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Summary: The multivariate regression model is a useful tool to explore complex associations

between two kinds of molecular markers, which enables the understanding of the biological pathways

underlying disease etiology. For a set of correlated response variables, accounting for such dependency

can increase statistical power. Motivated by integrative genomic data analyses, we propose a new

methodology – sparse multivariate factor analysis regression model (smFARM), in which correlations

of response variables are assumed to follow a factor analysis model with latent factors. This proposed

method not only allows us to address the challenge that the number of association parameters is
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larger than the sample size, but also to adjust for unobserved genetic and/or non-genetic factors

that potentially conceal the underlying response-predictor associations. The proposed smFARM is

implemented by the EM algorithm and the blockwise coordinate descent algorithm. The proposed

methodology is evaluated and compared to the existing methods through extensive simulation

studies. Our results show that accounting for latent factors through the proposed smFARM can

improve sensitivity of signal detection and accuracy of sparse association map estimation. We

illustrate smFARM by two integrative genomics analysis examples, a breast cancer dataset and an

ovarian cancer dataset, to assess the relationship between DNA copy numbers and gene expression

arrays to understand genetic regulatory patterns relevant to the disease. We identify two trans-hub

regions: one in cytoband 17q12 whose amplification influences the RNA expression levels of important

breast cancer genes, and the other in cytoband 9q21.32-33, which is associated with chemoresistance

in ovarian cancer.

Key words: EM-blockwise coordinate descent; High dimensional data; Latent factors; Regular-

ization.
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1. Introduction

Unveiling regulatory patterns between genetic variants and gene expressions is of great

importance to a broad range of biological studies, in the hope to improve our understanding

of complex disease pathogenesis. As reported in many recent genetic studies, high-throughput

gene expression array experiments and genotype or DNA copy number array experiments

are carried out on the same set of subjects. This provides the unique opportunity to assess

regulatory relationships among DNAs and RNAs via an integrative genomic analysis. Copy

number alterations (CNAs), including both germline variants and somatic copy number

aberrations, are found to be largely associated with disease mechanisms in many studies;

see for example, ?. In particular, somatic aberrations are discovered to be important for

tumorigenesis. For instance, oncogene activation by gene amplification or the loss of a

tumor suppressor by gene deletion can cause transcriptional errors, which contributes to

cancer pathogenesis (?). On the other hand, gene expression can be related to copy number

alterations in proximal genes within a a window of several megabase pairs (cis-acting), as

well as remote alterations throughout the genome (trans-acting). It has been regarded as a

difficult task to detect genomewide cis- and trans-acting effects simultaneously due to the

fact that numerous passenger genes amidst the limited set of drivers may contribute to tumor

progression. Recent studies (???) have focused on the cis-acting effects of copy number on

gene expressions and there are few studies that have considered trans-acting effects on a

genomewide scale. To address these challenges require new analytic tools suitable for well-

powered genomic studies.

The construction of genome-wide regulatory map by exploiting genomic and transcriptomic

data typically involves in a large number of gene expressions as response variables and high-

dimensional genetic variants (e.g. DNA copy number alterations) as predictors. This analytic

task can be primarily formulated by a multivariate regression analysis (e.g. ??). Usually,
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the genetic regulatory relationships are intrinsically sparse, in the sense that one genetic

variant may regulate only a small proportion of gene expressions, rather than the majority

of them. It is also reported that some genetic variants, known as master regulators, play more

important roles than other variants in the regulatory network, in terms of their ability of

influencing many gene expressions simultaneously (??). Thus, it is of great interest to develop

proper multivariate regression models that account for both the sparsity in the regulatory

relationships and the existence of master regulators in the mapping of genetic associations.

Towards this goal, sparse penalty functions such as LASSO (?), elastic net (?), and group

LASSO (?) have been introduced to the multivariate regression framework (e.g. ?, ? and ?).

Readers can find more details about the comparison of our work with the existing methods

in Section 5.

Some researchers have pointed out (e.g. ? and ?) that gene expressions are influenced

by many biological and non-biological factors. Biological factors could include, for example,

genotype polymorphisms/mutations, DNA copy number variations, DNA methylation, mi-

croRNA regulations, protein regulations and others. Non-biological factors include sample

collection noise, instrumental errors, and batch effects. In addition, population admixtures or

kinships in a study population may also influence data generation mechanism of gene expres-

sion profiles. Because of these complications, quite often only a small portion of variations

in gene expressions can be explained by one type of genetic markers under investigation.

Moreover, it is reported that gene expression heterogeneity is presented strongly in many

studies but it is not yet properly taken into account in statistical analysis. For example,

? and ? have showed that gene expression heterogeneity not only leads to the reduction of

statistical power but also produces spurious association signals when studying the regulatory

relationships between genotypes and gene expressions. This motivates us to develop a new

method that employs the factor analysis model to account for such heterogeneity attributed
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to some unobserved genetic and/or non-genetic variabilities. As a result, we can improve

both statistical power and accuracy of identifying significant associations between genes and

genetic markers.

In this article, we plan to achieve three objectives via a sparse multivariate factor analysis

regression model (smFARM): (i) to identify both trans-acting and cis-acting effects in one

modeling framework; (ii) to regularize the association map by encouraging the selection

of important predictors (or regulators); and (iii) to estimate the covariance matrix of the

response variables via the means of multivariate factor analysis. The smFARM is specified in

a similar spirit of the seemingly unrelated regression (SUR) model (?), which aims to improve

the estimation efficiency of association in the detection of important signals by utilizing the

residual correlations of gene expressions among genes. The factor analysis model enables us

to understand and interpret additional association features beyond what expression-genetic

variant associations describe. The mean model component of smFARM is parameterized

by a matrix of regression coefficients that are supposed to contain many zeros because of

sparse genetic regulatory relationships. This part of modeling relates closely to the remMap

method proposed by ? for the identification of genetic regulatory relationships and master

predictors using a regularized multivariate regression model. Compared to remMap, our

proposed smFARM further extends their model and is able to capture residual correlations

of the responses using latent factors. As discussed earlier, when studying the regulatory

relationships between gene expressions and DNA copy numbers, gene expression levels could

be often confounded by unobserved genetic and/or non-genetic factors. Thus, incorporating

latent factors in smFARM leads to a more efficient method to extract important features

of the regulatory network than remMap. This advantage is shown in both the analysis of

breast cancer data set and the analysis of ovarian cancer data set. As shown, smFARM
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identifies several new novel regulatory relationships between gene expressions and copy

number alternation intervals (CNAIs).

2. Model

2.1 Multivariate regression model

Multivariate regression model plays an important role in multivariate data analysis. Such

model extends the classical one-dimensional regression model, which is widely used to deal

with correlated response variables. Following the common notations in multivariate regression

model, for subject i, we assume that the conditional distribution of a Q× 1 random vector

yi = (yi1, . . . , yiQ)
T given P -element explanatory vector xi = (xi1, . . . , xiP )

T is a multivariate

normal distribution. And its expectation is specified by the following linear equations:

E(yi|xi) = Θxi, i = 1, . . . , N, (1)

where Θ = {θqp} is a Q× P matrix of unknown regression coefficients, and its covariance is

Var(yi|xi) = Σ, which is an unknown Q×Q positive definite covariance matrix independent

of xi. Obviously, if Q = 1, model (1) becomes the classical one-dimensional regression

model, where Θ is a P-dimensional regression coefficient vector. In matrix Θ, the q-th

row represents the vector of regression coefficients corresponding to the q-th regression

model, i.e. E(yiq |xi) =
∑P

p=1 θqpxip, which is a linear model of the q-th response variable

yiq on all P predictors. Clearly, the ordinary least square method (or equivalently the

maximum likelihood method under the normally distributed errors) yields an estimator of

Θ as Θ̂T = (XTX)−1XTY. This implies that each row of Θ can be estimated separately by

regressing each of Q responses on the P predictors without accounting for any dependence

across the Q responses. This is because in this estimation there are no common coefficients

and/or common parameters in Σ shared across Q individual one-dimensional regression

models. In contrast, when some common features are present in the mean models and/or
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covariance matrices, borrowing data information across different margins will be beneficial

to improve statistical power, and consequently, joint estimation involving all Q rows is the

focus of methodology development in this paper.

2.2 Factor analysis model

In this paper, we propose to model the covariance Σ by the following factor analysis model:

Σ = BBT +Ψ, (2)

where B is a Q×K matrix of factor loadings pertinent to communalities for K (6 Q) latent

factors and Ψ is a Q × Q diagonal matrix of uniqueness. Clearly, the mean model (1) does

not involve the K latent factors, while the covariance model (2) is determined by loadings

B and uniqueness Ψ. Factor analysis is one of the popular dimension reduction techniques

that represents variations of correlated variables by a low number of latent factors. See for

example, ?, ?, ? and ?, among others, in which the factor analysis model has been employed

to deal with heterogeneity in functional gene expression profiles.

2.3 Multivariate factor analysis regression model

Combining models (1) and (2), with P predictors xi and K unobserved latent factors

zi = (zi1, . . . , ziK )
T , we propose the following multivariate factor analysis regression model

(mFARM):

yi = Θxi +Bzi + ǫi, i = 1, . . . , N, (3)

where zi’s are i.i.d. K-variate vectors of latent factors following multivariate normal dis-

tribution MVNK (0, I), and ǫi’s are i.i.d. measurement errors with MVNQ(0,Ψ) and are

independent of the latent factors zi1, . . . , ziK . In matrix notation, model (3) may be rewritten

as follows:

Y = XΘT + ZBT + E, (4)
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where YT
Q×N = (y1, . . . ,yN ), X

T
P×N = (x1, . . . ,xN ), Z

T
K×N = (z1, . . . , zN ) and ET

Q×N =

(ǫ1, . . . , ǫN ). For simplicity, we assume that all Q responses and all P predictors are stan-

dardized to have zero mean and thus the intercept terms are removed from (4).

Our proposed mFARM model (4) will improve the capacity of statistical analysis for the

construction of genetic regulatory maps with high-throughput array data, because it accounts

for unobserved factors that better capture variabilities in the residuals.

3. Regularized Estimation

To achieve sparsity in the estimation of parameter matrix Θ, which characterizes the as-

sociation map of interest, and to encourage the detection of master predictors (i.e. master

regulators) in a similar spirit to the remMap method (?), we propose the following doubly

penalized loss function:

L(Θ,Ψ,B) =
1

2N

N∑

i=1

(yi −Θxi)
T (BBT +Ψ)−1(yi −Θxi)

+ λ1

Q∑

q=1

P∑

p=1

|θqp|+ λ2

P∑

p=1

√
θ21p + · · ·+ θ2Qp,

(5)

where λ1 and λ2 are two nonnegative tuning parameters. The first penalty term in (5) is the

L1 norm penalty that controls the overall sparsity in Θ by tuning parameter λ1, while the

second penalty is the L2 norm penalty that controls the column sparsity in Θ via tuning

parameter λ2. The use of the two penalties facilitates the selection of important predictors,

at both individual and group levels, that affect multiple responses simultaneously.

If there is some a priori knowledge about the known relationship between a predictor Xp

and a response Yq , such information may be incorporated into the estimation procedure via

(5) in a similar way suggested in ?. That is, consider a pre-specified Q×P matrix C∗ whose
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(q, p)-th element is given by:

C∗
qp =





2, if Xp is independent of Yq ;

0, if Xp is associated withYq ;

1, if there is no prior information.

(6)

According to (5), given an unknown matrix Θ∗, the (q, p)-th entry θ∗qp will be set as 0 in

advance if C∗
qp = 2; otherwise, θ∗qp will or will not be penalized by a flag value C∗

qp = 1 or

C∗
qp = 0. After setting matrix Θ = Θ∗ according to C∗, the modified objective function is

given by

L(Θ,Ψ,B) =
1

2N

N∑

i=1

(yi −Θxi)
T (BBT +Ψ)−1(yi −Θxi)

+ λ1

Q∑

q=1

P∑

p=1

|Cqpθqp|+ λ2

P∑

p=1

√
C1p θ

2
1p + · · ·+ CQpθ2Qp,

(7)

where a Q× P matrix C = {Cqp} is defined as Cqp = 1{C∗
qp = 1}.

Without loss of generality, we assume that both λ1 and λ2 are positive, and if one of them is

zero, we can modify our methodology with little effort. Also, the proposed smFARM may be

used to deal with the case of high-dimensional measurements with min(P,Q) ≫ N , which is

pervasive in biological studies, such as microarray data that contain thousands of biological

markers measured from typically dozens to hundreds of subjects.

4. Algorithm

4.1 EM-blockwise coordinate descent algorithm

In this paper, we estimate three unknown parameter matrices, (Θ,B,Ψ), through minimizing

the doubly penalized loss function (7), where Θ and (B,Ψ) are involved in the mean model

and the covariance model, respectively. A two-step iterative approach is used to estimate

these three matrices. Given the current estimates of the factor model terms, (B(t),Ψ(t)),

updating the association matrix, Θ(t+1), is done by minimizing the doubly penalized loss

function (7) by the blockwise coordinate descent algorithm proposed by?, while updating
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the factor model terms (B(t+1),Ψ(t+1)) is carried out through the EM algorithm after Θ(t+1)

being given. Repeating these two-step procedures iteratively till algorithmic convergence,

we obtain estimates (Θ̂, B̂, Ψ̂) at the end of the algorithm operation. The computational

complexity of the above algorithm may be assessed separately for the operation of the EM

algorithm to estimate the loading coefficients B and the uniqueness Ψ = σ2I, and the

operation of blockwise coordinate descent algorithm to obtain sparse group lasso estimation

for the association matrix Θ. The computational complexity of the former is in the order

of O(NQK) per iteration, and that of the latter is in the order of O(NPQ). Refer to the

Supplementary Material where actual computation times in simulation studies are reported.

4.2 Tuning parameter selection

We consider the selection of the tuning parameters (λ1, λ2) with a given K = K0. Following

?, we adopt the M -fold cross-validation method to choose the tuning parameters (λ1, λ2).

Since the true model is believed to be sparse, as suggested by ? we utilize the ordinary

least squares (OLS) estimates instead of the shrunken estimates to calculate the cross-

validation score. This is because, when there are many potential poor predictors, the cross-

validation score based on shrunken estimates often leads to severe false positive rates (??).

In contrast, using the OLS estimates seems to make a reasonable remedy for such a problem,

which is also observed in our simulation studies. It is worth pointing out that Bayesian

information criterion (BIC), another popular tuning selection method, is not considered here,

mainly because estimating the degrees of freedom required by the BIC is difficult under a

nonorthogonal design matrix of predictors.

In this paper smFARM is run at a prespecified number of latent factors K. In practice, K

may be estimated from the data, and there exists a large amount of the literature concerning

consistent estimation of K, including the widely used AIC ? and BIC ?, as well as other

methods proposed by ?, ?, and ?, among others.
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5. Simulation

5.1 Simulation Setup

We conduct two simulation experiments to assess the performance of the proposed model

and optimization method. To specify simulation settings, we mimic a microarray dataset

with N = 200 subjects, Q = 400 gene expressions and P = 400 variables of copy number

alterations (CNAs). For each simulation, we consider a specific association map between

genes and CNAs, which is specified as being sparse in groups. The graphic presentations of

the association maps are given, respectively, in panels (a) and (b) of Figure 1. In simulation

experiment I, we begin with a simple association map shown in Figure 1(a), in which 5 CNAs

(i.e. black nodes) are set as master regulators (or hubs). These master CNAs are designed to

so strong that they link to a total of 114 genes (i.e. circles), on average each CNA regulating

20 to 30 gene expressions. The total number of nonzero associations in this map is 125.

Simulation experiment II concerns a more practical situation, where the topology of the

given association map appears to be neither group dominated nor individual dominated. As

shown in Figure 1(b), such association map includes 5 strong master CNAI regulators, each

influencing 24 to 37 genes, 5 weak master CNAI regulators, each influencing 3 to 7 genes,

and 20 CNAIs linking to only 1 or 2 genes. The total number of nonzero associations is 192.

[Figure 1 about here.]

In the first simulation experiment, P categorical CNAs x = (x1, . . . , xP )
T are generated

as predictors from xp ∼ Binomial(2, 0.2) − 1, with values −1, 0, or 1, representing copy

number deletion, normal and amplification. In the second simulation study, continuous copy

number alternation intervals (CNAIs) are generated to mimic the true predictor charac-

teristics discussed in Section 6. Based on the real breast cancer data and ovarian cancer

data, we find that there exits the heterogeneity within CNAIs, characterized by certain

chromosome-specific structures, occurring in the forms of both within-chromosome and
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between-chromosome differences. Here we assume that these P continuous CNAIs belong

to 23 distinct chromosomes, where the number of CNAIs on the i-th chromosome (i.e.

Pi, i = 1, . . . , 23) is proportional to the size of that chromosome obtained from the real

data. Within the i-th chromosome, any pair of CNAIs, say, CNAIm and CNAIn, is set to

be positively correlated and such correlation decreases when their genetic distance increases

according to 0.9|m−n|/2 for m, n = 1, . . . , Pi. If two CNAIs come from different chromosomes,

a much weaker correlation is randomly drawn from {0.25, 0.252, . . . , 0.2523} together with

a randomly generated positive or negative sign. Finally we compute the nearest positive

definite symmetric matrix Ξ based on the above correlations using the algorithm in ?, and

P continuous CNAs are generated from x ∼ MVNP (0,Ξ).

To specify the Q × P association map of Θ = {θqp}, we first specify a sparse indicator

matrix ∆ = {δqp} which defines the connectivity in a genetic association mapping between

Q genes and P CNAs. If δqp = 1, we generate θqp from Unif([−5,−1]
⋃
[1, 5]); otherwise,

θqp = 0. To specify the Q × K factor loadings matrix B, we start with an initial matrix

B∗ = {b∗qk}, with b∗qk
i.i.d.∼ Unif([0, τ ]) and τ is a given positive constant. Then, we specify a

matrix B as of the form B = UV
1
2 , where V is a diagonal matrix with diagonal entries being

the eigenvalues of B∗B∗T , and the column vectors of U are the orthonormal eigenvectors of

B∗B∗T . In other words, matrix B is specified by an orthogonal rotation of the initial matrix

B∗. Note that the factor loadings have an “indeterminacy” problem, which means both B

and BT give rise to the same covariance matrix Σ = BBT + Ψ, where T is an arbitrary

orthogonal matrix. To ensure a unique solution, we impose a constraint on B, according

to ?, to enforce that BTB is a diagonal matrix , which is accounted for in our procedure

of generating the values of factor loadings for matrix B. Given Θ and B, for each subject,

we generate K latent factors z = (z1, . . . , zK )
T by zk ∼ Normal(0, 1) and Q measurement

errors ǫ = (ǫ1, . . . , ǫQ)
T ∼ MVNQ(0,Ψ), where the uniqueness Ψ is set as Ψ = σ2IQ in the
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simulation studies. Recall that τ and σ2 are two variance parameters that control the size of

communality and that of uniqueness, respectively. The choice of τ and σ2 is based on a pre-

specified scale of signal-to-noise ratio, according to SNR1 of regression mean effects and SNR2

of latent factor’s effects; they are, SNR1 = avg
[
diag(Cov(Θx))
diag(Cov(ǫ))

]
and SNR2 = avg

[
diag(Cov(Bz))
diag(Cov(ε))

]
,

respectively. Finally, Q gene expressions y = (y1, . . . , yQ)
T are generated from model (3) by

y|x, z ∼ MVNQ(Θx + Bz,Ψ). Hereafter, a dataset of N i.i.d. (y,x) pairs is generated for

each simulation round.

For convenience, the response variables and predictors are all centered to have mean zero,

and the prior knowledge matrix C = {Cqp} is set as all entries being 1; in this case, all

predictors are subject to shrinkage. Our primary evaluation criterion is the total number

of false discoveries, TF = FP + FN, where FP and FN are the respective numbers of false

positives and false negatives. Here, a “positive” (or a “negative”) refers to a nonzero (or a

zero) entry of Θ. Following ?, additional criteria used in the evaluation include sensitivity

(Sen), and Matthews correlation coefficient (MCC) score defined respectively, by Sen =

TP/(TP + FN), and MCC = (TP×TN−FP×FN)√
(TP+FP)(TP+FN)(TN+FP)(TN+FN)

.

To assess the performance of our smFARM, we mainly compare it with remMap (K = 0)

by varying SNR1, SNR2 and K. It is worth noting that Peng et al.’s (?) remMap approach,

which is established for the classic multivariate regression models (i.e. Ktrue = 0), has

been compared with two popular existing methods, single lasso penalty (i.e. λ2 = 0) and

Q separate individual lasso regressions, and its superiority has been showed in ?. So the

comparisons to the latter two methods are not reported in our comparison. Here we set the

true number of latent factors asKtrue = 2, and focus on comparing three scenarios withK = 0

(i.e. remMap), K = Ktrue (i.e. 2), and K = 3. The tuning parameters (λ1, λ2) are determined

through 5-fold cross validation. And a total of 50 independently replicated datasets is used
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in the evaluation of our method. Results of method comparisons are summarized in Table 1.

Additional simulation results may be found in the Supplementary Material.

5.2 Findings from Simulation Studies

The results given in Table 1 concern simulation studies I and II. These results show that

the proposed smFARM performs very well in all key aspects of regulator detection and

group selection. Let us first focus on simulation study I, including two cases I.1 and I.2,

with the corresponding numerical results being reported in the top part of Table 1. In

Simulation I.1, when the true model contains no latent factors, subject to rounding errors,

the proposed smFARM and the existing remMap perform equally well in terms of MCC.

With no surprise, we find that, in both smFARM and remMap, larger SNR1 leads to better

performance in terms of lower TF, higher sensitivity and higher MCC in the comparison

between SNR=1:0:3 and SNR=1:0:5. This outperformance of the smFARM repeats in the

comparison between SNR=1:1:3 and SNR=1:1:5 with Ktrue = 2 in Simulation I.2. When

the ratio of SNR1 to SNR2 is fixed at 1:1, smaller variation in the measurement errors

(i.e. larger SNR1) will lead to better performances. Moreover, an encouraging finding in

Simulation I.2 is that, comparing our method accounting for the latent factors to the remMap

that ignores latent factors, the smFARM approach is clearly more effective to identify true

signals than the remMap when the data are from a multivariate model with correlated

residuals or Ktrue 6= 0. With fixed SNR1, in a comparison of (SNR, Ktrue) = (1:0:3, 0) in

Simulation I.1 with (SNR, Ktrue) = (1:1:3, 2) in Simulation I.2, or in another comparison of

(SNR, Ktrue) = (1:0:5, 0) in Simulation I.1 with (SNR, Ktrue) = (1:1:5, 2) in Simulation I.2,

very similar findings are obtained from the smFARM that accounts for latent factors. We

also find that SNR2 has a strong influence on the reconstruction of the association map,

when the dependency of latent factors is ignored in the analysis.

It is interesting to note that results of group selection in simulation study I are rather
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stable and accurate across the four cases in the top part of Table 1. This is probably because

identifying clusters in these settings is not hard due to group-dominant topology designed

in the association maps (see Figure 1(a)). In other words, relative to the L1-penalty, the

L2-penalty is more effective to remove irrelevant groups or clusters.

In addition, all the above conclusions have repeated consistently in the more realistic

simulation study II with continuous predictors. To examine the robustness of the proposed

method, we simulated 50 replicates under the Simulation II setup from a model yi =

Θxi + ui, i = 1, . . . , N, where the errors ui are drawn directly from a multivariate normal

distribution MVNQ(0,BBT + Ψ) with a certain non-diagonal covariance matrix used in

the data simulation. In this case, we again found that the proposed smFARM model with

K = 2 performed better in identifying the true signals than the remMap (or smFARM model

with K = 0). The detail of this simulation is included in the Supplementary Material. To

sum up, our proposed method has demonstrated clearly as being a very effective tool to

achieve desirable statistical power by accounting for latent factors in the regulatory map

reconstruction with high-dimensional complex data.

[Table 1 about here.]

6. Application

In this section we apply the proposed smFARM to analyze TCGA (The Cancer Genome

Atlas) breast and ovarian cancer data sets. We are interested in detecting DNA copy number

alterations (CNA) that have large impact on transcript activities (i.e. trans-regulate many

RNA expressions). Such trans-hub CNAs often play important roles in tumor initiation and

progression. Information on the regulatory pattern between these trans-hub CNAs and their

downstream genes deems to shed important light on disease etiology.
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6.1 Data preparation

Level-three RNAseq data and level-three segmented DNA copy number data of breast and

ovarian cancer tumor samples were obtained from the TCGA website. We focus on subsets

of samples (77 breast tumors and 71 ovarian tumors), which are also subjected to deep

protein-profiling by CPTAC (Clinical Proteomic Tumor Analysis Consortium). Thus findings

from our analysis may lead to a further investigation and knowledge generation through the

corresponding protein profiles in the future.

We preprocess the breast and ovarian cancer data separately. For breast cancer data, based

on level-three segmented DNA copy number profiles, we first break the genome using the

union of the break-points detected in all tumor samples and filter the small regions with

less than 10k base pairs. This result in 17482 regions. Then for each region of each sample,

we record its copy number based on the inferred DNA copy number of the corresponding

segment in the sample, with tail values truncated at ±1.5. Due to the high spatial correlation

in DNA copy number profiles, we further condense these 17482 regions into 1730 copy number

alteration intervals (CNAI) by applying the fixed order clustering (FOC) (?), so that DNAs

in the same interval tend to have similar CNA patterns in one sample. The copy number

of one CNAI in a given sample is then calculated as the mean of the copy number of all

regions within the interval in that sample. We exclude CNAI with no variation across the

77 samples, which results in 1571 CNAIs. For RNAseq data, we first set zeros to be missing

values and take log transformation. We then standardize each sample to have median 0 and

MAD (median absolute deviance) 1. We exclude genes with more than 10% missing, and

select the top 15% genes with largest interquartile ranges across samples. The resulting data

matrix consists of 1466 gene expressions.

We preprocess the ovarian cancer data set in the same manner as described above. Specif-

ically, we derive 1617 CNAIs by applying FOC on merged level-three segmented DNA copy
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number profiles. By further eliminating CNAIs with little variation, we end up with 1300

CNAIs that are actually used in the analyses in this paper. For RNAseq data, we select 2437

genes after applying the same normalization and filtering criteria as those applied in the

breast cancer data above.

6.2 smFARM analysis

We apply smFARM to analyze the preprocessed breast cancer data and ovarian cancer

data, separately. Our primary goal is to construct the regulatory map between copy number

alterations and RNA expressions in each cancer dataset, adjusting for potential latent factors.

Specifically, for each cancer type, we fit the following model:

YRNA = XCNAIΘ
T + ZBT + E, (8)

where YRNA is the RNA expression matrix, XCNAI is the CNAIs copy number matrix, Θ is

the regression coefficient matrix with respect to CNAIs. In the above model, Q responses

(YRNA) and P predictors (XCNAI) are all standardized to have mean 0 and standard deviation

1. Note that Q = 1466, P = 1571 in the breast cancer data, while Q = 2437, P = 1300

in the ovarian cancer data. The estimated latent factors (B) help to account for additional

genetic and/or non-genetic features beyond the observed CNAI genetic markers, XCNAI.

In addition, we classify a CNAI×RNA pair to be a cis pair, if the RNA gene falls in

the genome region of the CNAI; or otherwise the pair is referred to as a trans pair. There

are in total 1172 cis pairs in the breast and 1862 cis pairs in the ovarian cancer data set,

respectively. Since we are particularly interested in identifying trans-hub CNAIs, we do not

impose shrinkage on the coefficients of these cis pairs. As pointed above, this choice can be

managed by setting Cqp = 0 given that the p-th CNAI and the q-th gene form a cis pair;

and Cqp = 1, otherwise in equation (7). We apply the proposed model fitting procedure and

select the tuning parameters (λ1, λ2) using 10-fold cross validation on a 25 × 25 grid. We
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vary the number of latent factors K from 0 to 20, and explore how the regulatory map varies

accordingly as K increases.

6.3 Results

Some interesting trans-hub CNAIs are revealed by the application of smFARM for both the

breast cancer and the ovarian cancer.

Figure 2 shows that with an increase in the number of latent factors, the detected number

of tran edges decreases. When fully ignoring latent factors in the analysis, we detect a total

of 2429 trans edges from the breast cancer data and a total of 318 trans edges from the

ovarian cancer data. However, most of these detected edges are deemed false positive and

are not biologically meaningful. Note that in either the breast cancer dataset or the ovarian

dataset only about 70 subjects are measured, each being observed with thousands of genes

and CNAIs. Indeed, both give rise to an ultra high-dimensional estimation problem, for

which it is not easy to select the optimal number of latent factors. In this analysis, we choose

K = 2, because this choice leads to the association maps that achieve a desirable balance

between sparsity and discovery of important biological signals.

[Figure 2 about here.]

For the breast cancer data, atK = 2, the proposed smFARM detected 190 trans-regulation

edges between 10 CNAIs and 134 transcripts. The detailed CNAI-RNA regulatory map is

illustrated in Figure 3. The biggest trans-hub CNAIs are all from chromosome arm 5q.

Deletions on chromosome arm 5q are key characteristics for basal-like breast cancer. Our

findings that the DNA copy number alterations in 5q have big impact on a large number of

transcripts is consistent with previous observations in the literature (?). Besides the tran-

hub CNAIs on 5q, another major trans-hub is from 17q12. This CNAI is known as the

harbor of the famous oncogene ERBB2, whose amplification is a trigger event for HER2

subtype of breast cancer (?). In addition to ERBB2, the 17q12 amplicon also harbors many
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other important cancer genes and transcript factors (?), thus it is expected that this region

serves as a tran-hub in the CNAI-RNA regulatory map. Among the transcripts regulated

by these major trans-hub CNAIs, one transcript, TNFSF10, is regulated by all CNAIs in

17q12, 5q34, and 5q35.3. TNFSF10 is a member of the tumor necrosis factor superfamily.

It has been shown to mediate p53-dependent cell death (?) and can be used as therapeutic

targets to improve the treatment of triple-negative breast cancer patients (?). Our analysis

suggests that the DNA copy number alterations in ERBB2 amplicon and 5q34-35.3 region

could act as upper-stream regulator for TNFSF10 during tumor initiation and progression.

These intriguing results help to cast light on the regulatory mechanism of these important

disease genes.

On the other hand, the analysis of the ovarian cancer data reveals a different set of CNAIs

trans-hubs, suggesting these two types of cancers are driven by distinct tumor mechanisms.

Specifically, we find that the CNAI-RNA regulatory map consists 77 trans-regulation edges

between 5 CNAIs and 77 transcripts. The CNAI with the largest number of trans-edges

locates in 9q21.32-33. Copy number gain in this region is reported to be associated with

chemoresistance in ovarian cancer patients (?). The transcripts regulated by this CNAI

include two known cancer genes, GREB1 and NODAL. Gene GREB1 regulated by estrogen

in breast cancer 1 was first identified as a hormone-responsive gene in the breast cancer

cell line. Recently, this gene has also been found to be up-regulated by E2 (Exogenous 17β-

estradiol) in ovarian tumors, and thus could serve as a novel gene target for therapeutic

intervention (?). Gene NODAL encodes a protein belonging to the TGF-beta superfamily,

which is an important regulator of embryonic stem cell and possibly cancer stem cells (?).

The signaling of NODAL promotes a tumorigenic phenotype in human breast cancer through

activating MAPK signaling pathway and could serve as a promising target for treating triple-

negative breast cancer (?). Our analyses suggest potential regulatory relationships among
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these known cancer related alterations and genes in the current literature. Such findings

could lead to useful biological hypotheses to be tested in future studies.

[Figure 3 about here.]

7. Discussion

We developed a new methodology, sparse multivariate factor analysis regression model, to

reconstruct a sparse genetic association map. The proposed smFARM extended the classic

multivariate regression model, allowing a low-dimensional set of latent factors to account for

the dependence among response variables instead of assuming residuals being independent

noise. We developed an effective and flexible EM-blockwise coordinate descent algorithm to

obtain regularized estimation and variable selection in the smFARM.

We have shown that by accounting for latent factors, the proposed smFARM can effectively

identify response-predictor associations from high dimensional data with improved sensitivity

and accuracy. The numerical results have indicated that the proposed smFARM works well to

derive the underlying sparse association relationship. Furthermore, both real breast cancer

data and ovarian cancer examples have also shown that our proposed smFARM provides

richer and biologically relevant discoveries to facilitate transcriptomic analyses. The sparse

genetic association map between CNAIs and gene expressions helped us understand and

interpret genetic regulation mechanisms and generate useful biological hypotheses on those

detected signals given in this paper.

To our knowledge, there are some other methods that can characterize the variability in the

gene expressions such as singular value decomposition (SVD) or principle component analysis

(PCA). There is a direct relationship between PCA and SVD in the case where principal

components are calculated from the covariance (?). Furthermore, the essential difference

between SVD/PCA and factor analysis lies whether or not a covariance model is used for
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the residuals. Refer to ?, ? and ? for more details. We find that unlike PCA/SVD using

superficial labeling such as “eigengenes”, “supergenes”, or “meta-genes” without clear bio-

logical entity (?), the number of latent factors can provide a biologically relevant parameter

in the reconstruction of association map, which is appealing in practice.

Besides the gene-CNA association analysis illustrated in this paper, our proposed method

may be applied in a broad range of problems. For instance, it may be applied to systematically

explore the relationship between gene expression levels and genotypes as to, for example,

whether a gene is differentially expressed with different genotypes (or alleles) at a specific

locus. The loci that are associated with gene expression levels are known as expression

quantitative loci (eQTL). For a given gene, an eQTL data analysis aims to identify genetic

loci or single nucleotide polymorphisms (SNPs) that are linked or associated with expression

levels of a common gene. Moreover, in eQTL analysis, SNPs may be naturally grouped

according to their functionality or biological pathways based on some prior knowledge. When

we are interested in associations of multiple SNPs simultaneously within a biological pathway,

incorporating genetic or non-genetic latent factors would help us to achieve a more powerful

and richer analysis, leading to better understanding of the underlying biological mechanisms.
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Figure 1: True association maps of Θ (connectivity vs. heatmap) for Simulation I, and
II. (LHS: connectivity maps of Θ between genes (white) and biomarkers (black); RHS:
corresponding heatmap of Θ.)
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Figure 2: The number of detected trans edges under different K.
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Figure 3: Detected association maps under K = 2. (Top: Breast cancer; Bottom: Ovarian
cancer.

K=2 with 190 trans edges
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Table 1: Impact of different number of latent factorsK and different SNR levels on Regulator
Selection and Group Selection

Regulator Selection Group Selection

SNR Ktrue Method TF Sen MCC TF Sen MCC

Simulation I.1
1:0:3 0 smFARMK =0 18.90(6.02) 0.89(0.04) 0.92(0.02) 0.06(0.24) 1(0) 0.99(0.02)

remMap 21.88(6.61) 0.93(0.02) 0.92(0.02) 0.02(0.14) 1(0) 1(0.01)
1:0:5 0 smFARMK =0 27.24(3.51) 0.81(0.03) 0.88(0.01) 0(0) 1(0) 1(0)

remMap 34.10(5.17) 0.88(0.03) 0.87(0.02) 0(0) 1(0) 1(0)
Simulation I.2
1:1:3 2 smFARMK =2 18.24(3.46) 0.87(0.03) 0.92(0.01) 0(0) 1(0) 1(0)

remMap 25.68(11.32) 0.83(0.04) 0.89(0.04) 0.02(0.14) 1(0) 1(0.01)
1:1:5 2 smFARMK =2 28.51(4.26) 0.80(0.03) 0.88(0.02) 0(0) 1(0) 1(0)

remMap 33.40(4.92) 0.76(0.04) 0.86(0.02) 0(0) 1(0) 1(0)

Simulation II
1:3:5 2 smFARMK =2 48.89(11.54) 0.82(0.05) 0.87(0.03) 10.89(2.53) 0.66(0.06) 0.79(0.05)

smFARMK =0 79.80(16.76) 0.77(0.02) 0.79(0.04) 12.10(1.25) 0.62(0.04) 0.76(0.03)
remMap 87.46(20.67) 0.79(0.03) 0.77(0.05) 12.46(1.35) 0.62(0.05) 0.75(0.03)

Note:For each Total False (TF), Sensitivity (Sen), or Matthews correlation coefficient (MCC) measurement, we report mean
values together with their standard errors on 50 replicates. smFARMK =K 0

represents fitting the smFARM on a given number
of latent factors K0 .


