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Abstract

Introduction: In recent years, machine learning techniques lgavweed growingoopularity in
medical image/analysi¥emporal bbain state classificatiors one of the major application$ o
machine learning techniquesfimctional MRI braindata This papeexploresthe use of support
vector machingSVM) classification technique wittmotor-visual activation paradigm to perform
brain state classification into activation and resth an emphsis on different acquisition
techniques:

Methods: “images wereacquired usinga recenly developedvariant of traditional pseudo
continuougrterial spin labeling (PESL) techniquecalledarterial volumeweighted arterial spin
tagging AVAST). The classification scheme is also performed on images acquired hisiogj
oxygenation level dependerB@LD) and traditionalperfusionweighted arterial spin labeling
(ASL) techniques for comparison.

Results: The=AVAST techniqueoutperforms raditional pseudo-continuou#\SL, achieving
classification.accuracgomparable to that of BOLD contrastages

Conclusion: This studydemonstratethat AVAST has superior signdb-noise ratio (SNR) and
improved temporal resolutioas compared to traditionpkrfusionweighted ASL, and reduced
sensitivity,to.scanner drift as compared to BOLD. Owing to these characteristics, A¥AST
itself as an_ideal choice for dynamic fMRI and riale neurofeedback experimenigth

sustained_ aetivation periods.
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[. INTRODUCTION

Functional nagnetic resonance imaging (fMRI) is a romasive technique used for
visualization of regional brain activity. Blood oxygenation level dependent (BQiddjrast
based techniques are the most commonly usethods for acquiring fMRI images. The
hemodynamiewresponse to neuronal activation entails a temporary increase in blood wolume a
oxygenationslevelin the blood. BOLD techniguakeadvantage of the difference in magnetic
properties. of oxygenated and deoxygenated blood to generatgsand arewidely used as a
marker for providing reliable information about neural activa{idatre and Wang, 2002)The
intensity of obtained images is relativedamot individually quantitative because BOLD does not
involve direct measurement of amphysiological parameterunless a number of additional
measures are collect¢Davis et al, 1998; Hogeet al, 1999) The BOLD signal is sensitive to
field inhomogeneities caused by the differences in magnetic susceptibility of air and tissue which
may results=in=local tissue distortions and signal lo¢Sestonet al, 2003; Weiskopfet al,
2006) Thewwithinsession slow scanndrift which has been observed in mastidies using
BOLD imaging(Smith et al, 1999) makes it impractical to use for studies involving neural
processes with long activation periods.

The observed signal inrtarial spin labeling (ASL)method deperglon cerebral blood flow
(CBF) alene_and idargely independent of the oxygenation levAlSL techniques are less
sensitive to local susceptibility artefacts due to the use of shexber times (TEs) and show
reduced sensitivity to the MR scanner driftcgirthey are subtraction techniques. Unlike BOLD
imaging, ey are also capable of absolute quantification of CBF in waiharacterized
physiological“units, bt ASL suffers from inadequacies such as low SHRJ p@r temporal
resolution.

Since cerebral p@rsion is regulated at the arterioleavel, measuring the arterial cerebral
blood volume=(aCBV) provides useful information about neuronal activétiea et al., 2001,
Mumford and=Nichols, 2009)Arterial volumeweighted arterial spin tagginfAVAST) is a
variant _of*pseudaontinuous arterial spin labeling acquisition (PCASL) technigquiich
measures aCB\YJahanian et al., 20L40MRI using physiological parameters such as CBF or
CBV, unlike BOLD fMRI, provides a quantifiable contrast andnisre closely related to neural
activity (Duong et al., 2002; Jin and Kim, 2008; Kim and Kim, 2010).
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The short relaxation time of arterial blood causes the tag to decay rapidlyngesultower
SNR while using traditional perfusiemeighted ASL techniques. AVAST demonstrates superior
SNR since the images are acquired while tag is still in the arteries before pe\SASBIT is
based on optiming the timing parameters of &£RSL sequence such that the subtracted ASL
signal is predominantly from the arnes, rather than from the capillaries and the tissue
parenchymarlhe technique tailors the tagging duration and repetition time (TR) for each subject
to achieve a contrast that depends on aCBV wiifle Gontribution from tissue perfusiongsial
by takingadvantage of the kinetics of the tag through that subjatsulatureln other words,
the strategy behind AVAST is to design the timing parameters of the PCASL sequemdtieas
the signals acquired when the tagged spins are primarily still inrtéveea before they have
filled the capillariesHence thereare no delays between the tagpperiod and the acquisition
The tagging durationand consequently, TR) iadjusted in a calibration scan until the
contribution from tagged spins in the cagill and tissue compartments is the same in both the
control and_tagged images and therefore can be subtracted\OAET exhibits activation
detection gsensitivity and temporal resolutittmt is on par with BOLD imaging and an
improvemenbver the standar@BF ASL technique, while preserving its quantitative nature and
statisticalradvantaggdahanian et al., 2014).

Traditiopally, fMRI analysis is generally performed using a univariate appraalled
statistical parametric mappiray SPM(Friston, 1995, which examines the differences in brain
activity in‘a general linear model (GLM) frameworkn SPM, each voxel is analyzed using a
univariate sstatistical parametric test and the resulting statistics are assembled into an image that
is inteapreted«as a spatially extended statistical proc&everal other wholbrain mass
univariate’ analysis techniques have been implemented in the past to detect patterrigain
imaging data (Luo and Nichols, 2003; Smith, 200dowever, in a univariatapproach, each
voxel's time series is treated independently and it does not take into accoumegesl
correlationswhich may be vital in studies of neural systems associated with particular brain
function. Also, they do not offer the prospect of employing a predictive learning approach
wherein,a model computé using some training data is then used to predict the outcome for an
unseen test example. This approach may be of significant diagnostic relevance.

Contrarily, multivariate pattern analygisIVPA) techniques process all the data together and
make more use of the spatial relationships within the data. They involve theaappl of
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sophisticated algorithms to complex patterns generated by the very large numbaires feat

voxel intensities (Formisano et al., 2008). By taking into account the full spatial pattenairof
activity, measured simultaneously at many locations, these methods allow detecting subtle
localized effects that may remain unidentified with conventional univargitstistal methods.

Machine learning haseen used increasingly to analyze fMRI imaged it involves the use of
an algorithm_te facilitate learning from examples. In supervised machine learning algorithms,
there is*first"a“training phase, during which labeled input training sarapéessed to build a
model that ¢aptures the relationship between the training saanpdethe corresponding labels
(Pereira et al., 2009). This model is then used during the testing phase to compute an output label
for any new ¢sting data samplén typical fMRI applicationsmachine learning algorithms are
used to learn” a relationship between brain volumes and labels. This learned functional
relationship is then used to predict the unseen labels for a new test data set. Thus thsy $acilit
classifierbased predictive leaimg framework.Such a setup has been used with fMRI data to
enable brai-state classificatiofiCortes and Vapnik, 1995; Mitchell et al., 2004; LaConte et al.,
2005).

A number ‘of different machine learning techniques have been used for multivatiate pa
analysisin,functional MRI studies to investigate different neural proceBsgsesentative
studies have been summarized beld®upport vector machines (SVMnd linear discriminant
analysis (LDA) were applied to successfully classify patterris1Bil activation observed due to
the visual presentation of pictorial cues of various categories of objects (Cox and Savdy, 2003
In anothersstudyseveraldifferent classifier training methods including Gaussian Naive Bayes,
SVM and knearest neighbor were explored to learn to decode cognitive states from brain images
(Mitchell et al., 2004)Non-linear SVM as well as Fisher's LDA have been used to implement
lie-detection (Davatzikos et al., 2005). A variety of unsupervised methods including RCA, K
means cluster ICA, etc.have also been used for exploratory analysis of fMRI (4aasen et
al., 1999; Goultte et al., 1999; Mezer et al., 2009; Beckmann et al., 2005; Calhoun et al., 2008

Support.vector machindSVM) are a powerful set of machine learning methib@dg can be
used to analyze data and recognize patt@rapnik, 2000; Cristianini and Shawiaylor, 2000;
Hamel, 2009) The SVM algorithm seeks a maximum margin separating hyperplane, thus
making it resilient to overfitting. This means that they prowad#er generalization, allowing the
best prediction accuracy for previously unseen test data. Also, when a linear kernel is used, they
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allow the possibility of generating discrimination maps so that they can be xeshah the
original data spacé&.hat s, in fMRI analysis, the SVM weights can &gperimposed backito
the original brainspa@ so that the most significant weiglisn be visually traced back to the
most discriminatory parts of the braifhus, SVMs help not only in effective pattern
discrimination,but also pattern localization in the given data, hence improving intengrget#b
the model SVMs are a preferred method when the dateery high dimensional, that is,has
many more“features than the number of exampldsch is typicaly the case for fMRI
experiments“where each voxel represents a different feature. SVM expldiigs high-
dimensional space for an optimal separating hyper@adethe examples that are closest to the
hyperplane are,called the support vect8igMs have beeshown to be effective for identifying
brain statesn previous studies (Mitchell et al., 2004; LaConte et al., 2005).

The objective of this work is toompare and contragtVAST with the other more popular
image acquisition techniques, BOLD and perfusiaighted ASL, in the setting of a predictive
machine learning framework. Owing to the advantagebasacteristicaoted above, we choose
SVM classificationas our machine learning techniqte compareAVAST peaformance to
BOLD andperfusiorweighted ASLin terms of SVM classification accuracyo that end, w
employedthe SVM algorithm to perform temporal brain state classification of masoal
activationvs. restusing images captured by each of the three acquisition techniques : BOLD,
ASL and AVAST. We have presented their comparative performance in terms of classification

accuracy and significamhodel weights.

Il. METHODS

A. Simulation paradigm

Ten healthy.subjects participated in this staéter signing a written conseand were scanned
in accordance with thiecal IRB. The subjects included 6 males and 4 females between the ages
of 20 and.35 yearsThey were given mirrored glasses to view a rear projection screen while
being scanned. The paradignvatved displayingd cyclesof alternaing 30s blocks of flashing
checkerboard (8Hz) andtatic fixation cross (total duration= 300 secondsThe subjects
performed a robust visugpatial activation task by doingelf-paced finger tappingvith their

right handwhen presented with the flashincheckerboardand rest when presented with the
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fixation cross The experiment was performed twiper subject and two runs of data were

acquiredusing each acquisition technique.

B. Data acquisition

All functionallimages were collected on a 3T Skgna Excitescannerlmages were captured
using each of the three acquisition technig(BSLD, ASL, AVAST) on every subjectvhile
they perfarmed the activation tasko ensure that the steady state was reached, four dummy
scans were:collected at the start of eachlroage acquisition details were as follows:

BOLD: “Awssingleshot gradient echo reversespiral pulse sequencewas used
(TR/ITE/FA/TFOVE=2s/30ms/98/24cm, 64x64matrix, 11 contiguous slices match ASL and
AVAST)

Perfusion-weightedSL: Images were acquired using a functional CBF scheme emplaying a
off-resonance correctelCASL technique (Jahanian et al., 20%a@)lowed by a 3D stack of
spirals acquisition (Nisen and Hernande@arcia, 2012)(TR/TE/FOV=4s/3ms/24cmtagging
duration = 28, post inversion delay = 1.5s, 64x64matrbgontiguous slicesslice thickness =
6mm, bandwidth = 125KHz, duration of 3D spiral readout = 385ms)

AVAST: Thessame pulse sequence utilized for the perfusigighted scans was used here,
but the tagging parameters were modified to achieve arterial blood weigFinstly, a
calibration scan was implemened in order to find the optimal timing parameters (taggi
duration andrR) tailoredfor each subjects in(Jahanian et al., 2014)his optimization process
was automatednd theparametersound were then used to acquineages using th&nctional
aCBV scheme_of AVASTIif. adjustTR andtagging duration dlained from the calibration

scan, no_pest inversion delay)

C. Preprocessing steps

All datasetsswere reconstructadd the following preprocessing steps were performed before
analysis using the support vector machine training and testing setup.

BOLD: A custom MATLAB code was used for-dpace spike removal and spiral
reconstruction.SPM8 (http://www.fil.ion.ucl.ac.uk/spm RRID: SCR_007037was used to
perform the following:
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(1) slice timing correction, wieh corrects for differences in acquisition time between slices
during sequential imaging2) rigid bodymotion correctionand (3)gpatial smoothing using a
Gaussian smoothing kernel with FWHM of 8 mm.

ASL and AVAST:As before, custom MATLAB code was ustedl k-space spike removal and
3D spiral recenstruction and SPM8 motion correction was performed. Next, théngesuabe
series of images wesarround subtracted, and analyzed by estimation of standard general linear
model using the customuritten software FASLO1

(http://fmritrésearch.umich.edu/resources/software/shared_cojle.@matial smoothing was

then done using a Gaussian smoothing kernel with FWHM of 8 mm.
All analysisswas performed in native spa€erthermore, the time course of each voxel was

normalized*byssubtracting its mean over time and dividing by its standard deviation.

D. Featuresand examples

A classifier functionoutputs a binary class label for evenput set of feature valuesThe
features represeran example, whereadye label signifies the class that a particular example
belongs.toMore specifically, ifx is an example with features;[xx,, Xs,...] and the class label
is denoted bywy=(£1), thetie classifier function f( fomputes the label for evegiven input,

i.e. y=f(x):

In our study, at each time point, a brain activation volume is acq(isiag one of the three
acquisitiontechniques)Each such volume is used as a separate examwlaach the voxel grey
scale intensities act as features. Depending on whether the subjeeippiag their finger or
resting a label of +1 orl is associated with each example.

Data acquired during one of the two runs is used as trainingvtiideathe dherseparate rurs
usedas testing-datdn the training phase, a mapping is learned from the training examples to the
respective class labels and a classifier is built. In the testing phase, this model is usedtto pred
the class of a_previously unseemample from the testing data. Classifier performance is
calculated as the ratio of the number of correctly classified test examples to the total number of
test examplesAt first, run 1 was used for training the classification model, whereas, run 2 was
used to assess the effectiveness of the model and then vice versa.
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E. Dataset dimensionality

Each of the acquired-@imensional volumes, which act aaittingand testingexamples, was
of size [64x64x11] voxels. Initially, thisnaounted to45,056features thawere then reduced to
~8,000features by excluding all voxels thal outside the brain regioby using a brain mask
createdfor each individual subjector BOLD images, this mask wasmputedby including
only thosewexels.that were within one standaegiation of the mean of the mean imager
ASL and AVAST, all voxels within one standard deviation of the meathefaseline image
(i.e., the mean of the control images in the time sewesg included. For the AVAST method,
the timing parameter TR ag tailored separately to suit each subject and a brief account of the
optimal parameters is listed (see TableNpte that, for each of the techniques, a different
number of examples were collectdde to the different Thih each technique (s@@blell). The
number of examples also varies because of the use of surround subtraction in ASL &ifl. AVA
Two such runs.were collectéar each of the 18ubjecs resulting in a total of 20 runs of data.

Runs aequired with perfusieweighted ASL technique (TR 4s) includel fewer time points
thanthoseracquired using BOLD (TR = 2s) or AVAST (TR = 1.9 to 2.Bsprder to address
this discrepancy, the analysis was repeated for subsampled runs of BOLD and AVASTasuch t
only every*ether time point was consideiating analysis. These are denoted as sBOLD and
sAVAST-respectivelysBOLD run had an effective TR of 4s whereas the SAVAST runs had an
effective TR that rangefilom 3.8s to 5s depending on the optimal TR for that subject.

F. SVYM classification

In standardSVM classification approach, a separating boundary betwee two classes of
examples€g. +1 and-1) is learned such that the distance(termed “margin”)between the data
points and-beundary is maximéh higher dimensions, the separatimgundary manifsts itself
as a hyperplane. This separating hyperplane generated by the SVM algorithm is ortlootrena
weight vectomw which defines the direction in which the examples of the two classes difér mo
from one anotherThus, he classifier is parametead byw, which can be solved fdsy using
the following optimizatiorproblem:

n
min<||w||2 +C Z 5_)
w l
i=1
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s.t. Vi € {1,2,...,n}: (D

y, whx, 21— ii & @iZO

wherewiis the normal vector to the hyperplageare the known input class labets,are the
input feature vectors, C is the traof parameter used to penalize misclassifications&rade
the nonnegative slack variables which measure the degree of misclassification of the input data
xi. The SVYM/then uses the sign of the decision function f(X}=to classify any new data point
x represented.by the feature vectanto one class or thother.
LIBSVM.(Chang and Lin, 2011RRID:SCR_010243 a Library for Support Vector Machines,
was usedto perform tf#/M classification with the default linekerneland default value of
Cc=1

G. Transition'periods

The paradigm design includes 10 alternating blocks of flashing checkerboard and fixation cross
Thus, there are 9 intervals when the subject sedtftbm one state to another (finger tapping or
rest). These are called transition periddang which thevascular response to neuronaiation
is still “ramping up to its stable state in our block design experim@mitting the transition
periods forboth training as well as testmigsis common practice for offline studies (LaConte et
al., 2003; LaConte et al., 2007). The exclusion of transition periods can improve the accuracy for
the nontransition statesWe investigated the effect of the transition perioddexgludingscars
acquired during these periods from the modeling exeeds®llows Initially, the training was
implemented using all the time points. THhis exercise was repeated by excludingrie point
from both bloels (last time point from previous block and first time point from next block) at each
transition“peint. The same wasther repeated by excluding 2 and 3 time points, respectively.

This iming isillustratedin the fig. 1.
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H. Permutation tests

The weight vectorw generated by the SVM algorithnis representative of the most
discriminatory regions of the braiWVhen mappedack into original image spacthis vector
generates;the discriminating volume also called the weight vectorThapveight vector map is
thus a representation of the voxels that are most vital to the classification.aghéude of the
absolute valu@f.each voxel weight determines its importance in discriminating the brain states
and the most important voxels for discrimination of the bstétes can be inspected by merely
thresholding the obtained weight vector map. A permutation test was empoygsdess the
reproducibility of these spatial patterns

Briefly, permutation tests are nonparametric techniques that estimate the distribiuto
statistic under a null hypothesiésnpirically and have been used with fMRI data previously in
(Nichols andHolmes, 2001; Jahanian et al., 2004purdoMiranda et al., 2005). The null
hypothesigropeses thahere are no differences between the two brain states and thus the labels
assigned to.each examplee inconsequential. The alternate hypothesis, oattiex handglaims
that the assigned class labate actuallyindicative ofthe brain statehat an example belongs to
and better than random. One can estimate the distribution of weights assigned to eachdevxel
the null hypethesis by randomly pernmgf the class labelswltiple times and training the SVM
each time*wittthis different permutation of labels. In each instance, the wewghtsnormalized
to have unit standard deviation. The SVM trainiags also done once with the known correct
nonpernmuted.labels. Now, for each voxel, the p value under null hypotiasisalculated as the
ratio of number of times that the voxel weight assigned teag greater than or equal to the
weight assigned to it when training with original qmermuted labels. Since we permuted the
labels and trained 2000 different modefsthis number is smaller tharD2then that voxel is
likely to be predictive of the class label with a significance levdl6f The weight vector maps
shown in theRESULTSdisplay all significant voxels with p value < 0.01

[ll. RESULTS

A. Classification accuracy

Fig. 2shows a plot of the mean classification accuracy adrogsruns ofall ten subjectsit
demonstrates that the mean classification accuracy obtained by AWASdonsistently better

than that offered by ASL and almost equivalent to BOLD. Ignoring transitionspmipiroves
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the classification accuracy initially but plateaus for BOLD and AVAST, whereas, iiatatel

for ASL when 3 time points are ignored in each block. In order to ensure that theerigssifer

was not being driven by the number of examples in each case, subsampled BOLD (sBOLD) and
subsampled AVAST (sAVAST) runs were also analyzed using the same setup. The mean
classifications.accuracy for these analyses was found to be similar to the earliescssen in

the plot.

B. Weight,vector maps

The SVMralgorithmgeneratd discriminatory weight mapand the permutation tests alleg
us to find thessignificant voxels from these magslescribed in the MEFIODS. These maps
wereindicatiye of the detection sensitivity of the acquisition technique.

Fig. 3 depicts select slices for a representative subject shdahengiost significanSVM
weightswith.p.< 0.01in the left motor and premotor cortices as well & visual cortexas
expected./The lefinost column shows SVM weights for BOLD (blue) technique. The middle
column shows the AVAST (green) weights superimposed on BOLD and theigitcolumn
shows ASL |(red) weights superimposed on BOLD and AVAS¥fe dusters ofsignificant
weightswerebigger and more robust in the AVAST technique as compared to ASL.

V. DISCUSSION

Traditionally, perfusiorweighted ASL techniques suffer from low SNR and detection
sensitivity: By=taking advantage of the kinetics of the tag through the vasculafWAST
facilitates thaailoring of the timing parameterfor each subjectThis permitsthe acquisition rate
to be much™faster andllows muchsuperior temporal resolutioas compared to starda
perfusion weighted\SL. Thus, we can acquire a larger number of volumes in the same duration.
Also, as_notedspreviously in (Jahanian et al., 20I8AST offers much better activation
detection sensitivityBoth thesefeatures areadvantageousor the machine learning techniques
since it increases the degrees of freedom and also the images obtained are much more sensitive to
activations™hus AVAST images exhibitbetter classificatiorperformance in terms of higher
classification“aecuracyand more robustlusters of significant weights in the expected brain
regions.

The data presented here indicate that AVAST images can be used for SVM classification more
reliably than perfusiomveighted ASL, and are comparable to BOLD images in terms of their
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reliability. AVAST images, however, retain some of the advantages of ASL imaging, such as its
robustness to scanner drifts aablility to be quantified ASL images do not depend on T2*
contrast, so they can use shorter echo timesharsdnitigate susceptibility afacts.

This study presents promising results that promote the use of machine learnimguies for
brain state_classification of images acquired by using the AVAST technique. dfimggjige might
be used for_dynamic fMRI experiments and 4t&ak brain state classification studiess in
(HernandezGarciaet al, 2011)
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Figure legends:

Figure 1

Schematicdiagram depicting the transition points that are ignored (a) Blgaimts ignored, (bPne

time point ignored — green, (€wo time points ignored fed, (d)Threetime points ignored black.

Figure 2
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Mean classification accuracy over two runs of all ten subjects for each acquisition technique (BOLD
blue, ASL-red, AVAST-green) against number of ignored transition points. The error bars depict
standard error.

Figure 3

Significant SVM _weights after permutation tests with p<0.01 for a repmEsentsubject for each
acquisition technique superimposed on a mean subtraction image as u(Béil&blue, ASL-red,
AVAST-green) (a) BOLD, (b) BOLD + AVAST, (c) BOLD + AVAST + ASL

Tailored TR # Subjects
2.0s 2
2.1s 2
2.2s 2
2.4s 3
2.5s 1

Table I: Number obubjecs corresponding to eathiloredTR using AVAST

Technique TR # Examples

BOLD 2s 150
ASL 4s 74
AVAST 1.9s 156
AVAST 2.0s 148
AVAST 2.1s 142
AVAST 2.2s 134
AVAST 2.4s 124
AVAST 2.5s 118
sBOLD 4s* 75

SAVAST 3.8s to 5s* 59to 78

Tablell: Number of examples in train and test datasets correspotad@agh TR using each acquisition method.
sBOLD and sAVAST stand for subsampled runs of BOLD and AVASJenotes effective TR after subsampling.
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