
THE STOKES STREAM FUNCTION IN AXIALLY
SYMMETRIC POTENTIAL THEORY

ALBERT E. HEINSf

1. Introduction

We have recently discussed in [1] a method which provides a useful transformation
of the fundamental solution

sinp~1 a daJ_ f sinp lada
2»J [(x-y)2+y2+b2-2ybcosaY'2> P > U U U

for the equation of axially symmetric potential theory, that is

ox dy* ydy

This transformation produced the Laplace representation for equation (1.2).

<f>(x> y) = ,-_,. J <f>(x+iy cos a, 0) sin17"1 a dot, p > 0 (1.3)
V"TO/2) J

and simultaneously indicated some of its limitations. Amongst the advantages of
(1.3), however, is the fact that we may formulate boundary value problems of axially
symmetric potential theory in terms of data on the axis y = 0, without recourse, in
many cases, to special functions and in terms of integral equations of the Volterra
type [2].

We now turn to a discussion of the stream function for which some interesting
properties were noted by A. Weinstein [3]. Here, however, we wish to show that we
may give the stream function associated with (1.1) in the large, in such a form that it is
evident that it possesses a "barrier" from (y, b) to (y, co), b > 0. This characteriza-
tion is then different from Weinstein's, since we. find that the angle j8 he introduced
(and which he measured with respect to the line segment drawn from (y, 0) to (y, b),
b > 0) is limited and indeed —v ̂  jS ̂  n.

We shall see that it is not convenient to work with (1.1) but rather with a trans-
formed version in order to provide the form which will enable us to do this. It will
then be necessary to use another transformation [1] to produce the expression we seek.
Let us note that there are actually two stream functions associated with the index p.
One of them is related to (1.1) via the Beltrami-Stokes equations and is the discon-
tinuous one of which we have spoken. The other one arises from the correspondence
principle of Weinstein [3]. This shows that the latter stream function is for p > 0,
related to the potential function of index p + 2, rather than p. That is, it is a solution of
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equation (1.2) with/? replaced by p + 2. In this case, we shall find that it is the potential
function of index p which is discontinuous, rather than the stream function. The
barrier is now drawn from (y, 0) to (y, b), b > 0. This situation differs in minor detail
from the first one and we need only produce the fundamental solution of the equation
for the stream function [equation (1.2) with/? < 0] in order to provide this potential
function. Let us note that we have no choice of these barriers, since they are by-
products of our work.

2. The Stream Function Associated with the Potential Function (1.1)

We recall that the Beltrami-Stokes equations are

fS± = SA and ?£--%, P>0 (2.1)
dx 8y by dx

where <£ is the potential function and ifi is the stream function. If 0 is a fundamental
solution which is given by (1.1), we could, in theory, find $ from the system (2.1).
Unfortunately, except for special values of/?, we would have to investigate the pro-
perties of a double integral, in particular on the line x = y. We can avoid this diffi-
culty by noting [1], that (1.1) may be written in two other forms which turn out to be
more useful. [We do not consider those forms expressed in terms of Bessel functions
because they do not reveal, in an obvious manner, the properties of the stream
function.]

Hence we write (1.1) as [1]

sin""1 ado, ,„ ~ N
( 2 2 )

- J_ f
~ 2irJ [(x-

sin'-1 ad*

_ 1 r sinp 1 a da

~ 2 ^ J [(x-y + ib COS a)2+y2]p / 2 ' ( '
o

These integrals are symmetric functions of x and y as well as y and b. This statement
is obvious for (2. 2a) and (2. 2b) imply (2. 2c) after a minor change of variables. Upon
using the second Beltrami-Stokes equation we now observe that we have

,t N - / / f COSasin1""1 arfa

* > } ° (23)

(up to an arbitrary constant). Despite the presence of the factor i, the integral is real.
tfj(x, y), however, is no longer a symmetric function of the coordinates (x, y) and (y, b).
Since the denominator of (2.3) is real for x = y, 0 < y < b, it is clear that
0(y> y) — 0- The main problem is concerned with the behaviour of ifi(x, y) for x -> y,
y > b. Since (2.3) is not in the best possible form to discuss the properties of ${x, y),
we turn to a procedure which we recently made familiar.
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We first make the same change of variables that we made in [1]. We put y cos a = T
in (2.3) and find

Kx-y+/r)>+*>]«"- ( 2 4 )

- y

Then we employ the bilinear transformation which produced (2.2b) from (2.2a).
That is, we use the transformation T = (A+B\)/(C+D\) where

A = (d+y) D/2, B = -5D, C = -(a+y) Dj{2y)

with a = b + i(x—y). Equation (2.4) then becomes for x # y, y =£ b

2 - - y>(3+y-2d\)[(W -A)]"-2"2 d\
( 2 «

, 1 f
y) = H n s J

0

We have, as in [1], taken [0>+&)2 + (;c-y)2-4;/6A]p/2 to be positive. Now (2.5) may
be reduced to

x v) = -£Z2L> f (2^+1[A(l-A)r/^A
> / ; 2TT J [(2^A-^-6)2 + (^-y)2][(j; + fe)2 + (A:-y)2-4^A]''/2- ^ ' ;

It is from (2. 5a) that we may study in detail the character of ifj(x, y). Let us
observe that it bears a remarkable similarity to the Poisson integral for the half-plane.
To have it in a more familiar form, we put 2j;A—y = p. Then

r
- y

)2 + (xy)2]Now we recall that (JC—y)/M(/n—b)2 + (x—y)2]} is the Poisson kernel for the half-
plane. We could use its known properties directly to determine 0(x, y), x—y-> 0
from the right or the left, were it not for the fact that there is a dependence on (x— y)
in the second term of the denominator of the integrand. On the other hand for
(x-y)2 < y2+b2-2bfi ^ (y+b)2 we may write

where^0 = 1. Now for — y ^ n < y, andy > b, we have

(x-y)2n/(y2+b2-2bfiy ^ (x-y)2n/(y-b)2"

and the series therefore converges uniformly. Hence

= 2 , ; T : 2 " ,n = o[(x-yn x-Y-+o,y>b.

Accordingly
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and therefore

-y

and this approaches zero when x -> y, y > b.
We are therefore left with the evaluation of the integral

f
J [ ( ^_- y

in the limit A: = y. Now it is known that if x—y-»0+, the limit of (2.6) is —1/2
while if x—y -> 0", the limit is 1/2. Hence

0(y+, J>) = -1 /2 , 0(y-, y) = 1/2, 0 < b < y.

If now b > y > 0, 0(A;, ;/) is continuous at x = y and indeed vanishes.
We now summarize the important properties of «/»(JC, y). if>(x, y) is a solution of the

partial differential equation

save in the neighbourhood of the semi-infinite straight line passing through the point
(y, b), parallel to the y axis and extending to + oo. It also vanishes on the line .y = 0.
We now introduce the angle j3 to which we alluded in the Introduction. Weinstein has
shown [3], that *p{x, y) = -p/(2ir) when (x- y)2 + (y-b)2 -> 0, that is, when a radial
limit is taken of the function ifi to the point (y, b). Now since the form we derived for
ifj(x, y) is single valued and continuous in the half-plane y > 0, save in the neighbour-
hood of the barrier, /? is restricted to the interval — n ^ jS ̂  v. The limiting values we
have found for ifj(x, y) on the barrier give us no other choice for jS.

3. The Stream Function with a Source and its Associated Potential Function

Now we turn to the problem of discussing the case of a stream function with a
source. In this case we recall that 0 is a function which satisfies the partial differential
equation

a, * a * pd*

In Section 2 we have accounted for a stream function which is discontinuous on the
line x = y, y > b > 0. How then can we find a stream function with a source? We
accomplish this by applying Weinstein's correspondence principle, that is, we put
0 = y

x+p A and find that

d!Ad^Ap±2dA_
dxL dy1 y by

In this case then there is a function A{x, y) which satisfies equation (3.2) and which has
a source at x = y, y = b. That is, it has the form (2.2b) or (2.2c) with/? replaced by
p + 2. Hence there exists a function *ji(x, y) which satisfies equation (3.1), which has
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the required source and is of the form

inp+1ocda

J [(*-y+frco.«)»+ty«>« (3-3a)

or
i+p

y I — —
" ~2^J [(x-y + ibcosoc)2+y2fp+2^2' K6tM)

o
Now we may use the Stokes-Beltrami equations to determine the corresponding

potential. But while we used the first form (3. 3a) in Section 2, we cannot use it
conveniently in this case since we do not find an obviously useful form for the
potential. In the present case, we use the form (3. 3b) to obtain, up to an arbitrary
constant, that

o

An integration by parts reduces (3.4a) to

. If Sinp

(3. 4b) now differs from (2.3) by the presence of certain external factors and the fact
that y and b are interchanged in the integrand. Hence the discontinuity in this integral
now occurs on the line x = y, 0 < y < b, and has the same general character that we
found for ift(x, y) in Section 2. Now, however, we measure the angle £ with respect to
the line x = y, y > b, so that the right side of the segment x = y, 0 < y < b is
jS = — v and the left side is jS = v. We have then that <f>(x, y) = 0 for x = y, y > b.
For x—y->0+, 0 < y < b, we get that

and for x—y-» 0", 0 < y < b, we have

<f>(x,y)= - b - " - 1 ^

Weinstein has provided an interpretation for such integrals as (2.3) and (3.4b) in
terms of special forms of the Weber-Schaf heitlin integrals.
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