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Abstract
Introduction: In recent years, machine-learning techniques have gained growing pop-
ularity in medical image analysis. Temporal brain-state classification is one of the major 
applications of machine-learning techniques in functional magnetic resonance imaging 
(fMRI) brain data. This article explores the use of support vector machine (SVM) clas-
sification technique with motor-visual activation paradigm to perform brain-state clas-
sification into activation and rest with an emphasis on different acquisition 
techniques.
Methods: Images were acquired using a recently developed variant of traditional 
pseudocontinuous arterial spin labeling technique called arterial volume-weighted 
arterial spin tagging (AVAST). The classification scheme is also performed on images 
acquired using blood oxygenation–level dependent (BOLD) and traditional perfusion-
weighted arterial spin labeling (ASL) techniques for comparison.
Results: The AVAST technique outperforms traditional pseudocontinuous ASL, 
achieving classification accuracy comparable to that of BOLD contrast images.
Conclusion: This study demonstrates that AVAST has superior signal-to-noise ratio 
and improved temporal resolution as compared with traditional perfusion-weighted 
ASL and reduced sensitivity to scanner drift as compared with BOLD. Owing to these 
characteristics, AVAST lends itself as an ideal choice for dynamic fMRI and real-time 
neurofeedback experiments with sustained activation periods.
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1  | INTRODUCTION

Functional magnetic resonance imaging (fMRI) is a noninvasive tech-
nique used for visualization of regional brain activity. Blood oxygen-
ation–level dependent (BOLD) contrast-based techniques are the 
most commonly used methods for acquiring fMRI images. The hemo-
dynamic response to neuronal activation entails a temporary increase 
in blood volume and oxygenation level in the blood. BOLD techniques 

take advantage of the difference in magnetic properties of oxygenat-
ed and deoxygenated blood to generate images and are widely used 
as a marker for providing reliable information about neural activation 
(Detre & Wang, 2002). The intensity of obtained images is relative 
and not individually quantitative because BOLD does not involve 
direct measurement of any physiological parameter, unless a num-
ber of additional measures are collected (Davis, Kwong, Weisskoff, 
& Rosen, 1998; Hoge et al., 1999). The BOLD signal is sensitive to 
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field inhomogeneities caused by the differences in magnetic suscep-
tibility of air and tissue, which may result in local tissue distortions 
and signal losses (Sutton, Noll, & Fessler, 2003; Weiskopf, Hutton, 
Josephs, & Deichmann, 2006). The within-session slow scanner drift 
which has been observed in most studies using BOLD imaging (Smith 
et al., 1999) makes it impractical to use for studies involving neural 
processes with long activation periods.

The observed signal in arterial spin labeling (ASL) method depends 
on cerebral blood flow (CBF) alone and is largely independent of the 
oxygenation level. ASL techniques are less sensitive to local suscep-
tibility artifacts due to the use of shorter echo times (TEs) and show 
reduced sensitivity to the MR scanner drift since they are subtraction 
techniques. Unlike BOLD imaging, they are also capable of absolute 
quantification of CBF in well-characterized physiological units, but 
ASL suffers from inadequacies such as low signal-to-noise ratio (SNR) 
and poor temporal resolution.

Since cerebral perfusion is regulated at the arteriolar level, mea-
suring the arterial cerebral blood volume (aCBV) provides useful 
information about neuronal activation (Lee, Duong, Yang, Iadecola, 
& Kim, 2001; Mumford & Nichols, 2009). Arterial volume-weighted 
arterial spin tagging (AVAST) is a variant of pseudocontinuous arte-
rial spin labeling acquisition (PCASL) technique, which measures 
aCBV (Jahanian, Peltier, Noll, & Hernandez-Garcia, 2015). fMRI 
using physiological parameters such as CBF or CBV, unlike BOLD 
fMRI, provides a quantifiable contrast and is more closely related 
to neural activity (Duong et al., 2002; Jin & Kim, 2008; Kim & Kim, 
2010).

The short relaxation time of arterial blood causes the tag to decay 
rapidly resulting in lower SNR while using traditional perfusion-
weighted ASL techniques. AVAST demonstrates superior SNR since 
the images are acquired while tag is still in the arteries before perfu-
sion. AVAST is based on optimizing the timing parameters of a PCASL 
sequence such that the subtracted ASL signal is predominantly from 
the arteries, rather than from the capillaries and the tissue parenchy-
ma. The technique tailors the tagging duration and repetition time (TR) 
for each subject to achieve a contrast that depends on aCBV with little 
contribution from tissue perfusion signal by taking advantage of the 
kinetics of the tag through that subject’s vasculature. In other words, 
the strategy behind AVAST is to design the timing parameters of the 
PCASL sequence such that the signal is acquired when the tagged 
spins are primarily still in the arteries before they have filled the capil-
laries. Hence, there are no delays between the tagging period and the 
acquisition. The tagging duration (and consequently, TR) is adjusted 
in a calibration scan until the contribution from tagged spins in the 
capillary and tissue compartments is the same in both the control and 
tagged images and therefore can be subtracted out. AVAST exhibits 
activation detection sensitivity and temporal resolution that is on 
par with BOLD imaging and an improvement over the standard CBF 
ASL technique, while preserving its quantitative nature and statistical 
advantages (Jahanian et al., 2015).

Traditionally, fMRI analysis is generally performed using a univar-
iate approach called statistical parametric mapping or SPM (Friston 
et al., 1995), which examines the differences in brain activity in a 

general linear model (GLM) framework. In SPM, each voxel is ana-
lyzed using a univariate statistical parametric test and the resulting 
statistics are assembled into an image that is interpreted as a spatially 
extended statistical process. Several other whole-brain mass univari-
ate analysis techniques have been implemented in the past to detect 
patterns in the brain imaging data (Luo & Nichols, 2003; Smith, 2004). 
However, in a univariate approach, each voxel’s time series is treated 
independently and it does not take into account inter-regional cor-
relations, which may be vital in studies of neural systems associated 
with particular brain function. Also, they do not offer the prospect of 
employing a predictive learning approach, wherein, a model comput-
ed using some training data is then used to predict the outcome for an 
unseen test example. This approach may be of significant diagnostic 
relevance.

Contrarily, multivariate pattern analysis (MVPA) techniques pro-
cess all the data together and make more use of the spatial relation-
ships within the data. They involve the application of sophisticated 
algorithms to complex patterns generated by the very large number of 
features that is voxel intensities (Formissano, De Martino, & Valente, 
2008). By taking into account the full spatial pattern of brain activi-
ty, measured simultaneously at many locations, these methods allow 
detecting subtle localized effects that may remain unidentified with 
conventional univariate statistical methods.

Machine learning has been used increasingly to analyze fMRI imag-
es, and it involves the use of an algorithm to facilitate learning from 
examples. In supervised machine-learning algorithms, there is first a 
training phase, during which labeled input training samples are used 
to build a model that captures the relationship between the training 
samples and the corresponding labels (Pereira, Mitchell, & Botvinick, 
2009). This model is then used during the testing phase to compute 
an output label for any new testing data sample. In typical fMRI appli-
cations, machine-learning algorithms are used to learn a relationship 
between brain volumes and labels. This learned functional relationship 
is then used to predict the unseen labels for a new test dataset. Thus, 
they facilitate a classifier-based predictive learning framework. Such a 
setup has been used with fMRI data to enable brain-state classifica-
tion (Cortes & Vapnik, 1995; LaConte, Strother, Cherkassky, Anderson, 
& Hu, 2005; Mitchell et al., 2004).

A number of different machine-learning techniques have been used 
for MVPA in functional MRI studies to investigate different neural pro-
cesses. Representative studies have been summarized below. Support 
vector machines (SVMs) and linear discriminant analysis (LDA) were 
applied to successfully classify patterns of fMRI activation observed 
due to the visual presentation of pictorial cues of various categories 
of objects (Cox & Savoy, 2003). In another study, several different 
classifier training methods including Gaussian Naïve Bayes, SVM, and 
k-nearest neighbor were explored to learn to decode cognitive states 
from brain images (Mitchell et al., 2004). Nonlinear SVM and Fisher’s 
LDA have been used to implement lie-detection (Davatzikos et al., 
2005). A variety of unsupervised methods including PCA, K-means 
clustering, ICA, etc. have also been used for exploratory analysis of 
fMRI data (Beckmann, DeLuca, Devlin, & Smith, 2005; Calhoun, 
Maciejewski, Pearlson, & Kiehl, 2008; Goutte, Toft, Rostrup, Nielsen, & 
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Hansen, 1999; Hansen et al., 1999; Mezer, Yovel, Pasternak, Gorfine, 
& Assaf, 2009).

Support vector machines are a powerful set of machine-learning 
methods that can be used to analyze data and recognize patterns 
(Cristianini and Shawe-Taylor, 2000; Hamel, 2009; Vapnik, 2000). The 
SVM algorithm seeks a maximum margin separating hyperplane, thus 
making it resilient to overfitting. This means that they provide better 
generalization, allowing the best prediction accuracy for previously 
unseen test data. Also, when a linear kernel is used, they allow the 
possibility of generating discrimination maps so that they can be visu-
alized in the original data space. That is, in fMRI analysis, the SVM 
weights can be superimposed back onto the original brain space so 
that the most significant weights can be visually traced back to the 
most discriminatory parts of the brain. Thus, SVMs help not only in 
effective pattern discrimination but also in pattern localization in the 
given data, hence improving interpretability of the model. SVMs are 
a preferred method when the data are very high dimensional, that 
is, it has many more features than the number of examples, which is 
typically the case for fMRI experiments, where each voxel represents 
a different feature. SVM explores this high-dimensional space for an 
optimal separating hyperplane and the examples that are closest to 
the hyperplane are called the support vectors. SVMs have been shown 
to be effective for identifying brain states in previous studies (LaConte 
et al., 2005; Mitchell et al., 2004).

The objective of this work is to compare and contrast AVAST 
with the other more popular image acquisition techniques, BOLD 
and perfusion-weighted ASL, in the setting of a predictive machine-
learning framework. Owing to the advantageous characteristics 
noted above, we choose SVM classification as our machine-learning 
technique to compare AVAST performance to BOLD and perfusion-
weighted ASL in terms of SVM classification accuracy. To that end, we 
employed the SVM algorithm to perform temporal brain-state classifi-
cation of motor-visual activation versus rest using images captured by 
each of the three acquisition techniques: BOLD, ASL, and AVAST. We 
have presented their comparative performance in terms of classifica-
tion accuracy and significant model weights.

2  | METHODS

2.1 | Stimulation paradigm

Ten healthy subjects participated in this study after signing a written 
consent and were scanned in accordance with the local IRB. The sub-
jects included six men and four women between the ages of 20 and 
35 years. They were given mirrored glasses to view a rear projection 
screen while being scanned. The paradigm involved displaying five 
cycles of alternating 30-s blocks of flashing checkerboard (8 Hz) and 
static fixation cross (total duration = 300 s). The subjects performed a 
robust visuospatial activation task by doing self-paced finger tapping 
with their right hand when presented with the flashing checkerboard 
and rest when presented with the fixation cross. The experiment was 
performed twice per subject and two runs of data were acquired using 
each acquisition technique.

2.2 | Data acquisition

All functional images were collected on a 3T GE Signa Excite scanner. 
Images were captured using each of the three acquisition techniques 
(BOLD, ASL, AVAST) on every subject while they performed the acti-
vation task. To ensure that the steady state was reached, four dummy 
scans were collected at the start of each run. Image acquisition details 
were as follows:

BOLD: A single-shot gradient echo reverse spiral pulse sequence was 
used (TR/TE/FA/FOV = 2 s/30 ms/90°/24 cm, 64 × 64 matrix, 11 
contiguous slices to match ASL and AVAST).

Perfusion-weighted ASL: Images were acquired using a functional 
CBF scheme employing an off-resonance corrected PCASL tech-
nique (Jahanian, Noll, & Hernandez-Garcia, 2011) followed by a 
3D stack of spirals acquisition (Nielsen & Hernandez-Garcia, 2012) 
(TR/TE/FOV = 4 s/3 ms/24 cm, tagging duration = 2 s, postin-
version delay = 1.5 s, 64 × 64 matrix, 11 contiguous slices, slice 
thickness = 6 mm, bandwidth = 125 kHz, duration of 3D spiral 
readout = 385 ms).

AVAST: The same pulse sequence utilized for the perfusion-weighted 
scans was used here, but the tagging parameters were modified to 
achieve arterial blood weighting. First, a calibration scan was imple-
mented to find the optimal timing parameters (tagging duration and 
TR) tailored for each subject as in Jahanian et al. (2015). This opti-
mization process was automated, and the parameters found were 
then used to acquire images using the functional aCBV scheme of 
AVAST (i.e., adjust TR and tagging duration obtained from the cali-
bration scan, no postinversion delay).

2.3 | Preprocessing steps

All datasets were reconstructed and the following preprocessing steps 
were performed before analysis using the SVM training and testing setup.

BOLD: A custom MATLAB code was used for k-space spike removal 
and spiral reconstruction. SPM8 (http://www.fil.ion.ucl.ac.uk/spm, RRID: 
SCR_007037) was used to perform the following: (1) slice timing correc-
tion, which corrects for differences in acquisition time between slices 
during sequential imaging; (2) rigid body motion correction; and (3) spa-
tial smoothing using a Gaussian smoothing kernel with FWHM of 8 mm.

Arterial spin labeling and AVAST: As before, custom MATLAB code 
was used for k-space spike removal and 3D spiral reconstruction and 
SPM8 motion correction was performed. Next, the resulting time 
series of images were surround subtracted and analyzed by estimation 
of standard GLM using the custom-written software FASL01 (http://
fmri.research.umich.edu/resources/software/shared_code.php). 
Spatial smoothing was then done using a Gaussian smoothing kernel 
with FWHM of 8 mm.

All analyses were performed in native space. Furthermore, the 
time course of each voxel was normalized by subtracting its mean over 
time and dividing by its standard deviation.

http://www.fil.ion.ucl.ac.uk/spm
http://fmri.research.umich.edu/resources/software/shared_code.php
http://fmri.research.umich.edu/resources/software/shared_code.php
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2.4 | Features and examples

A classifier function outputs a binary class label for every input set of 
feature values. The features represent an example, whereas the label 
signifies the class that a particular example belongs to. More specifi-
cally, if x is an example with features [x1, x2, x3,…] and the class label is 
denoted by y = (±1), then the classifier function f() computes the label 
for every given input, that is y = f(x).

In our study, at each time point, a brain activation volume is 
acquired (using one of the three acquisition techniques). Each such 
volume is used as a separate example in which the voxel gray scale 
intensities act as features. Depending on whether the subject was tap-
ping their finger or resting, a label of +1 or −1 is associated with each 
example.

Data acquired during one of the two runs is used as training data, 
while the other separate run is used as testing data. In the training 
phase, a mapping is learned from the training examples to the respec-
tive class labels and a classifier is built. In the testing phase, this model 
is used to predict the class of a previously unseen example from the 
testing data. Classifier performance is calculated as the ratio of the 
number of correctly classified test examples to the total number of 
test examples. At first, run 1 was used for training the classification 
model, whereas run 2 was used to assess the effectiveness of the 
model and then vice versa.

2.5 | Dataset dimensionality

Each of the acquired three-dimensional volumes, which act as training 
and testing examples, was of size [64 × 64 × 11] voxels. Initially, this 
amounted to 45,056 features that were then reduced to ~8,000 fea-
tures by excluding all voxels that lay outside the brain region by using 
a brain mask created for each individual subject. For BOLD images, 
this mask was computed by including only those voxels that were 
within one standard deviation of the mean of the mean image. For 
ASL and AVAST, all voxels within one standard deviation of the mean 
of the baseline image (i.e., the mean of the control images in the time 
series) were included. For the AVAST method, the timing parameter 
TR was tailored separately to suit each subject and a brief account of 
the optimal parameters is listed (Table 1). Note that, for each of the 
techniques, a different number of examples were collected due to the 
different TR in each technique (Table 2). The number of examples also 
varies because of the use of surround subtraction in ASL and AVAST. 

Two such runs were collected for each of the 10 subjects resulting in 
a total of 20 runs of data.

Runs acquired with perfusion-weighted ASL technique (TR = 4 s) 
included fewer time points than those acquired using BOLD (TR = 2 s) 
or AVAST (TR = 1.9–2.5 s). In order to address this discrepancy, the 
analysis was repeated for subsampled runs of BOLD and AVAST such 
that only every other time point was considered during analysis. These 
are denoted as subsampled BOLD (sBOLD) and sAVAST, respectively. 
sBOLD run had an effective TR of 4 s, whereas the sAVAST runs had 
an effective TR that ranged from 3.8 to 5 s depending on the optimal 
TR for that subject.

2.6 | SVM classification

In standard SVM classification approach, a separating boundary 
between the two classes of examples (e.g., +1 and −1) is learned such 
that the distance (termed “margin”) between the data points and 
boundary is maximal. In higher dimensions, the separating boundary 
manifests itself as a hyperplane. This separating hyperplane generated 
by the SVM algorithm is orthogonal to the weight vector w which 
defines the direction in which the examples of the two classes differ 
most from one another. Thus, the classifier is parameterized by w, 
which can be solved for by using the following optimization problem:
 

 

 where w is the normal vector to the hyperplane, yi are the known 
input class labels, xi are the input feature vectors, C is the trade-off 
parameter used to penalize misclassifications, and ξi are the nonneg-
ative slack variables which measure the degree of misclassification of 
the input data xi. The SVM then uses the sign of the decision function 
f(x) = wTx to classify any new data point x represented by the feature 
vector x into one class or the other.

LIBSVM (Chang & Lin, 2011, RRID:SCR_010243), a Library for 
Support Vector Machines, was used to perform the SVM classification 
with the default linear kernel and default value of C = 1.

2.7 | Transition periods

The paradigm design includes 10 alternating blocks of flashing check-
erboard and fixation cross. Thus, there are nine intervals when the sub-
ject switches from one state to another (finger tapping or rest). These 
are called transition periods during which the vascular response to 
neuronal activation is still “ramping up” to its stable state in our block 
design experiment. Omitting the transition periods for both training and 
testing runs is common practice for offline studies (LaConte, Peltier, & 
Hu, 2007; LaConte et al., 2003). The exclusion of transition periods can 
improve the accuracy for the nontransition states. We investigated the 
effect of the transition period by excluding scans acquired during these 
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TABLE  1 Number of subjects corresponding to each tailored 
repetition time (TR) using arterial volume-weighted arterial spin 
tagging

Tailored TR (s) No. of subjects

2.0 2

2.1 2

2.2 2

2.4 3

2.5 1
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periods from the modeling exercise as follows. Initially, the training was 
implemented using all the time points. Then, this exercise was repeated 
by excluding 1 time point from both blocks (last time point from previ-
ous block and first time point from next block) at each transition point. 
The same was further repeated by excluding two and three time points, 
respectively. This timing is illustrated in the Fig. 1.

2.8 | Permutation tests

The weight vector w generated by the SVM algorithm is representative 
of the most discriminatory regions of the brain. When mapped back 
into original image space, this vector generates the discriminating vol-
ume also called the weight vector map. The weight vector map is, thus, a 
representation of the voxels that are most vital to the classification. The 

magnitude of the absolute value of each voxel weight determines its 
importance in discriminating the brain states, and the most important 
voxels for discrimination of the brain states can be inspected by merely 
thresholding the obtained weight vector map. A permutation test was 
employed to assess the reproducibility of these spatial patterns.

Briefly, permutation tests are nonparametric techniques that esti-
mate the distribution of a statistic under a null hypothesis empirically 
and have been used with fMRI data previously (Jahanian, Hossein-Zadeh, 
Soltanian-Zadeh, & Ardekani, 2004; Mourão-Miranda, Bokde, Born, 
Hampel, & Stetter, 2005; Nichols & Holmes, 2001). The null hypothesis 
proposes that there are no differences between the two brain states, 
and thus, the labels assigned to each example are inconsequential. The 
alternate hypothesis, on the other hand, claims that the assigned class 
labels are actually indicative of the brain state that an example belongs 
to and better than random. One can estimate the distribution of weights 
assigned to each voxel under the null hypothesis by randomly permuting 
the class labels multiple times and training the SVM each time with this 
different permutation of labels. In each instance, the weights were nor-
malized to have unit standard deviation. The SVM training was also done 
once with the known correct nonpermuted labels. Now, for each voxel, 
the p value under null hypothesis was calculated as the ratio of number 
of times that the voxel weight assigned to it was greater than or equal 
to the weight assigned to it when training with original nonpermuted 
labels. Since we permuted the labels and trained 2,000 different models, 
if this number is smaller than 20, then that voxel is likely to be predictive 
of the class label with a significance level of 1%. The weight vector maps 
shown in the RESULTS display all significant voxels with p value <.01.

3  | RESULTS

3.1 | Classification accuracy

Figure 2 shows a plot of the mean classification accuracy across both 
runs of all 10 subjects. It demonstrates that the mean classification 

TABLE  2 Number of examples in train and test datasets 
corresponding to each repetition time (TR) using each acquisition 
method

Technique TR (s) No. of examples

BOLD 2 150

ASL 4 74

AVAST 1.9 156

AVAST 2.0 148

AVAST 2.1 142

AVAST 2.2 134

AVAST 2.4 124

AVAST 2.5 118

sBOLD 4a 75

sAVAST 3.8–5a 59–78

sBOLD and sAVAST stand for subsampled runs of BOLD and AVAST.
AVAST, arterial volume-weighted arterial spin tagging; ASL, arterial spin 
labeling; sBOLD, subsampled blood oxygenation–level dependent.
aEffective TR after subsampling.

F IGURE  1 Schematic diagram depicting 
the transition points that are ignored. 
(A) No time points ignored, (B) one 
time point ignored—green, (C) two time 
points ignored—red, (D) three time points 
ignored—black
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accuracy obtained by AVAST was consistently better than that offered 
by ASL and almost equivalent to BOLD. Ignoring transition points 
improves the classification accuracy initially but plateaus for BOLD 
and AVAST, whereas it deteriorated for ASL when three time points 

are ignored in each block. In order to ensure that the classifier power 
was not being driven by the number of examples in each case, sBOLD 
and subsampled AVAST (sAVAST) runs were also analyzed using the 
same setup. The mean classification accuracy for these analyses was 
found to be similar to the earlier case, as seen in the plot.

3.2 | Weight vector maps

The SVM algorithm generated discriminatory weight maps and the 
permutation tests allowed us to find the significant voxels from these 
maps as described in the METHODS. These maps were indicative of 
the detection sensitivity of the acquisition technique.

Figure 3 depicts select slices for a representative subject showing 
the most significant SVM weights with p < .01 in the left motor and 
premotor cortices as well as the visual cortex, as expected. The left-
most column shows SVM weights for BOLD (blue) technique. The mid-
dle column shows the AVAST (green) weights superimposed on BOLD 
and the right-most column shows ASL (red) weights superimposed on 
BOLD and AVAST. The clusters of significant weights were bigger and 
more robust in the AVAST technique as compared to ASL.

4  | DISCUSSION

Traditionally, perfusion-weighted ASL techniques suffer from low 
SNR and detection sensitivity. By taking advantage of the kinetics 
of the tag through the vasculature, AVAST facilitates the tailoring of 

F IGURE  2 Mean classification accuracy over two runs of all 
10 subjects for each acquisition technique (BOLD: blue, ASL: red, 
AVAST: green) against number of ignored transition points. The 
error bars depict standard error. BOLD, blood oxygenation–level 
dependent; AVAST, arterial volume-weighted arterial spin tagging; 
ASL, arterial spin labeling

F IGURE  3 Significant support vector 
machine weights after permutation 
tests with p < .01 for a representative 
subject for each acquisition technique 
superimposed on a mean subtraction image 
as underlay (BOLD: blue, ASL: red, AVAST; 
green) (A) BOLD, (B) BOLD + AVAST, 
(C) BOLD + AVAST + ASL. BOLD, blood 
oxygenation–level dependent; AVAST, 
arterial volume-weighted arterial spin 
tagging; ASL, arterial spin labeling

(A) (B) (C)



     |  e00549 (7 of 8)SHAH et al.

the timing parameters for each subject. This permits the acquisition 
rate to be much faster and allows much superior temporal resolu-
tion as compared to standard perfusion-weighted ASL. Thus, we can 
acquire a larger number of volumes in the same duration. Also, as 
noted previously in Jahanian et al. (2015), AVAST offers much bet-
ter activation detection sensitivity. Both these features are advan-
tageous for the machine-learning techniques since it increases the 
degrees of freedom and also the images obtained are much more 
sensitive to activation. Thus, AVAST images exhibit better classifica-
tion performance in terms of higher classification accuracy and more 
robust clusters of significant weights in the expected brain regions.

The data presented here indicate that AVAST images can be used 
for SVM classification more reliably than perfusion-weighted ASL and 
are comparable to BOLD images in terms of their reliability. AVAST 
images, however, retain some of the advantages of ASL imaging, such 
as its robustness to scanner drifts and ability to be quantified. ASL 
images do not depend on T2* contrast, so they can use shorter TEs 
and thus mitigate susceptibility artifacts.

This study presents promising results that promote the use of 
machine-learning techniques for brain-state classification of images 
acquired by using the AVAST technique. This technique might be used 
for dynamic fMRI experiments and real-time brain-state classifica-
tion studies as in Hernandez-Garcia, Jahanian, Greenwald, Zubieta, & 
Peltier (2011).
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