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Abstract: 
An approach to adaptively measure runoff water quality dynamics is introduced, focusing 
specifically on characterizing the timing and magnitude of urban pollutographs. Rather than 
relying on a static schedule or flow-weighted sampling, which can miss important water quality 
dynamics if parameterized inadequately, novel Internet-enabled sensor nodes are used to 
autonomously adapt their measurement frequency to real-time weather forecasts and hydrologic 
conditions. This dynamic approach has the potential to significantly improve the use of 
constrained experimental resources, such as automated grab samplers, which continue to provide 
a strong alternative to sampling water quality dynamics when in-situ sensors are not available. 
Compared to conventional flow- or time-weighted sampling schemes, which rely on preset 
thresholds, a major benefit of the approach is the ability to dynamically adapt to features of an 
underlying hydrologic signal. A 28 km2 urban watershed was studied to characterize 
concentrations of total suspended solids (TSS) and total phosphorus. Water quality samples were 
autonomously triggered in response to features in the underlying hydrograph and real-time 
weather forecasts. The study watershed did not exhibit a strong first flush and intra-event 
concentration variability was driven by flow acceleration, wherein the largest loadings of TSS 
and total phosphorus corresponded with the steepest rising limbs of the storm hydrograph. The 
scalability of the proposed method is discussed in the context of larger sensor network 
deployments, as well the potential to improving control of urban water quality. 
 
Highlights:  
 Studied water quality dynamics of an urban watershed through real-time adaptive sampling.   
 An autonomous, Internet-enabled sensor node dynamically adapts to weather forecasts and in-

situ hydrograph features to control samples of total suspended solids and total phosphorous. 
 First flush was not observed and peak loadings were primarily driven by erosion and 

flashiness. 
 Compared to present sampling methods, our framework significantly reduces manpower and 

resource requirements in the study of water quality dynamics.  
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1. Introduction  

Nonpoint source pollution is a leading cause of surface water impairment in the United States 

and represents a major management concern as rapid urbanization continues to strain local and 

regional water resources (Padowski and Jawitz 2012; Rowny and Stewart 2012). The emergence 

of reliable environmental sensors is poised to transform our understanding of nonpoint source 

pollution and broader water systems (Hill et al. 2014; Montgomery et al. 2007). In hydrologic 

studies, new sensors are revealing previously unmeasured dynamics that govern water quality 

across large watersheds. For example, new optical nitrate sensors are improving the 

quantification of loads, flow paths, and nutrient dynamics (Hensley, Cohen, Korhnak 2015; 

Miller et al. 2015; Pellerin et al. 2009). Furthermore, the recent ability to continuously measure 

turbidity and sediments has challenged existing assumptions of sediment variability, suggesting 

that nutrient concentrations exhibit complex dynamics that often cannot be attributed to storm 

features (Métadier and Bertrand-Krajewski 2012).  

 

While these sensor measurements will help to fill critical scientific knowledge gaps, the 

management of water systems also stands to significantly benefit from an improved 

understanding of water quality dynamics. Much of urban water quality management is tuned to 

handle the storm as a whole, seeking to control and treat the cumulative event rather than affect 

its dynamics. This is accomplished through a variety of green or gray infrastructure solutions 
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(Barrett 2005; Roy-Poirier, Champagne, Filion 2010), the choice of which is often based on 

assumptions of stationarity and few or no measurements. While improved measurements of 

water quality will help to guide the design and maintenance of these systems, a new generation 

of intelligent infrastructure (controllable ponds, tanks, weirs, bioswales, etc.) stands to benefit 

even more from improved quantification of pollutant dynamics. Modern infrastructure will soon 

route water in real-time to respond to individual storm events (Kerkez et al. 2016; Montestruque 

and Lemmon 2015; Ocampo-Martinez et al. 2013; Quigley and Brown 2015) to reduce flooding 

and improve water quality. Such finely grained control will benefit from an equally finely 

grained understanding of water quality dynamics. 

 

However, the widespread use of in-situ sensors is still limited by costs, high power consumption, 

and maintenance requirements.  Moreover, for many important parameters, such as metals, there 

are no in-situ sensors to provide such measurements. For emerging contaminants, including 

viruses and industrial chemicals, in-situ sensors may never become available unless regulations 

or research drive their development. Automated samplers, which retrieve water samples for 

subsequent laboratory analysis, may be used to fill these measurement gaps. While they may 

incur considerable expense for installation, maintenance, and repair (Harmel, Slade, Haney 

2010), automated samplers provide a flexible and automated means by which to reduce man-

hours that would otherwise be required to achieve the same task. 
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Advances in wireless communications and data architectures are now significantly reducing the 

overhead required to deploy environmental sensor networks (Akyildiz et al. 2002; Oliveira and 

Rodrigues 2011; Rawat et al. 2014), enabling the adaptive and real-time study of water systems. 

These advances are however not being leveraged to their maximum potential (Corke et al. 2010; 

Hart and Martinez 2006), as the majority of presently deployed sensor platforms are still used in 

an off-line fashion. By adapting a study to in-situ conditions and various public sources of real-

time data such as weather forecasts or streamflow measurements, the quality of the final 

experiment stands to significantly improve. This is particularly pertinent in the study of 

hydrologic systems and nonpoint source water quality, where abrupt changes in water quality 

due to unanticipated flashy storms often contain critical information about water quality 

dynamics in watersheds (Fletcher and Deletic 2007).  

 

The goal of this paper is to investigate a scalable approach by which to adaptively measure 

nonpoint source water quality in urban watersheds with the specific objective of characterizing 

dynamics (timing and magnitude) of pollutant runoff.  An adaptive sampling algorithm is 

introduced, which executes on sensor nodes and queries local weather forecasts to anticipate 

state changes in a hydrograph signal. These state changes are then used to guide an online 

sampling schedule to minimize the resource consumption of a sensor node, while simultaneously 
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maximizing the information content of the acquired water quality measurements. The adaptive 

sampling method is evaluated during the 2014 rain season to study the dynamics and first flush 

behavior of total phosphorus and total suspended solids (TSS) in an urbanized watershed. While 

urban nonpoint source water quality is the focus of this paper, the methods presented herein can 

readily be adapted to a broad suite of other resource-constrained hydrologic and water quality 

studies. 

 

2. Background 

2.1. Problem description 

The study and management of watersheds and drainage networks often hinges upon an accurate 

detection and characterization of transient events, as the remainder of the system is often in a 

steady, relatively well-understood state.  For many urban hydraulic and hydrologic systems these 

rapid changes are driven by highly uncertain phenomena, such as precipitation (Langeveld, 

Liefting, Boogaard 2012; Leecaster, Schiff, Tiefenthaler 2002). Knowledge of water quality 

dynamics during storm events provides a guiding principle for nonpoint source urban water 

quality control, which has most recently been brought to the public’s attention through the 

meteoric rise of green infrastructure, particularly across much of the United States (Benedict 

and McMahon 2006). Beyond green infrastructure, many cities also implement a variety of Best 

Management Practices (Barbosa, Fernandes, David 2012), several of which are designed to 
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route initial flows toward large retention or detention basins for settlement or infiltration. In the 

American Midwest, some of the most critical water quality measurements include nutrients, 

particularly runoff-generated phosphorus. While algal blooms and eutrophication are driven by 

complex dynamics that require both nitrogen and phosphorus, in many freshwater systems, such 

as the Great Lakes, phosphorous is often the limiting nutrient (Edwards, Conroy, Culver 2005; 

Rucinski et al. 2010).  

 

A large body of research has shown that runoff pollutant concentrations exhibit highly complex 

dynamics that depend, among many other factors, on the type of pollutant, intensity of rain 

events, the physiography of watersheds, local flow regimes, and antecedent dry periods (Eleria 

and Vogel 2005; Hathaway and Hunt 2011; Langeveld, Liefting, Boogaard 2012; Leecaster, 

Schiff, Tiefenthaler 2002; McCarthy et al. 2012). One popular concept in urban hydrologic 

research is the “first flush” of pollutants into streams and rivers (Bach, McCarthy, Deletic 2010; 

Lee and Bang 2000; Métadier and Bertrand-Krajewski 2012). This effect has been known to 

occur particularly in urban streams that display leading hysteresis, where the highest 

concentration of contaminants occurs at the beginning of a storm event, as contaminants are first 

washed off roads and other impervious surfaces. However, a number of studies have not 

observed the first flush (Bertrand-Krajewski, Chebbo, Saget 1998; Characklis and Wiesner 

1997; Deletic 1998; Métadier and Bertrand-Krajewski 2012), showing that peak pollutant 
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concentrations do not always arrive within a small fraction of the initial runoff (Figure 1). While 

the first flush is an important phenomenon, this initial fraction of runoff may not be the primary 

or only source of pollutant loadings for some watersheds and chemical constituents. In some 

streams, high levels of erosion caused by local flow regimes that exceed geomorphically 

significant levels are a leading cause of suspended sediment and nutrient loads (Hawley and 

Vietz 2016). For such streams, peak loads of sediments are often correlated to flows rather than a 

first flush.  To that end, there is a need to collect representative measurements of storm-driven 

water quality dynamics to improve our fundamental understanding of land-use practices on 

water quality. 

 

2.2 Instrumentation 

When compared to water flow, water quality remains relatively expensive and difficult to 

measure (Fletcher and Deletic 2007). Even today, despite advances in telemetry and low-power 

microcontrollers, a dense spatial coverage of in-situ water quality measurements is still hindered 

by a lack of reliable and cost-effective sensors. For many important parameters, such as nitrate, 

the cost and power consumption of sensors inhibit their ubiquitous deployment, while for other 

parameters, such as phosphorus and phosphates, non-colorimetric or in-situ sensing technologies 

do not even exist (Horsburgh et al. 2010). Many water quality sensors also consume more 

energy than the entire remainder of the data acquisition system and require frequent servicing to 
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mitigate field effects such as biofouling (Hensley, Cohen, Korhnak 2015; Wagner et al. 2006). 

As such, maintaining sensor networks to measure water quality across large geographic areas is 

a resource-intensive task that presently poses a major barrier to the ubiquitous measurements of 

urban water quality. 

 

When continuous in-situ sensing becomes too expensive or infeasible, field-hardened automated 

samplers can be used to collect samples, which can be subsequently analyzed in the laboratory 

for a variety of water quality parameters (e.g. nutrients, metals, solids, bacteria, and other 

emerging contaminants) (Deletic 1998; Fletcher and Deletic 2007; Gall, Jafvert, Jenkinson 2010; 

Harmel, Slade, Haney 2010). These units are programmed to pump a sample of water into one of 

a number of bottles. Depending on the study objectives, these samples usually range from one 

20-liter bottle to as many as 24 one-liter bottles.  The use of automated samplers presents a set of 

unique deployment challenges compared to in-situ sensors. In the absence of grid power, the 

significant mechanical energy required to physically pump samples places a major drain on 

battery resources. Additionally, samples may need to be refrigerated or chemically treated for 

preservation depending on the constituents of interest (Harmel et al. 2006; USEPA 1979). As is 

the case in the use of most other sensors, autosamplers are also plagued by the need to calibrate 

readings to variability in a stream cross-section.  For dissolved constituents, selecting a well-
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mixed site can remedy this variability as a sample at a single point may then be assumed to be 

representative of the entire stream cross-section. 

 

While one-bottle samplers are a practical means by which to study the composite effects of a 

storm event, they do not provide insight into the detailed dynamics of an event, which is 

important if they are to be used as substitutes for continuous, in-situ sensors. When using 

multiple sample bottles to resolve urban pollutograph dynamics, the limited number of available 

bottles becomes a major constraint. If the timing, magnitude, and duration of storms are not 

accurately anticipated, ‘wasted’ or missed samples often become a common experimental 

occurrence.  Measuring too slowly can entirely miss the dynamics of an underlying pollutograph 

(Figure 2a). On the other hand, measuring too fast or too early may deplete the number of 

sample bottles before an event is fully captured, which is particularly common if storms last for 

multiple days (Figure 2b). To mitigate this, units can be configured to acquire samples if a pre-

set flow threshold is exceeded, after which the hydrograph can be sampled according to 

predetermined flow- or time-weighted intervals (Gall, Jafvert, Jenkinson 2010; Harmel, King, 

Slade 2003). However, this strategy may miss important baseflow samples. Also, as storm 

duration and intensity can be highly variable, setting triggers or intervals to static values may not 

consistently sample a wide range of storm events. Flow-weighted sampling cannot account for 

storm intensities that deviate far away from the design storm or have multiple distinct discharge 
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peaks (Figure 2c). Furthermore, the number of available bottles may still be depleted before an 

event is fully captured if the storm lasts longer than expected. While missed baseflow 

concentrations can sometimes be estimated from samples taken during other dry weather periods 

(Anderson and Rounds 2010; Beck and Birch 2012), such estimates may be inaccurate since 

elevated concentrations may occur at the onset of a storm (Horowitz 2009). None of the 

conventional sampling techniques distinguish between important points of the flow hydrograph, 

such as the peak and inflection points, which may often contain significant information with 

regard to the effect of land-use variability on the pollutograph. 

 

2.3 Adaptive sampling  

The concept of adapting measurement strategies or detecting events of interest has been 

introduced broadly in the signal processing and machine learning literature for a variety of 

applications but has seen limited use in hydrology. Often, adaptive sampling revolves around 

spatial measurement strategies, where measurements at one location are used to inform locations 

of new measurements (Singh, Nowak, Ramanathan 2006). The problem can also be extended to 

the temporal domain, where sampling frequencies are changed during events of interest (Krause 

et al. 2009).  The task of detecting these events falls broadly into the literature of change-point 

detection (Reeves et al. 2007; Tartakovsky, Nikiforov, Basseville 2014), where a signal is 

monitored to isolate abrupt state changes or transient events. While few studies couple these two 
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objectives, in the case of water quality, adaptive sampling and change-point detection are 

inherently coupled, as the detection of a hydrograph change must be accompanied by a change in 

the sampling schedule to resolve the features of the pollutograph. Much of the existing literature 

on these topics does not explicitly incorporate the physical dynamics or nuances of such 

phenomenon, which limits their benefit to many real-world experiments.  

 

While automated samplers provide a way to sample many water quality parameters 

simultaneously, the off-line use of these devices impedes their scalability as an experimental 

platform. The use of in-situ measurements coupled with real-time data, which is readily afforded 

by current technologies, has the potential to transform these sampling strategies from static to 

highly adaptive. For example, Gall et al. (2010) reprogrammed an automated sampler to 

distribute 20 sampling bottles throughout a storm event.  This approach, however, did not 

consider explicit hydrograph states or weather forecasts, which may cause valuable 

measurements to be missed. To that end, real-time data processing and adaptive sampling will 

allow sensing resources to be continuously optimized around site-specific conditions to ensure 

that measurements are taken at the most informative points.  

 

3. Methods  

This article is protected by copyright. All rights reserved.
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A real-time framework for the adaptive sampling of water quality is presented, which controls 

automated samplers to minimize the number of sampling bottles required to reconstruct the 

temporal dynamics of the pollutograph. The method continuously adapts to individual storm 

events by incorporating real-time weather forecasts and updating a local model of flow 

conditions to trigger samples in response to hydrograph features rather than predetermined 

timing or flow thresholds.  The technique is designed to be computationally simple enough to be 

executed efficiently on a field-deployable microcontroller, but can also be readily ported to the 

cloud or remote servers. The approach (Figure 3) forms an embedded processing chain, 

leveraging local and remote computational resources to assimilate real-time sensor 

measurements into a model of local water flow.  The core of the architecture is comprised of 

embedded, remotely-deployed, and internet-connected sensor nodes, which obtain live 

meteorological forecasts from public web services to persistently update the probability of 

precipitation in the study area. Measurements from a local depth sensor are continuously fed to a 

state estimator, which estimates the flow dynamics of the stream. These estimates are then fused 

with the latest weather forecast and routed to a sampling controller, which determines when the 

next sample should be taken by the autosampler.   

 

3.1. State estimation 
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The state of the hydrograph must first be estimated before water quality measurements can be 207 

scheduled. Let the state ݔሺݐሻ denote the flow (or stage) of the hydrograph at time ݐ. We assume 208 

that the measured flow is corrupted by noise,	ߝሺݐሻ, such that a sensor measurement ݕሺݐሻ is given 209 

by: 210 

ሻݐሺݕ ൌ ሻݐሺݔ ൅  ሻ                                 (1) 211ݐሺߝ

where ߝሺݐሻ~ܰሺ0,  ଶሻ is normally distributed, zero mean. Given the real-world performance of 212ߪ

most sensors, the measurement noise can be taken as stationary, with a variance ߪଶ that can 213 

readily be obtained from manufacturer datasheets or a simple laboratory evaluation.  214 

 215 

In most applications, rather than triggering new samples based on the actual flow, it may be 216 

more relevant to trigger samples based on the first or second derivatives of the flow, which are 217 

indicators of important hydrograph features independent of storm duration and magnitude.  For 218 

example, it is often of interest to distinguish between the rising or falling limbs of the 219 

hydrograph: 220 

ݔ݀
ݐ݀

൒ 0			rising hydrograph limb 

                                                                                     (2) 221 

ݔ݀
ݐ݀

൏ 0			falling hydrograph limb. 
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The first derivative can be used to detect the onset of a storm event or find the hydrograph peak, 222 

while the second derivative of the flow ݀ଶݔ ⁄ଶݐ݀  can be used to detect inflection points, which 223 

are indicators of precipitation intensity or baseflow conditions. For notational simplicity, let 224 

ሶݔ ൌ ݔ݀ ⁄ݐ݀  and ݔሷ ൌ ݀ଶݔ ⁄ଶݐ݀ . Given the noise in real-world signals, directly differentiating the 225 

noisy signal ݕ  would only amplify the effects of the noise, thus obscuring any meaningful 226 

estimate of derivatives. Thus, an improved estimate of ݔ  must first be obtained in real-time 227 

before ݔሶ  and ݔሷ  can be used to make sampling decisions.  This is particularly true in smaller 228 

storms, for which changes in flow may be subtle. 229 

 230 

We derive a noise-free estimate ݔොሺݐሻ  through a non-parametric kernel smoother (Hastie, 231 

Tibshirani, Friedman 2009). For a noisy observation ݕ௝  at time ݐ௝  let ݔො൫ݐ௝൯:	Թ௡ → Թ  be a 232 

function that obtains a local estimate of ݔ௝ through the kernel operation:  233 

௝൯ݐො൫ݔ ൌ ො௝ݔ ൌ
∑ ௄ሺ௧ೕ,௧೔ሻ
೙
೔సభ ௫೔
∑ ௄ሺ௧ೕ,௧೔	ሻ
೙
೔సభ

  (3) 234 

where ܭሺ∙ሻ	 is the kernel function and n is the number of observed points to be weighted. Given 235 

the normally distributed noise assumption, a good choice of kernel is given by the radial basis 236 

function: 237 

,∗ݐሺܭ ௜ሻݐ ൌ ݌ݔ݁ ቀെ
ሺ௧∗ି௧೔ሻమ

ଶ௥మ
ቁ   (4) 238 
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where ݎ is the length-scale parameter. This kernel smoothing operation weighs the importance of 239 

neighboring measurements based on their distance (time, in this case) to the measurement of 240 

interest. This smoother is ideally suited for the proposed application, as it does not assume that 241 

measurements are taken at even time intervals. Furthermore, this state estimator is very 242 

computationally efficient, permitting its implementation on computationally-constrained, low-243 

power microcontroller platforms or data loggers. Once the measured data has been filtered, an 244 

estimate of the noise free derivative can be obtained by numerically differentiating the smoothed 245 

state.  246 

 247 

3.2. Adaptive sampling algorithm 248 

Once estimates of ݔ ,ݔሶ , and ݔሷ  have been obtained, the sampling objective becomes to decide 249 

when to take the next measurement. This can be accomplished by scheduling a future sensor 250 

reading at time ݐ ൅ ௦, or by changing the sensor sampling frequency to ௦݂ݐ ൌ ሺݐ௦ሻିଵ.  Often, the 251 

sensor used to derive the flow estimates ݔሺݐሻ consumes fewer resources than the sensor used for 252 

water quality measurements, as is the case with the automated sampler used in this study. As 253 

such, measurements of water height or flow can be made at a higher frequency and used to drive 254 

measurements of water quality.  255 

 256 
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A real-time probability of precipitation, obtained in our case by querying the public 257 

WeatherUnderground forecast (Weather Underground 2016), is used to trigger the autosampler 258 

to take a water quality sample before a storm. This provides a valuable baseflow measurement 259 

and safeguards from missing measurements during instances when the hydrograph changes too 260 

rapidly or at too small of an amplitude to be detected by flow sensors alone. The sampling 261 

algorithm (Figure 4) uses the weather forecast to trigger a sample when the chance of 262 

precipitation exceeding 5 mm within the hour surpasses 10% (empirically determined based 263 

upon an analysis of historical forecasts and the resulting hydrologic response). Samples are then 264 

subsequently triggered based on the estimates of the hydrograph state. While many sampling 265 

strategies are possible, in the case of this study, the states of interest included (1) baseflow 266 

conditions right before a storm, (2) the onset of the hydrograph to detect a potential first flush, 267 

(3) the inflection-point of the rising limb of the hydrograph (4) the peak of the hydrograph, (5) 268 

the inflection-point of the falling limb of the hydrograph, and (6) the falling limb of the 269 

hydrograph as it returns to within 10% of the pre-storm baseflow. In the case that the weather 270 

forecast is erroneous, the initiation of a storm event is also marked when the slope in the 271 

hydrograph exceeded 7.5 m3 over 5 minutes, which for our study site corresponded with the 272 

minimum observed change in flow from baseflow conditions caused by 5 mm of precipitation in 273 

one hour. The algorithm can also be viewed as a state machine, where samples are triggered 274 

during state transitions, as determined by estimates of the flow ݔ and its derivatives. The state 275 
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machine is designed to account for multiple flow regimes (such as delayed surface flows from 

neighboring slopes), taking additional samples if multiple inflection points or local hydrograph 

peaks are detected.  

 

3.3. Study area, sensors, and cyberinfrastructure 

The adaptive sampling algorithm was tested on a sensor node deployed during the 2014 rain 

season at the outlet of an urban watershed near Ann Arbor, Michigan (Figure 5, Latitude 

42°15'53", Longitude –83°41'18"). The outlet drains into an end-of-line water quality detention 

basin located along the Huron River. Ann Arbor’s climate is classified as humid continental with 

severe winters, hot summers, no dry season, and strong seasonality. Annual precipitation is 955 

mm and snowfall is 1450 mm. The study area comprises a 28 km2 catchment that is over 80% 

impervious with the large concentration of impervious surfaces located near the centroid of the 

watershed. By the Richards-Baker flashiness index (Baker et al. 2004), the catchment has a 

seasonal index of 0.653, which is relatively high for streams in Michigan.  

 

A sensor node and real-time cyberinfrastructure, whose technical details are described in Wong 

and Kerkez 2014a and Wong and Kerkez 2014b, were deployed in the northeastern outlet of the 

watershed.  The sensor node is equipped with a low-power microcontroller (ARM Cortex-M3 

architecture) and a low-power wireless module (Telit CC864-DUAL) to take advantage of urban 
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cellular coverage. For the purposes of this experiment, the node was interfaced with a low-cost, 

low-power ultrasonic depth sensor (MaxBotix MC7384, 3.1mA at 5VDC) to measure the stage 

of the hydrograph every five minutes, as well as an automated sampler (ISCO 3700, standby: 10 

mA at 12VDC, sampling: 2000mA at 12VDC) that drew samples from the run of a stream, 

where channel features were deemed moderate and homogenous (Teledyne Isco 2012). To 

resolve runoff-driven quality dynamics, a 24-bottle configuration of the automated sampler was 

used. Weather forecast data was queried every five minutes.  For comparison of stage 

measurements, the node was collocated with a USGS gage (04174518). Upon validation of the 

stage estimates, the rating curve of this gage was used to derive flow from our depth readings.  

In this study, this permitted for flow, rather than stage, to be used to trigger the automated 

sampler.  

 

3.4. Water quality analysis 

The samples taken the by the automated sampler were analyzed for total phosphorus and TSS 

according to EPA Methods 365.3 and 160.2, respectively (USEPA 1979). EPA Method 365.3 

uses a two-step pretreatment and colorimetric approach to determine total phosphorus 

concentrations while EPA Method 160.2 determines TSS concentrations by first filtering a 

sample and drying the non-filterable residue in an oven to a constant weight.  Bottles were 

pretreated and collected within twenty-four hours of each storm event to ensure samples were 
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properly preserved prior to analysis. TSS was chosen due to its surrogate relationship with many 314 

other contaminants including total phosphorus (Grayson et al. 1996; Rügner et al. 2013), which 315 

was analyzed due to the study site’s proximity to Lake Erie, where loadings of total phosphorus 316 

are of interest to the study of algal blooms (Dolan and McGunagle 2005).  317 

 318 

To characterize nutrient dynamics and first flush behavior, lab results for each storm event were 319 

analyzed using cumulative mass-volume curve or M(V) curve analysis (Bertrand-Krajewski, 320 

Chebbo, Saget 1998; Métadier and Bertrand-Krajewski 2012), which compares the 321 

dimensionless ratio (percentage) of the cumulative flow-weighted concentration with the 322 

cumulative runoff over the course of a storm event. This analysis permits the water quality 323 

dynamics within multiple storm events to be compared by normalizing for factors such as storm 324 

duration or quantities of loading. To identify the existence and strength of a first flush, each 325 

M(V) curve was approximated with a power law function: 326 

ሺ݇ሻܯ ൌ ܸሺ݇ሻ௕ 

      (5) 327 

ൌ
∑ ௜ݐ∆௜ܳ௜ܥ
௞
௜ୀଵ

∑ ௜ேݐ∆௜ܳ௜ܥ
௜ୀଵ

ൌ ቆ
∑ ܳ௜∆ݐ௜
௞
௜ୀଵ

∑ ܳ௜∆ݐ௜ே
௜ୀଵ

ቇ
௕

 

where ܯሺ݇ሻ and ܸሺ݇ሻ are the normalized cumulative mass and volume, respectively, up to the 328 

kth sample of a given storm event over which N total samples are taken; ܥ௜, ܳ௜, and ∆ݐ௜ are the 329 
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concentration, discharge, and sampling frequency, respectively, of the ith sample (Bertrand-

Krajewski, Chebbo, Saget 1998; Métadier and Bertrand-Krajewski 2012). The value of b is 

inversely proportional to the strength of the first flush (i.e., a value much less than unity, 0 ≤ b < 

0.185, would correspond to a strong first flush) and the fit is considered satisfactory for r2 > 0.9 

(Bertrand-Krajewski, Chebbo, Saget 1998). For each event, the b-value was estimated by 

minimizing the least-squares fit between equation (5) and the individual data points.  

 

To characterize the variability of pollutant concentrations between storms, the event mean 

concentration (EMC) was also calculated. The EMC normalizes the total event load by the total 

event runoff volume, yielding a flow-weighted average of the pollutant concentration 

(Langeveld, Liefting, Boogaard 2012; Lee and Bang 2000; Métadier and Bertrand-Krajewski 

2012). It has been shown that in urban environments, peak EMC of pollutants in stormwater 

runoff can be as much as twenty times larger than baseflow EMC during dry weather conditions 

(Lee and Bang 2000). The EMC was used in this study to quantify the constituent concentrations 

carried by runoff in comparison to baseflow conditions for each storm event. The influence of 

other factors to event mean concentrations, such as antecedent dry conditions (Li et al. 2007) and 

storm intensity (Bertrand-Krajewski, Chebbo, Saget 1998), was also considered in the analysis. 

 

4. Results 
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4.1. Adaptive sampling algorithm 349 

During the 2014 deployment season, the adaptive sampling algorithm was evaluated on four 350 

storm events (July 1, August 11, August 19, and September 10). Each event was preceded by at 351 

least a 48-hour antecedent dry period followed by a storm where at least 5 mm of precipitation 352 

fell within 24 hours (Table 2).  The July 1 event was driven by a 9.4 mm storm over 2 hours with 353 

a peak flow 2.78 m3/s; the August 11 event was driven by a 24 mm storm over 7 hours, 354 

characterized by an initial peak flow of 1.30 m3/s followed 2 hours later by a peak flow of 2.01 355 

m3/s; the August 19 event was driven by a 9.4 mm storm over 2 hours with peak flow of 4.33 356 

m3/s; the September 10 event was driven by a 36 mm storm over 5 hours with an initial peak 357 

flow of 4.70 m3/s followed 2 hours later by a peak flow of 5.27 m3/s.  358 

 359 

The state estimator and real-time kernel smoother correctly identified the pertinent flow regimes, 360 

triggering the automated sampler within an average of 3.5 minutes (standard deviation σ = 3.8 361 

minutes) to collect water quality samples as dictated by the control logic (Figure 6, example of 362 

August 19 event). The relation between the stage y, as estimated by the sensor node, and the 363 

discharge Q measured by the nearby USGS gage was found to be ܳ ൌ 0.729	ሺݕ െ 32.5ሻଶ.ସ଻ and 364 

was derived using a least-squares fit (r2 = 0.993). The real-time kernel smoothing operation was 365 

important to obtaining accurate state estimates, as directly taking the derivative of the sensor 366 

signal yielded a noisy, zero-mean signal that could not be used to determine meaningful changes 367 
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in the hydrograph. Integration of real-time weather forecasts into the control logic ensured that 

the automated sampler was triggered just before the onset of a storm, allowing for baseflow and 

background conditions to be decoupled from storm-driven water quality dynamics. 

 

4.2 Water quality  

Concentrations for both TSS and total phosphorus showed a positive linear correlation with flow 

(R2 = 0.346 for TSS; R2 = 0.437 for TP and standard deviations σ = 198.6 mg/L and σ = 0.272 

mg/L, respectively). Samples taken particularly during peak flows had the highest concentrations 

and there was no observed hysteresis between peak concentration and peak flow. With the 

exception of the August 11th event, peak concentrations strictly corresponded with peak flows 

(Table 2). The 7-hour storm event on August 11th drove two distinct discharge peaks. During this 

event, the largest concentrations occurred during the first peak while the largest flows occurred 

during the second. In general, for the storms with multiple distinct hydrograph peaks, the intra-

storm hydrograph with the relatively steeper rising limb (larger flow acceleration) had the largest 

pollutant concentration. This was also seen during the September 10th storm event, which also 

exhibited two distinct discharge peaks. During this event, the second peak, while relatively 

larger, was also characterized by a steeper rising limb and higher concentrations.  

 

Temporal comparison of hydrograph and pollutograph peaks showed no discernable leading 

hysteresis. Similarly, through an M(V) curve analysis, none of the water quality dynamics could 
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be classified as exhibiting a strong first flush. Overall, the b-values range from 0.684 to 0.908 

and r2 < 0.9 (Table 1). Six or more samples were collected for each event and M(V) curves were 

generated using a spline interpolation (Figure 7). Similar M(V) curves were observed for both 

TSS and total phosphorus. TSS could not be analyzed from the July 1 event as the automated 

sampler was not initially configured to sample a large enough volume to provide aliquots for 

TSS analysis.   

 

Peak concentrations of TSS and total phosphorus were neither correlated with rainfall intensity 

(r2 = 0.105 and r2 = 0.0277 for TSS and total phosphorus, respectively) nor antecedent dry 

weather periods (r2 = 0.142 and r2 = 0.0841 for TP and TSS and total phosphorus, respectively). 

The largest of the storm events (September 10th, as measured by stage height and cumulative 

flow volume) recorded the lowest concentrations of TSS and total phosphorus. Overall, the EMC 

of total phosphorus was at least three times greater during runoff than during baseflow 

conditions and the EMC of TSS was at least three times greater (Table 2). For both TSS and 

total phosphorus, the runoff EMC of each pollutant did not exhibit a linear trend over time.   

 

 

5. Discussion  

5.1. Adaptive sampling  
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Compared to conventional flow- or time-weighted sampling schemes, which rely on preset 

thresholds, a major benefit of the proposed approach is the ability to anticipate and dynamically 

adapt to features of an underlying hydrologic signal. This is particularly valuable when resolving 

pollutograph dynamics across a variety of storm durations and intensities, as it ensures that each 

distinct hydrograph is characterized using a similar number of samples. Depending on the 

objectives of the study, this enables the ability to resolve flashy events to the same extent as 

larger events using the same sampling logic. This not only introduces an element of consistency 

for inter-storm comparisons, but also reduces the occurrence of missed or excessive samples that 

are common in conventional sampling approaches. In turn, this improves the use of constrained 

experimental resources.  

 

If storm patterns drive multiple discharge peaks, such as those experienced on August 11th and 

September 10th, the smaller peak or the secondary peak, even if short in duration or magnitude, 

may carry the majority of the pollutant loadings. The use of a flow-weighted approach may have 

missed such events if parameterized inadequately. A more dynamic estimation approach, as used 

in this study, is needed to track not only the flow, but also changes in the underlying hydrologic 

signal. In more advanced experiments, rather than just triggering baseflow samples, the weather 

forecast could also be used to anticipate the number and timing of samples. In-situ and real-time 

sensor readings (such as stage or turbidity) will still be required, however, to adapt to site-
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specific dynamics that cannot be captured by a weather forecast alone. Given the flexibility of 

our proposed framework, such modifications can be made easily and the sampling logic can be 

updated in real-time without the need to visit the study site.  

 

The flexibility of the framework proposed in this paper is perhaps its biggest benefit.  While our 

sampling approach focused on site-specific hydrograph features, the sampling logic could be 

changed relatively easily to enable a suite of novel and uniquely targeted experimental 

objectives. Sampling strategies could be modified to detect debris or faulty sensors by tuning the 

length-scale parameter of the kernel in real-time, or by implementing more complex fault-

detection algorithms (Zhang, Meratnia, Havinga 2010). Future experiments could also be 

designed to use distributed rainfall data and measurements from other sensor nodes to optimize 

sampling around spatial phenomena of interest. For example, sudden changes in flow at 

upstream sensor nodes could be used to alert downstream nodes or to track a storm as it moves 

through a region. Additionally, real-time hydrologic models could be used to enable more 

complex sampling strategies during different seasons. For example, a snowmelt model and a 

conductivity sensor could be used to guide chlorine sampling during road salting periods. By 

leveraging an Internet connection, the majority of this control logic could be implemented on 

off-site computers, improving ease of use by permitting researchers to implement the control 

logic using systems and languages they are most comfortable with.  
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The benefits of adaptive water quality sampling can be achieved at a relatively small overhead. 

In fact, in their simplest implementation, the methods presented in this study could be readily 

repeated by simply connecting a cellular modem to the autosampler, relying only on a remote 

computer and public data (for example, streamflow and precipitation obtained from CUAHSI’s 

Water Data Center (CUAHSI 2016)) to control the sampling schedule. The need to process real-

time sensor feeds comes at a slight computational expense, but is well achievable using already 

existing technologies and data services (Amazon Web Services 2016; InfluxDB 2016). By 

adding in-situ sensors, such as the low-cost water level sensor used in this study, the capabilities 

of the automated sampler can be extended even further to enable more responsive and complex 

sampling strategies. For example, given the observed correlation between TSS and total 

phosphorus, as well as known correlations between those parameters and turbidity (Grayson et 

al. 1996; Rügner et al. 2013), an in-situ turbidity sensor could be used to design an adaptive 

sampling regimen for total phosphorus. Rather than sampling around distinct features of the 

hydrograph, such a study could focus on sampling around the most uncertain statistical 

parameters of the regression relationship. This may increase the complexity of the sampling 

strategy, but it improves the quality of the data input to the regression, and, in turn, the 

confidence of the statistical relationship.  
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5.2. Water quality  

While the occurrence of a first flush may be variable or specifically associated with large and 

intense storm events (Barbosa, Fernandes, David 2012), no correlation was found between 

increasing storm intensity and the likelihood of a strong first flush. Similar conclusions have 

been drawn in other studies that analyzed loading dynamics of urban runoff (Bach, McCarthy, 

Deletic 2010; Deletic 1998; Métadier and Bertrand-Krajewski 2012). The lack of an observable 

first flush in our watershed could be attributed to a number of causes, including the relatively 

large size of our study area (28 km2). Within our study area, a first flush may have existed in 

much smaller sub-catchments, as suggested by prior studies (less than 1 km2, see Lee and Bang 

2000). However, first flush may not be evident for larger watersheds, particularly if the 

pollutograph travel times for each sub-catchment superimpose, as their confluence may obscure 

or widen the concentration profile at the outlet of the larger watershed (Characklis and Wiesner 

1997; Sansalone and Cristina 2004). Furthermore, if one specific area of the watershed 

contributes the major pollutant runoff, its travel time in relation to peak discharge at the outlet of 

the watershed could impact the perceived first flush dynamics.  

 

In our study watershed, a large concentration of solids would be expected from the dominant, 

heavily urbanized and impervious surfaces of the watershed, which all exhibit very short travel 

times and should have contributed to a first flush if it existed. To that end, it is likely that 
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erosion, caused by flashy hydrographs or high flows, was the primary driver of water quality in 

the watershed. Studies have shown that the majority of the phosphorus in runoff is sediment-

associated (Ellison and Brett 2006; Paul and Meyer 2001), but in many highly urbanized 

watersheds, this may need to be directly confirmed since many management practices are still 

geared towards treating the first flush (Benedict and McMahon 2006; Wise 2008). The urban 

areas in our study watershed may thus not be a major source of nutrient runoff. While outside of 

the scope of this study, a small number of the events were also analyzed for other dissolved 

pollutants, which also did not exhibit first flush characteristics.  

 

Although peak pollutant loads corresponded with peak flows, this relationship was nuanced, 

where a higher fraction of contaminants arrived after peak flow rather than before. This has also 

been seen in prior studies (Métadier and Bertrand-Krajewski 2012). Furthermore, b-values were 

much greater than 0.185, indicating a lack of a strong first flush in our study catchment. As such, 

flow values may need to exceed geomorphically significant levels to begin moving sediment 

(Booth and Jackson 1997).  However, this would need to be studied in detail by augmenting the 

sampling strategy.   

 

Peak concentrations were also poorly correlated with rainfall intensity and duration of 

antecedent dry weather periods.  While this is contradictory to some studies (Li et al. 2007), it 
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has been observed by others (Métadier and Bertrand-Krajewski 2012). The relationship between 

EMC and rainfall has been generally noted to be weak, suggesting that EMC is likely driven by 

location- rather than storm-specific features (Gnecco et al. 2005).  As such, EMC may not be the 

best sole measure of water quality characteristics, particularly when studying pollutant dynamics 

of individual storms. Concentrations for any given event are a complex function of buildup and 

washoff characteristics (Métadier and Bertrand-Krajewski 2012) and spatial rainfall variability, 

which thus suggests that any given storm event may exhibit unique concentration magnitudes 

and temporal characteristics. 

 

Throughout this study, pollutograph dynamics were driven by variable storm patterns, a number 

of which contained multiple hydrograph peaks. Low correlations between concentration and 

discharge were observed and have been similarly reported for other urban catchments (Rees et 

al. 2006), indicating that concentration may not be fully explained by discharge alone. While 

lower concentrations of TSS and total phosphorus may have resulted from dilution, caused by 

increased flows mobilizing more coarse-grained sediments (Tiefenthaler, Schiff, Leecaster 

2000), this could not be confirmed consistently across all events. Within storm events with 

multiple peaks, the peak concentration did not just correspond with the peak flow, but rather 

with the hydrograph peak that had the steeper rising limb (larger flow acceleration). On an intra-

event scale, this suggests that rather than a lag in the pollutograph, as would be suggested by 
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M(V) analysis alone, the concentrations are heavily driven by the hydrograph features.  The 

acceleration of flows may correspond with increased forces exerted on solids, which raise the 

erosive action on the stream. In our watershed, the “flashiness” of the hydrograph, a well-known 

symptom of the urban stream syndrome (Walsh et al. 2005), is thus perhaps the best predictor of 

peak concentrations within an individual event.  

 

Better characterizations of water quality thus demand more spatially dense measurements and an 

improved understanding of pollutograph dynamics, a task which will be made easier by the 

adaptive sampling methods presented in this paper.  In particular, more samples will be required 

to determine if a first flush is evident in smaller upstream locations, where the pollutograph may 

be dominated by runoff from impervious regions, rather than stream dynamics. That said, up-

scaling the adaptive sampling framework will need to be done carefully, as optimal sampling 

schedules may likely be guided by site-specific features. Even sites that are very close to one 

another may exhibit distinctly different pollutograph dynamics. As such, initial measurements 

and calibrations will likely still need to be carried out on each site, after which the most suitable 

adaptive sampling strategy can be tuned. A feature-driven approach, such as the one presented 

here, will form a good starting point to help formulate a site-specific sampling strategy. The 

proposed adaptive sampling framework will provide a flexible and low-overhead means by 
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which to reduce the resources required to investigate the dynamics that are most uncertain at any 

site.  

 

6. Conclusions  

Increasing the temporal resolution of measurements will significantly improve our fundamental 

understanding of water quality dynamics. Understanding these dynamics across various scales 

can also help decision-making by guiding watershed-specific solutions that strike a balance 

between local treatment (e.g. green infrastructure), restoration, or end-of-line solutions. Until 

reliable and cost-effective in-situ sensors are available for most important parameters, multi-

bottle automated samplers will continue to provide a strong alternative to resolving the water 

quality dynamics of hydrologic systems.  

 

Given real-time notifications and the convenience of using a feature-driven approach to 

automatically collect samples, the method proposed in this paper could lower barriers for small 

research groups, agencies or even individuals to now seamlessly maintain large networks of 

autosamplers (networks of ten or more samplers). The flexibility the framework presented herein 

not only makes this possible for automated samplers, but also for in-situ sensors that consume a 

significant amount of power or are limited by reagent availability or electrode duty cycling.  
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The lack of an observed first flush in our watershed cautions the implementation of many 

popular stormwater control measures for improving urban runoff quality. The majority of these 

systems, such as retention ponds and constructed wetlands are designed to capture a maximum 

volume of flow (one to two year storms), which is retained for settling while excess flows are 

released through overflow structures. However, if the inflows to the basin do not exhibit a first 

flush, the basin may only retain the initial, lower concentration flows, while discharging higher 

concentrations once storage capacity has been reached.  

 

An exciting paradigm may arise from this realization however: by equipping urban stormwater 

systems with sensors and controllers (valves, gates, pumps, etc.), it will be possible to maximize 

the treatment of runoff through real-time control (Kerkez et al. 2016). While this idea will 

require significant future studies to vet its promise, the site-specific characterization of water 

quality dynamics (or corresponding proxies), as provided by our approach, will allow controllers 

to be optimally tuned to individual storm events. For example, a gate could be opened at the 

beginning of a storm to allow lower-concentration flows to exit the watershed, while closing to 

capture the highest concentration inflows and retain them as long as possible before the next 

storm event. Similarly, these solutions could be implemented upstream to reduce the exceedance 

of geomorphically significant flows, and thus downstream erosion and nutrient loads. These real-
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time systems are presently being constructed in this study watershed and will be evaluated in the 

future. 
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TABLES 585 
M(t) = V(t)b 

 
July 1 August 11 August 19 September 10 

b-value R2 b-value R2 b-value R2 b-value R2 

TP (mg/L) 
0.775 0.748 0.723 0.839 0.799 0.795 0.908 0.866 

TSS (mg/L) 
N/A N/A 0.684 0.850 0.708 0.687 0.893 0.788 

 586 
Table 1: The coefficients of determination and b-values for power law functions for total phosphorus (TP) and TSS. 587 
 588 

Flow, rainfall, and pollutant characteristics 

  July 1 August 11 August 19 September 10 

  Peak 1 Peak 2   Peak 1 Peak 2 

Peak flow (m3/s) 2.78 1.30 2.01 4.33 4.70 5.27 

Slope of rising limb 
(m3/s min-1) 

0.192 0.070 0.044 0.383 0.136 0.167 

       

Peak Rainfall (mm/hr) 8.89 7.11 7.11 9.40 10.92 13.21 

Total Rainfall (mm) 9.4 24 9.4 36 

Storm Duration (hr) 2h 7h 2h 5h 

Antecedent Dry Period/ 
Time since first peak 

56h 258h 2h 56h 85h 2h 

       

Peak TP (mg/L) 1.405 0.98 0.679 1.165 0.671 0.829 

Peak TSS (mg/L) n/a 776 377 778 426 459 

       

 Baseflow Runoff Baseflow Runoff Baseflow Runoff Baseflow Runoff 

TP EMC (mg/L) 0.192 0.618 0.209 0.659 0.094 0.844 0.059 0.676 

TSS EMC (mg/L) N/A N/A 127 401 18 527 5.8 390 

 589 
Table 2: The characteristics for each measured storm event, including peak flow information, rainfall, and the event 590 
mean concentrations (EMCs) for total phosphorus (TP) and TSS. 591 
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Figure 6: Forecasted rainfall and measured hyetograph from Weather Underground (top). 
Hydrograph reported by nearby USGS gage and estimated by local depth sensor (middle). 
Linearly interpolated pollutograph for total suspended solids (TSS) and total phosphorus 
(bottom). Markers indicate samples triggered by the algorithm.   
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Figure 7: Cumulative mass volume curves for total phosphorus (left) and total suspended solids 
(right).  Dashed line indicates uniform pollutant concentration.  
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