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ABSTRACT  

 

The human salivary gland has an elegant architecture of epithelial acini, 

connecting ductal branching structures, vascular and neuronal networks that 

together function to produce and secrete saliva. This review focuses on the 

translation of cell- and tissue-based research towards therapies for patients 

suffering from salivary gland hypofunction and related dry mouth syndrome 

(xerostomia), as a consequence of radiation therapy or systemic disease. We will 

broadly review the recent literature and discuss the clinical prospects of 

stem/progenitor cell and tissue-based therapies for salivary gland (SG) repair 

and/or regeneration. Thus far, several strategies have been proposed for the 

purpose of restoring SG function: (1) transplanting autologous SG-derived 

epithelial stem/progenitor cells; (2) exploiting non-epithelial cells and/or their 

bioactive lysates; and (3) tissue engineering approaches using 3D (three-

dimensional) biomaterials loaded with SG cells and/or bioactive cues to mimic in 

vivo SGs. We predict that further scientific improvement in each of these areas 

will translate to effective therapies towards the repair of damaged glands and the 

development of miniature SG organoids for the fundamental restoration of saliva 

secretion. 
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SIGNIFICANCE STATEMENT 

 

This review covers recent advances in translating cell-based research towards 

pre-clinical therapies. We focus on salivary gland (SG) loss-of-function and 

subsequent dry mouth syndrome as caused by radiation therapy or systemic 

disease, though the described concepts can be translated to other injured 

somatic tissues. Proposed therapies include implantation of autologous tissue-

specific stem/progenitor cells, non-tissue specific cells and/or their bioactive 

lysates (secretome); and organoid-like constructs created by cells in the 

presence or not of bioactive cues and 3D biomaterials. These emerging 

approaches to repair damaged SGs are discussed herein, and evaluated on their 

success to restore native tissue architecture, epithelial cell polarization, ductal 

branching, lumen formation, directionality of secretory flow, and clinically relevant 

tissue functionality. 

 

 

KEYWORDS 

 

Salivary gland, radiation therapy, salivary hypofunction, xerostomia, 

regeneration, transplantation, stem cells, organoids   
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1. INTRODUCTION 

A PLACE FOR CELL-BASED THERAPIES  

Irreversible salivary gland (SG) hypofunction and its associated 

symptoms, termed xerostomia, are a hallmark of several systemic diseases, such 

as Sjögren’s syndrome, granulomatous diseases, graft-versus-host disease, 

cystic fibrosis, uncontrolled diabetes, human immunodeficiency virus infection, 

thyroid disease, and late-stage liver disease [1]. Hyposalivation is also the most 

significant long-term complication for more than 550,000 patients that are 

annually diagnosed with head and neck cancer (HNC) globally and for whom 

radiation therapy (RT) is the main treatment [2-4]. Saliva is required for digestion, 

lubrication, oral homeostasis and protection against a variety of microbial and 

environmental hazards. Thus, a lack in saliva production can cause various life-

disrupting pathological events. Rampant caries, painful mucositis, oral fungal 

infections, taste loss, speech deficits and difficulty in swallowing are just a few 

examples of events that greatly impair patients’ oral and systemic health [3].  

Current preventative therapies, such as surgical SG relocation outside the 

radiation field [5] or use of free radical scavengers [6] are challenging or not 

always effective. Using advanced salivary gland-sparing intensity-modulated 

radiation therapy (IMRT) can still result in xerostomia, even though partial 

improvement of salivary secretion may occur [2, 3, 7]. This functional outcome of 

IMRT is correlated to each HNC patient’s personalized radiation treatment plan 

that all or not may affect specific regions harboring epithelial stem/progenitor 

cells [8] and its unique environment.  
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The epithelial compartment of salivary glands consists of nearly 80% 

saliva secreting acinar and 20% saliva transporting/modifying ductal cells.  

 When SGs are in the radiation field, radiation damage occurs to these 

epithelial cells as well as surrounding blood vessels and nerves [4, 9]. While 

radiation-induced leakage of granules was long considered to be the cause of 

acute loss of saliva secretion, it couldn’t fully explain why proteolytic enzyme 

leakage was not accompanied with immediate epithelial cell loss [10]. Main 

causes of acute radiation damage were later credited to disturbed signal 

transduction pathways on the cell membrane. Irreversible damage to muscarinic 

receptor stimulated watery secretion [11] and dysfunction in water channels like 

Aquaporin 5 [12] more likely explain the high and early radiosensitivity effects. 

Thereafter, late to very late RT glandular dysfunction responses are due to 

parenchymal cell loss by apoptosis, and varying degrees of inflammation and 

fibrosis [10]. Even though most ductal epithelia remain morphologically, it is clear 

that their cellular function is impaired to some extent after RT, based on the 

reported decrease in protein expression of signaling receptors and structural 

cytokeratins [13]. Late-response effects further correlate with damage to the 

surrounding microenvironment by noticeable blood vessel dilation and function 

loss [14]. More recently, reduced parasympathetic nervous function was also 

suggested to be part of late post-RT effects [15, 16]. As nerves and blood 

vessels aid in epithelial cell repair post-RT, the combined radiation damage to 

acini, ducts, nerves and blood vessels and development of fibrosis further 

obstructs normal gland regeneration (Figure 1) [4, 17].  
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The use of artificial saliva substitutes provides temporary relief of 

xerostomia [4], and the administration of systemic sialogogues such as 

Pilocarpine increases saliva secretion, but their efficacy relies on the amount of 

remaining functional SG cells [18]. As such, HNC patients with extensive SG 

damage still await treatments to permanently restore salivary function. Due to our 

improved understanding of tissue morphogenesis and how (partially) damaged 

cells can be re-activated or replaced, several cellular and tissue-based therapies 

have been proposed to repair damaged SGs and/or generate new SG tissues 

(Figure 2) [19, 20]. Despite cellular differences within the three major SGs 

(parotid, submandibular and sublingual) are present, predominantly in the ratio of 

serous and mucous acini and potentially in their unique set of progenitors, 

researchers mainly focused their SG regenerative studies on submandibular and 

parotid glands. However, we propose that the following therapies may be 

applicable to all major glands. These can be grouped in the following categories:  

1) Autologous epithelial stem/progenitor cell transplantation: prior to RT, 

cells can be isolated from SG biopsies, potentially in vitro cultured and 

cryopreserved during RT, and transplanted into the irradiated gland post-RT to 

replace functionally damaged and/or lost cells. 

2) Application of non-epithelial specific cell types and/or their bioactive 

lysates: (a) to trigger paracrine regenerative effects on remaining SG cells after 

SG damage or (b) to generate new SG-specific cells. 

3) Transplant bioengineered SG tissue into the gland space using cells 

cultured with biomaterials and/or growth factors. 
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These proposed therapies have been tested in rodent models and recent 

outcomes will be highlighted in the following sections. Despite cellular differences 

are present between the 3 major SGs, we classified them  

 

2. A VARIETY OF CELL-BASED THERAPIES TO CHOOSE FROM 

2.1. AUTOLOGOUS TRANSPLANT OF SG EPITHELIAL CELLS 

As mentioned earlier, partial gland loss-of-function can in certain situations 

be spontaneously recovered post-IMRT [21]. This lead to the hypothesis that 

endogenous SG cells can participate in organ repair, and thus that cell 

transplants could potentially be useful to regenerate severe loss-of-function.  

The first proof-of-concept study for transplanting autologous SG cells to 

increase salivary function was carried out in rodents and utilized epithelial cells 

expressing the cell surface receptor KIT (c-Kit, CD117). Only as few as 100-300 

KIT+ cells were required to generate new acinar and ductal structures and to 

significantly improve organ function after radiation [19]. This research 

demonstrated that mouse SGs contain cells with stem/progenitor properties that 

when transplanted could maintain themselves and differentiate into multiple 

specialized SG cell types.  

Further studies using transplantation of murine KIT+ subpopulations 

(KIT+CD24+, KIT+CD49f+, KIT+CD24+CD49f+, KIT+CD24+SCA1+), illustrated 

that KIT+ cells possess different levels of stem/progenitor activity, with 

KIT+CD24+(CD49f+/SCA1+) cells reported to be the most potent [13, 22]. These 

cells are likely located within the major ducts of the central SG region where the 
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highest stem/progenitor cell number resides [8]. Thus, KIT+ cells have potential 

for future cell therapy applications, particularly because they are present in 

human SGs [23] and can be isolated and cultured ex vivo [24]. A very recent 

ground-breaking study [25] has further supported the clinical use of enriched 

KIT+ subpopulations. Researchers were capable of rescuing hyposalivation in an 

in vivo mouse model with at least 500 human KIT+ SG cells per gland [25]. 

Moreover, regulators of the Wnt pathway were found upregulated in the SG 

tissues post-transplantation. The same research group showed earlier that the 

activation of the Wnt pathway is essential to drive the self-renewal of murine SG 

stem/progenitor cells in vitro [26]. 

Yet, the use of techniques such as genetic lineage tracing in mice, the 

application of DNA labels to mark label-retaining quiescent cells, in vitro floating 

sphere assays (or salispheres), and 2D or 3D cultures of both human and rodent 

SG cells revealed the existence of multiple stem/progenitor-like cells in the SG. 

These stem/progenitor cells can be identified and isolated based on the 

expression of a set of proteins and/or enzymes, such as cell surface receptors 

and cytokeratins (Table 1). Interestingly, these stem/progenitor cells appear at 

different times during organ development and may compensate for each other’s 

cell loss to allow proper organ formation [27]. Even during adult SG homeostasis, 

multiple reservoir cell types in compartments, such as ducts and acini, harbor 

high mitotic capacity and the ability to self-duplicate, ie maintain and/or expand 

themselves [28-30]. However, from studies on SGs and other branching organs 

(reviewed in [31, 32]), it becomes clear that these compartmental reservoirs of 
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stem/progenitor cells that regulate homeostatic maintenance may respond 

differently to tissue damage and/or become plastic by contributing to a cell 

population they normally do not form.  

Thus, even though KIT+ cells as well as CD24+/CD29+ epithelial cells 

have been shown to restore hyposalivation in vivo ([13, 19, 22, 33], we can not 

rule out that other cell types are not able and/or are more potent to regenerate 

SGs. Table 1 summarizes different cell markers that were classified with 

stem/progenitor potential, but majority were not fully tested yet for their 

regenerative capacity in RT clinical settings.  

Additionally, depending on the location and level of RT-induced damage in 

the SG, different stem/progenitor cells could potentially be used for repair. A 

recent study[8] revealed that a specific region within the gland is more sensitive 

to radiation than others, and that radiation to this area reflects in severe saliva 

loss and tissue damage. When the 50% of cranial region of the SG was radiated, 

the entire gland degenerated including the shielded caudal 50% [8]. In contrast, 

damage remained restricted to the 50% caudal region when only this part was 

being radiated. This suggests that once multipotent stem/progenitor cells, which 

are proposed to be located in a cranial sub-volume, are lost other cell types are 

not able to compensate and repair the gland [8]. However, when cranial 

stem/progenitor cells remained unaffected they were able to maintain this area of 

the gland functional. As such, it now becomes speculative whether different cell 

types could be used in each scenario. For example, while transplantation of 

multipotent stem/progenitor cells becomes preconditioned when the entire SG is 
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damaged, less potent cells and/or multiple compartmental reservoir cells could 

be applied for local caudal SG repair [8]. Even acinar cells, which were long 

assumed to be permanently differentiated and post-mitotic, could now be 

considered for SG cell therapy as they can self-duplicate after damage in post-

duct ligation [28], partial SG excision [34], post-chronic sialadenitis [35] and 

possibly post-RT conditions to locally repair and maintain the secretory 

compartment. Most interestingly, SG repair is not only driven by transplanted 

cells, but also by the remaining endogenous stem/progenitor cells [25]. Radiation 

can induce stem/progenitor cell dormancy in vivo [36, 37], and thus these cells 

can be locally activated with the appropriate stimuli. As such, any type of 

transplanted epithelial cell could enhance local endogenous repair if the 

appropriate stimuli are produced and a dormant stem/progenitor cell is present 

nearby. 

 However, from a clinical standpoint there may be limitations to autologous 

cell therapy since SGs from aging patients contain fewer stem/progenitor cells 

[24, 38]. This implies that more stem/progenitor cells (than those obtained in the 

pre-RT biopsy) may be required for organ repair. Recent efforts to increase the 

number of KIT+ cells ex vivo using growth factors [39] or Aldehyde 

dehydrogenase-3 (ALDH3) activator [40] may be useful, although, the absolute 

cell number required for functional regeneration of the human gland remains 

unclear. Alternatively, non-SG cells may be considered to address this limitation, 

as outlined below. 
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Another caveat in developing SG cell therapies could potentially be the 

limited lifespan of biopsy-derived cells cultured ex vivo. In such cases, methods 

to cryopreserve and store these progenitors from biopsies have been developed. 

Neumann and others [41] established a stem cell banking model where salivary 

gland CD49f+CD29+ cells were cryopreserved for up to 3 years without affecting 

their genetic or functional stability, validating that cryopreservation could be part 

of a cell therapy option in the near future.  

In conclusion, multiple research groups have shown that rodent SG-

specific epithelial cell transplantation is a feasible approach to repair irradiated 

SGs. Future research studies will determine whether human SG cells behave in 

a similar manner in ex vivo and in vivo assays [25]. Although success has been 

achieved with epithelial KIT+ cells in rodents, currently, other more multipotent 

stem/progenitor cell candidates and/or compartmental reservoir cells can be 

explored. Alternatively, in clinical scenarios where autologous SG cell numbers 

are low, we may need to take advantage of the regenerative capacity of non-SG 

cells, as discussed in the next section.   

 

2.2. NON-EPITHELIAL CELL TYPES AND BIOACTIVE LYSATES 

There are many reports on the beneficial effects of non-SG and/or non-

epithelial cells to regenerate irradiated SGs. These studies include Bone Marrow 

(BM)-derived cells [14, 42-44], BM-derived Mesenchymal Stem Cells (MSC) [45], 

human adipose-derived MSCs [46-49], SG-derived MSC-like cells [50, 51], 
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amniotic cells [52, 53], Embryonic Stem Cells (ESC) [54] and Induced-Pluripotent 

Stem cells (iPS)[55].  

Despite a proposed differentiation of BM-derived cells and MSCs into SG 

acinar cells is observed in vitro, their actual contribution to epithelial 

differentiation in vivo is not clear and disputable. Their beneficial action may 

primarily occur via paracrine pro-survival/proliferative effects on remaining 

epithelial stem/progenitor cells and surrounding environmental cells. For 

example, transplantation of G-CSF/FLT3/SCF-mobilized BM-derived cells [14] 

not only improved saliva production by inducing epithelial repair but also 

increased microvessel density, which consequently led to better blood perfusion. 

Similarly, adipose-derived MSCs diminished acinar cell apoptosis as well as 

reduced fibrosis [48], and both BM-MSC as SG-derived mesenchymal-like cells 

exerted immunosuppressive activities [51].  

 The beneficial potential of these paracrine effects led investigators to 

explore the addition of the bioactive components, also called ‘soup’, secreted by 

these adipose and BM-derived cells to repair SGs who underwent RT [56, 57]. 

The exact content of the bioactive components remains elusive to date, but 

several potential contributing signaling pathways have been identified. Studies 

using systemic growth factor delivery or genetic overstimulation of specific 

signaling pathways suggest that KGF (or FGF7) can increase stem/progenitor 

cell numbers in vivo post-RT [36, 58]. A similar role was attributed to WNT/β-

catenin [59, 60] and Sonic Hedgehog (SHH) signaling [61] in post-RT and post-

ductal ligation settings. Also treatment with EGF, IGF1, FGF2 [62-64], IL6 [65], 

Page 12 of 37

ScholarOne Support: (434) 964-4100

Stem Cells

This article is protected by copyright. All rights reserved.



A
cc

ep
te

d 
A

rt
ic

le

 13

ALDH3 [66] or EDA activators [67] reduced cell apoptosis and promoted 

proliferation (Table 1). Even post-radiation treatment with hormone Melatonin can 

decrease oxidative stress and lipid peroxidation in SGs [68].  Another putative 

activator for inducing acinar differentiation may be the NOTCH signaling pathway 

[69, 70], even though its beneficial action in vivo post-RT has not been confirmed 

yet. All these signaling factors are summarized in Table 1. 

Since multiple factors (e.g. GM-CSF, VEGF, IL6 and IGF1) are found in 

‘soups’, the anti-apoptotic and pro-proliferative cues can thus aid not only in 

epithelial but also in microenvironmental repair [56]. Moreover, intravenous ‘soup’ 

administration may be all that is required to clinically improve saliva production 

as this delivery route appears to be as effective in rodents [56]. However, it 

remains to be evaluated whether the ‘soup’ strategy will work as efficiently in 

every patient. Similar to the clinical efficacy of Pilocarpine administration in RT-

induced xerostomia settings [71], the ‘soup’ strategy relies on the amount of 

remaining SG cells. Thus, clinical successes will depend on the remaining cells 

that need paracrine stimulation and whether these stimuli are present in the 

‘soup’. While angiogenic factors have been described to be present in certain 

‘soups’, it is not clear yet whether neurotrophic factors are. Neuronal cells, such 

as the ones from the parasympathetic nervous system, aid in epithelial 

regeneration post-RT [15, 22] and thus, if required, neurotrophic factors such as 

Neurturin (NRTN) or Glial cell-Derived Neurotrophic Factor (GDNF) could 

potentially be (co-)delivered to radiated SGs via retrograde ductal or 

intraglandular injections. 
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While BM-derived cells and MSCs might not efficiently differentiate into 

SG cells, other pluripotent cell types such as ESCs and iPS cells can be explored 

to provide new pools of SG-specific cells. As such, SG secretory cells were 

already generated from ESCs [54]. This study used three-dimensional (3D) co-

culture of mouse ESCs with a human SG-derived fibroblast environment to 

initiate expression of SG-related markers. While the ESC-derived SG-like cells 

survived post-RT SG transplantation, it is still unclear whether they functionally 

regenerate the tissue [54]. If these cells possess genomic stability and lack 

oncogenic potential, both ESC [54] and iPS-derived SG cells [55] can serve as 

an additional cell-based therapy.  

 

2.3. TISSUE ENGINEERING STRATEGIES TO GENERATE SG ORGANOIDS 

Salivary gland tissue engineering requires three essential components: (1) 

cell-cell contacts; (2) cell contacts with extracellular matrix (ECM) proteins, and 

(3) a biocompatible and biodegradable three-dimensional (3D) scaffold that can 

hold these components together [72].  

Many scaffolds have been proposed, which are porous and either biologic 

(e.g. collagen, fibrin, silk, chitosan, alginate, hyaluronic acid (HA)) in origin or 

synthetic biocompatible biomaterials (e.g. poly-glycolic acid (PGA), poly-lactic 

acid (PLA), poly lactic-co-glycolic acid (PLGA), and polyethylene glycol (PEG)), 

and/or mixture of both. Depending on its biodegradability, porosity, stiffness and 

strength, scaffolds promote cell adhesion, migration, and/or differentiation [73]. 
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Ideally, engineered scaffolds should structurally and functionally resemble the 

native SG ECM architecture (reviewed in [74]). 

While there are many new scaffolds being generated, researchers must 

implement aspects of SG organogenesis, branching morphogenesis and 

homeostasis to initially form 3D miniature tissues, termed organoids. A summary 

of currently used human cell-based models with translational potential is 

presented in Table 2.  

A long-standing hurdle in the field has been the long-term growth and 

maintenance of specific acinar cell protein expression, as well as their cell 

polarity and secretory function. Monolayer cultures, i.e. 2D culture, of primary 

acinar cells cause loss of biological functions including, acinar-specific protein 

expression (α-amylase, cystatin C, transmembrane protein 16A - TMEM16A, 

sodium-potassium-chloride cotransporter – NKCC1, and aquaporin 5 – AQP5), 

granule formation, calcium mobilization, transepithelial resistance and polarized 

amylase secretion after β-adrenergic receptor stimulation. Gaining control of 

these biological functions appears to be related to specific media components 

and ECM products. High calcium concentrations (0.05mM) provide optimal acinar 

growth and maintenance of polarization [75], and without addition of ECM 

proteins the maintenance of acinar cells and formation of organoids will be 

limited. For example, pure amino acid non-ECM containing PuraMatrix peptide 

hydrogels hardly maintained SG cells [76], but mucin-secreting cells were easily 

grown for up to 1 month on natural fibronectin-coated silk fibroin scaffolds. 

Interestingly, 3D scaffolding itself induced seeded cells to produce significantly 
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more native ECM components than in 2D cultures, which further supports more 

appropriate cell differentiation and polarization. The observation that parotid cell 

cultures were better maintained on these silk fibers compared to submandibular 

cells also indicated that each gland cell-type might require a unique ECM-coated 

scaffold.  

It is also important to note that each ECM differently impacts cell 

polarization, differentiation, lumenization and tight junction formation. PLGA 

nanofibers coupled with laminin-111 and chitosan functional units demonstrated 

that laminin-111 tends to promote mature SG epithelial tight junctions and apico-

basal polarization, but conversely, chitosan antagonizes this process [77]. 

Encapsulating human SG cells in human-compatible hyaluronic acid (HA) 

hydrogels with recombinant Perlecan IV domain not only induced cell 

organization into proliferating spheroid structures, but also formed larger acini-

like structures with a central lumen that were maintained long-term in vitro [78]. In 

cases where there is a reduction in the assembly of tight junctions (ZO-1 

expression) [79], which are needed for uni-directional flow of saliva, one can 

overcome this by generating lithographically-based micropatterning curved 

“craters”. These craters mimic the physical structure of the basement membrane, 

and thus increased surface area allowed for better apico-basal polarization and 

differentiation of SG epithelial cells [80].  

Apart from generating and maintaining proper cell types, engineered SGs 

further require formation of branching structures. Chitosan appears to facilitate 

SG branching by regulating production of basement membrane components [81], 
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and small branching organoids could also be formed in Collagen type I and/or 

Matrigel [19, 24, 25, 82-85]. While many positive results were obtained with 

Matrigel, its components are not xeno-free as it contains basement membrane 

proteins secreted by mouse sarcoma cells, and therefore, its use is not 

consistent with current Good Manufacturing Practice (cGMP) regulations by the 

US Food and Drug Administration (FDA). One alternative is to use the native 

organ-specific ECM that can be obtained by decellularizing tissues with 

detergents and then reseeding primary cells onto the gland ECM structure, as 

accomplished for the rat submandibular SG [86]. 

Recent advances have also been directed to develop more functional 

organoids. These efforts include combinations of linked ECM peptides and the 

development of controlled drug or growth factor releases from scaffolds. These 

can then be seeded with cells to direct differentiation and branching, with or 

without various SG cell types. A current challenge remains to let bioengineered 

tissues grow in size and properly connect with remaining cells in the transplanted 

area. Efforts towards this goal have recently been initiated in a mouse and rat 

model [87, 88]. HA-gels with primary human cells were maintained and 

responded to neurotransmitters when integrated in the area of resected parotid 

glands in immune compromised rats [89]. An alternative approach showed that 

fetal salivary gland cells, both epithelium and mesenchyme, within a 3D Collagen 

environment could be transplanted into the space of completely resected SGs. 

Interestingly, a suture thread was used to provide guidance for the primary duct 

to reconnect with the oral cavity. Future efforts will certainly be directed to using 
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a similar approach with adult cells. Whether a similar reconnection with the 

remaining duct can be obtained in humans remains to be determined.  

 

3. FUTURE PROSPECTS  

Remarkable progression has been made in the last decade, but a 

definitive therapy for SG hypofunction has not been developed due to intrinsic 

challenges that come with each approach. An underlying challenge is 

comparison of the animal models with human salivary glands. The biological 

differences between human and rodent salivary glands and understanding how 

they respond to RT requires further study but initial important steps have been 

taken [25]. Moreover, potential differences in development and/or regenerative 

strategies between the different glands (e.g. parotid, submandibular, sublingual) 

need to be considered for future clinical translations. Also complicating matters is 

the variation of RT damage that occurs in individual patients with respect to both 

the location and dose of RT as well as the patient’s age. However, with each 

discovery in the future, a range of precision medicine therapies may become 

available individualized to each patient. An appreciation of the strengths and 

limitations of each strategy as well as whether the patients have existing RT 

damage will determine what therapy will be designed and delivered.  

Theoretically, there should be no shortage of cell types, as both SG-

specific as non-SG specific cells could be used to repair the epithelial 

compartment and surrounding microenvironment. The paracrine effects of each 

cell type will aid in the repair process post-RT, and with the development of 
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bioactive scaffolds, we should be able to generate branching SG organoids in the 

near future.  

 

LIST OF ABBREVIATIONS 

 

SG - salivary gland; RT- radiation therapy; HNC – head and neck cancers; 3D - 

three-dimensional; 2D - two-dimensional; KRT – cytokeratin; FGFR2b - fibroblast 

growth factor receptor 2b; ALDH3 - aldehyde dehydrogenase-3; BM - bone 

marrow; MSC – mesenchymal stem cell; BMSC – bone marrow stem cell; BM-

MSC – bone marrow-derived stem cell; BM-cMSC - bone marrow clonal 

mesenchymal stem cell; SMG – submandibular gland; FGF – fibroblast growth 

factor; GM-CST - Granulocyte-macrophage colony-stimulating factor; Flt3 - Fms-

Related Tyrosine Kinase 3; SCF - stem cell factor; KGF – keratinocyte growth 

factor; VEGF – vascular endothelial growth factor; IL6 – interleukin 6;  IGF1 – 

insulin-like growth factor 1; ESC - embryonic stem cells; iPS – induced 

pluripotent stem cells; PLGA - poly(lactic-co-glycolic acid); HA – hyaluronic acid; 

ECM – extracellular matrix; cGMP – current good manufacturing practices. 
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TABLES 
 
Table 1. Summary list of suggested stem/progenitor cell markers and 

environmental signaling cues (cytokines, growth factors, enzymes and 

hormones) currently studied for salivary gland regenerative therapies  

 

Stem/ Progenitor Cell Markers 

Cytokines,  

Growth Factors, 

Enzymes, Hormones 

ABCG2 [90] 

ALDH3 [40] 

ASCL3 [91, 92] 

CD24 (HSA) [22, 84] 

CD29 (ITGβ1) [84] 

CD34 [50] 

CD44 [93] 

CD49f (ITGα6) [13, 94] 

CD90 (Thy-1) [94] 

CD105 [50] 

CD117 (KIT) [13, 19, 22, 25] 

KRT5 [15, 16] 

KRT14 [23] 

MUSASHI-1 [19] 

p75 [94] 

SCA-1 [19, 22] 

SOX2 [95] 

MIST1 [28] 

 

ALDH3 activator [66] 

EDA [67] 

EGF [62] 

FLT3 [14] 

FGF2 [64]  

FGF7 [36] 

G-CSF [14] 

SHH [61] 

IL6 [56, 65] 

IGF1 [63] 

Melatonin [68]  

SCF [14] 

VEGF [56] 

WNT [26, 59, 60] 
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Table 2. Human cell-based therapy models already tested for the development of 

salivary gland 3D tissue organoids. (hSG, human salivary gland) 

 
Model Features In Vivo/ In Vitro Remarks Limitations Reference 

hSG primary cells 
in 3D matrix 
containing 

Collagen and 
Matrigel  

• In vitro formation of 
functional and differentiated 
salivary components 
containing amylase 
producing acinar-like cells 
and ductal structures 

• No in vivo studies 

• Xenogeneic 
biomaterials not 
suitable for 
clinical translation 

• No evaluation of 
salivary flow 

[85] 

hSG progenitor 
cells in 3D 

Matrigel-based 
matrix  

 

• In vitro differentiation ability 
of hSG progenitors into 
epithelial-like acinar and 
ductal cell types 

• In vitro long-term self-
renewal ability. 

• No in vivo studies 

• Xenogeneic 
biomaterials not 
suitable for 
clinical translation 

• No evaluation of 
salivary flow 

[24] 

hSG primary cells 
in serum-free 
conditions in 

Matrigel-coated 
dishes  

• In vitro 3D organization and 
differentiation of hSG cells 
into salivary cells with 
amylase-producing acinar 
components 

• No in vivo studies 

• Xenogeneic 
biomaterials not 
suitable for 
clinical translation 

• No evaluation of 
salivary flow 

[83] 

hSG primary cells 
in 3D HA hydrogel  

• HA hydrogel supported in 
vivo lumen formation 

• Supported viability and 
salivary phenotypic features 
of hSG progenitors in in vitro 
long-term cultures 

• No evaluation of 
salivary flow 

[88] 

hSG primary cells 
in a 3D matrix 

containing 
Collagen and 

Matrigel 

• Matrigel supported in vitro 
expansion in long-term 
cultures 

• 3D xenogeneic matrix 
supported differentiation of 
primary cells  

• Injected hSG primary cells 
(>500/gland) induced 
functional rescue 

• No in vivo studies 
were performed 
with cell-loaded 
matrix 

• Xenogeneic 
biomaterials not 
suitable for 
clinical translation 

[25] 
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