induction
hypothesis, c2jm+i−1 takes a (node-independent) constant value 0 or 1, and d2jm+i−1 may only
take values 0 or 1. There is a carry digit c2jm+i = 1 to the next level i + 1 at this node if and
only if the sum of these three numbers is 3 or higher. Now we know S := s2jm+i−1 + c2jm+i−1

takes a node-independent value, which can be 0, 1, 2, or 3. The restriction that a2jm+i−1 can
take only values 0 or 1 implies that if S = 0, we must be in case (ii) on level i with no carry
digit, if S = 1 we are in case (i) with no carry digit, if S = 2 we are in case (i) with a carry
digit 1 and if S = 3 we are in case (ii) with a carry digit 1. So the carry digit c2jm+i is node-
independent. We conclude that at the level i + 1, both s2jm+i and c2jm+i are node-independent
values, and hence the equation for a2jm+i above (mod 3) is the same for all nodes at this level.
Now set S′ = s2jm+i + c2jm+i, and we find that all nodes on level i + 1 fall in case (i) uniformly
if S′ = 1 or 2 and in case (ii) uniformly if S′ = 0 or 3. This verifies both hypotheses of the
induction step, and the assertion follows.

Using the assertion, we conclude that in the first m levels, we get no branching at case (i)
level and total binary branching at case (ii) level. We conclude that the number of nodes Nm

of the tree at depth m has Nm = 2t, where t is the number of case (ii) levels that occurred in
the first m levels.

Next we consider the final m levels of the tree, where the branching may be non uniform,
with branching at level m + i(1 � i � m) of a node being controlled by the value of d2jm+i−1

at level i via equation (4.6), and we distinguish whether the branching at level i was case (i)
or case (ii). When case (i) occurs at level i, we allow full branching at level m + i. When case
(ii) occurs at level i, each node at level i − 1 has two branches leading to two nodes labelled
d(2jm+i−1) = 0, 1 at level i. Claim 4.2(ii) now implies that the two subtrees formed using these
two nodes as root nodes, going from level i + 1 to level m + i, necessarily branch identically
down to level m + i − 1 and then at least one of them is completely unbranched at level m + i,
while the other subtree may fully branch at level m + i, as dictated by equation (4.6). (The
identical branching to level m + i − 1 holds because the value of d2jm+i−1 = 0, 1 does not affect
any subsequent carry digits down to level m + i − 1.) It follows that if case (i) occurred at level
i, then Nm+i � 2Nm+i−1, while if case (ii) occurred at level i, then Nm+i � 3

2Nm+i−1.
Putting these facts together, we conclude that

N2m =
(
(3/2)t2m−t

)
2t � 3t2m−t � 3m.

This completes the proof of the sub-claim.
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To conclude the proof of Theorem 1.8, Claim 4.3 implies that we have a covering Ir of
C(1,M) with a set of at most 3r/2 sets, each of diameter 3−(r+1). For each ε > 0, this covering
satisfies ∑

I∈Ir

|I|1/2+ε � 3r/2(3−(r+1))1/2+ε � 3−(r+1)ε.

Letting r → ∞, this bound implies that dimH(C(1,M)) � 1
2 + ε. Letting ε → 0 gives the result.

We do not know whether the bound in Theorem 1.6 is sharp. However, it is possible to show
that C(1, 7) has dimH C(1, 7) = log3(

1+
√

5
2 ) ≈ 0.43.

Proof of Theorem 1.9. Suppose that we are given a positive integer N with N ∈ Σ3,2̄ and
1 � M1 < M2 < . . . < Mk with all NMi ∈ Σ3,2̄. Our objective is to obtain an explicit nonzero
lower bound on the Hausdorff dimension dimH(C(M1,M2, . . . ,Mk)). We set n equal to the
number of ternary digits in NMk, so that n = �log3 NMk�. Now we consider the set

ΣC := {λ = (. . . d2d1d0)3 : all blocks d(k+1)n−1 . . . dkn+1dkn ∈ {0n, (N)3}} ⊂ Σ3,2.

Since each NMj ∈ Σ3,2̄ is an integer with at most n ternary digits, we have

MjΣC := {λ = (. . . d2d1d0)3 : all blocks d(k+1)n−1 . . . dkn+1dkn ∈ {0n, (NMj)3}} ⊂ Σ3,2̄.

Thus ΣC ⊂ C(M1,M2, . . . ,Mk). By inspection, ΣC is a Cantor set that has Hausdorff dimension

dimH ΣC =
log3(2)
log3(3n)

=
log3(2)

�log3(NMk)� ,

and the result follows.

5. Furstenberg conjecture and transversality of semigroup actions

In 1970 Furstenberg [11, p. 43] formulated the following conjecture, which is in the same
direction as Erdős’s question.

Conjecture 5.1 (Furstenberg). Suppose that p and q are not powers of the same integer.
Then the expansions to the base B = pq of the powers {(pn)pq : n � 1} have the property that
any given finite pattern of consecutive base B digits occurs in (pn)pq for all sufficiently large n.

For example, for p = 2 and q = 3, this conjecture asserts that any given pattern of base B = 6
digits will occur as consecutive digits in the base 6 expansion of (2n)6, for all sufficiently large
n. The restriction to products B = pq of two (or more) multiplicatively independent elements
was motivated by results in Furstenberg’s seminal work [10]. There he showed that, for any
irrational number θ, the set {pmqnθ (mod1) : m,n � 0} is dense on the torus R/Z. However, it
is well known that there is an uncountable set of irrational numbers θ for which {pmθ : m � 0}
is not dense on the torus.

Conjecture 1.12 proposes, nevertheless, that Furstenberg’s conjecture continues to hold even
when the base B = q. More generally, one can ask whether Furstenberg’s conjecture might be
valid more generally for base B expansions (pn)B for arbitrary B with gcd(B, p) = 1.

A main objective of Furstenberg [11] was to introduce a notion of transversality of two
semigroups of transformations S1 and S2 acting on a compact metric space X with respect to
a (suitable) dimension function dim(A) defined on all closed sets A.
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Definition 5.2. Two closed sets A and B in a compact metric space X are transverse (for
a given dimension function) if

dim(A ∩ B) � max(dim(A) + dim(B) − dim(X), 0).

Definition 5.3. Two semigroups S1 and S2 acting on a compact metric space X are
transverse (for a given dimension function) if any closed S1-invariant set A and any closed
S2-invariant set B are themselves transverse, for that dimension function.

He obtained as an immediate consequence of this definition the following result concerning
simultaneous invariant sets [11, p. 42], which draws on earlier work [10].

Proposition 5.4 (Furstenberg). Suppose that S1 and S2 are transverse semigroups acting
on a compact metric space X, and that S1 has the following additional property:

(•) if A is a closed S1-invariant set with dim(A) = dim(X), then A = X.
Then any proper closed subset of X that is invariant under both S1 and S2 has dim(A) = 0.

Furstenberg did not construct any transverse semigroups, but as evidence for their exis-
tence showed for the following pair of transformation semigroups that their (nontrivial)
simultaneously invariant closed sets satisfy this property (see [11, Theorem 3]).

Proposition 5.5 (Furstenberg). Let Zr be the ring of r-adic integers, and suppose that r =
pq, with p > 1 and q > 1 not both powers of the same integer. Define transformations Ds(x) =
�x/s�, for s = p, q, and pq, and note that Dpq = DpDq = DqDp. Let Sp and Sq denote the
semigroups generated by Dp and Dq, respectively. If A is a simultaneously Sp- and Sq-invariant
proper closed subset of Zr, then A has Hausdorff dimension zero.

The proof of this result draws on his earlier work [10]. Furstenberg [11, p. 45] went on to
conjecture that Sp and Sq are transverse semigroups acting on Zr.

Conjectures 1.4 and 1.7 are partially motivated by Furstenberg’s framework but fall outside
it. One could approach Conjecture 1.4 by considering only the ternary expansions of fractional
parts {{λ2n}}, and thus iterating x → 2x on the compact space X = R/Z. This defines a larger
exceptional set E(R/Z) that contains E(R). Does E(R/Z) have Hausdorff dimension zero? This
set includes all dyadic rationals (thus λ = 1), which is a dense set in R/Z, so its closure is the
whole space X and is not covered by Furstenberg’s results.

Furstenberg’s formulation does not apply to semigroups of transformations on the real
numbers because R is not compact. One may ask: Can Furstenberg’s framework be generalized
to apply to semigroups of operators acting on the real numbers, or the integers?

6. Concluding remarks

We conclude by reviewing the history of Erdős’s question. Erdős [5] raised his question on
ternary expansions of 2n in connection with his conjecture that the binomial coefficient

(
2n
n

)
is

not squarefree for all n � 5. This binomial coefficient is divisible by 4 except for n = 2k, so it
is natural to examine when larger primes divide

(
2k+1

2k

)
. Here one has

3 does not divide
(

2k+1

2k

)
⇐⇒ the ternary expansion of 2n omits the digit 2,
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as follows from Lucas’s theorem (Lucas [16]; see Graham et al. [12, Exercise 5.61]). This led
Erdős to raise his ternary expansion question, since a positive answer to it would establish his
binomial coefficient conjecture.

Erdős’s binomial coefficient conjecture was later resolved affirmatively, without answering
the ternary expansion question. In 1985 Sārközy [20] proved that

(
2n
n

)
is not squarefree

for all sufficiently large n. In about 1995 Granville and Ramaré [13] and, independently,
Velammal [23] proved it for all n � 5.

The theme of this paper is that Erdős’s unconventional question retains interest for its own
sake, although the problem that originally motivated its study is now solved.
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trigonométriques, suivant un module premier’, Bull. Soc. Math. France 6 (1878) 49–54.
17. W. Narkiewicz, ‘A note on a paper of H. Gupta concerning powers of 2 and 3’, Univ. Beograd Publ.

Elecktrotehn. Fak. Ser. Mat. Fiz. 678–715 (1980) 173–174 (MR 0623247).
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