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BENFORD’S LAW FOR THE 3x + 1 FUNCTION

JEFFREY C. LAGARIAS and K. SOUNDARARAJAN

Abstract

Benford’s law (to base B) for an infinite sequence {xk : k � 1} of positive quantities xk is the
assertion that {logB xk : k � 1} is uniformly distributed (mod 1). The 3x + 1 function T (n) is
given by T (n) = (3n + 1)/2 if n is odd, and T (n) = n/2 if n is even. This paper studies the initial
iterates xk = T (k)(x0) for 1 � k � N of the 3x + 1 function, where N is fixed. It shows that for
most initial values x0, such sequences approximately satisfy Benford’s law, in the sense that the
discrepancy of the finite sequence {logB xk : 1 � k � N} is small.

1. Introduction

The 3x + 1 problem concerns the behavior under iteration of the map T : Z → Z

given by T (n) = n/2 or T (n) = (3n + 1)/2 according to whether n is even or odd.
That is, T (2m) = m and T (2m + 1) = 3m + 2. The notorious 3x + 1 conjecture
asserts that when started from any positive integer n, some iterate T (k)(n) = 1;
it remains unsolved. Surveys of work on this problem have been carried out by
Lagarias [14] and Wirsching [25].

It is well known that the initial iterates of this map exhibit a ‘random’ character.
This holds in the sense that the initial iterates of a randomly selected integer appear
to be even or odd with equal probability. Such a result can be rigorously justified
if one takes the interval 1 � n � X = 2k and considers only the first k = log2 X
iterations (see [14, Theorem A]). This leads to the rapid decay of most trajectories
of the iteration under T , at an exponential rate, with an expected decrease by
a multiplicative factor

√
3/4 ≈ 0.86602 at each step. These facts support the

conjecture that all orbits of the 3x + 1 iteration enter a bounded set, and hence
fall into a finite number of periodic orbits. Heuristic stochastic models (such as
those of Lagarias and Weiss [15] and Borovkov and Pfeifer [4]) predict that for an
integer of size about X the ‘random’ character above persists for about the first
α log X iterates, with α = (1

2 log 3
4 )−1 ≈ 6.95212; the model predicts that most

integers of size near X will arrive at the periodic orbit {1, 2} near this number of
iterations. The stochastic model in [15] also predicts that for large n the number
of steps to enter a periodic orbit should never exceed 42 logn. Experimentally,
E. Roosendaal (private communication) has found a number n of size 7.2 × 1021

(he found n = 72, 19 136, 41 637, 72 362, 71 195 ≈ 7.2 × 1021) which requires about
36.7 logn iterations before entering the periodic orbit {1, 2}.

The present paper concerns the base B expansion of the initial sequence of the
first N iterates of the 3x + 1 map on a random starting value n, drawn from
1 � n � X where X � 2N . This is in the region of the dynamics where most
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trajectories are decreasing at an exponential rate, before they enter a periodic orbit.
It shows that, in a certain sense, the leading digits of the base B expansion of most
such sequences approximately satisfy a strong form of Benford’s law. Here Benford’s
law concerns the distribution of the initial digits in the base B expansion of an infi-
nite sequence X = {x1, x2, x3, . . . } of positive real numbers. The original
version of Benford [1] in 1938 concerned the first few leading digits in the decimal
expansion of real numbers in tables; the distribution had already been formulated by
Newcomb [20] in 1881. An infinite sequence X is said to satisfy the strong Benford’s
law (to base B) if for each fixed k � 1, the first k digits in the B-ary expansion of
{x1, x2, x3, . . . } approach limiting probabilities given by the ‘B-ary Benford distri-
bution’, which we specify below. This is known to be equivalent to the condition that
the associated infinite sequence yi := logB xi is uniformly distributed modulo one
(Diaconis [6, Theorem 1]). In the following we adopt this criterion as our definition
of Benford’s law.

This paper is motivated by work of Kontorovich and Miller [11], who showed
that certain statistics drawn from 3x + 1 iterates approximately obey Benford’s
law. They treated a version of the 3x + 1 iteration in which the initial starting
point w0 is an odd integer, and they studied the subset of the successive odd
integers {w1, w2, . . . } appearing in the 3x + 1 iteration of w0. Here wi = T (ki)(w0)
where k = ki is the ith value where T (k)(w0) is odd. They showed that for a suitable
natural initial distribution on the odd integers drawn from 1 � w0 � X , and for a
suitable number k of iterates (growing slowly with X), as X → ∞ the distribution
of the B-ary digits of the ratios wk/w0 approached the B-ary Benford distribution,
provided that B was not a power of 2. More precisely, they obtained the Benford
distribution in a double limit, in which X → ∞ with k held fixed, and after this
taking k → ∞. They also gave results of numerical simulations indicating that the
distribution of the odd 3x + 1 iterates {w1, w2, . . . , wk} starting from an odd w0

themselves should approximately satisfy Benford’s law, for all integer bases B not a
power of 2. In the case where B is a power of 2, they showed that a double limiting
distribution exists, but is not the B-ary Benford distribution.

The main result of this paper, Theorem 2.1 in § 2, establishes in a quantita-
tive form the assertion that most initial sequences of the first N iterates of the
3x + 1 function approximately satisfy the strong Benford law. It applies to a finite
sequences of initial 3x + 1 iterates {x1, x2, . . . , xN}, and obtains an upper bound
on the discrepancy D({y1, y2, . . . , yN}) of the sequence of numbers yj = logB xj for
most such sequences. The discrepancy is a well-known statistic which is a measure of
distance to the uniform distribution. It is defined in § 2, and relevant properties
of discrepancy are treated in § 3. We obtain an explicit upper bound on the number
of ‘exceptional’ sequences for which the discrepancy is large. We treat 3x+1 iterates
including both even and odd iterates, and our main result implies convergence to
a generalized Benford’s law for all bases B � 2, including B being a power of 2.
The anomalous behavior of powers of 2 in the results of Kontorovich and Miller [11]
is associated to their restriction to the subset of iterates that are odd integers.

The basic approach is as follows. We use the fact that the initial iterates of a
large randomly chosen integer n are well approximated by a stochastic process that
takes T (n) = n/2 or 3n/2 with equal probability. Taking logarithms to the base B,
we are reduced to studying the stochastic process which sets either

yn+1 = yn + θ1,
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or

yn+1 = yn + θ2

with equal probability, where

θ1 = logB
3
2 and θ2 = logB

1
2 .

In § 4 we consider this process in its own right, for arbitrary (θ1, θ2). We first show
that the realizations

ω = {yn : n = 1, 2, 3, . . .}
of such a stochastic process for general (θ1, θ2) are uniformly distributed modulo
one with probability one, if and only if at least one of θ1 or θ2 is irrational. The main
result of § 4 shows that if the numbers θ1 and θ2 are not simultaneously well
approximable by rational numbers, as specified by a two-dimensional ‘Diophantine
property’, then for any fixed N most initial segments of length N are close to the
uniform distribution, quantitatively given by an upper bound on their discrepancy.

In § 5 we apply the results of § 4 to the 3x + 1 iteration. We show, using a result
of Rhin [22], that θ1 = logB

3
2 and θ2 = logB

1
2 have suitable two-dimensional

Diophantine properties for the results in § 4 to apply. Then we establish that the
3x+1 iterates are sufficiently close to realizations of the stochastic process to obtain
upper bounds on the discrepancy of sequences for most initial inputs, provided that
we average over 1 � n � X , and for N iterates we require X � 2N . Putting all of
these results together yields the main result, Theorem 2.1.

The main result is established here for the 3X + 1 function, but the methods
used apply equally well to number-theoretic maps of a similar nature, such as the
Qx+ 1 function, for odd Q, with TQ(n) = n/2 or (Qn + 1)/2 according to whether
n is even or odd. Results analogous to Theorem 2.1 should hold for the distribution
of the first N iterates of such functions. For Q � 5 it is expected that most initial
values of the Qx + 1 iteration never enter a periodic orbit, but diverge to +∞.
It seems possible that the infinite sequence {xn : n � 0} of a divergent orbit
might actually satisfy a strong Benford’s law. However, at present there seems no
approach to address this question; even the existence of a divergent orbit for the
Qx + 1 function, for any Q � 5, remains an open problem.

There has been other work showing that the iterates of certain dynamical systems
satisfy Benford’s law, see Berger, Bunimovich and Hill [3] and Berger [2]. For various
properties of Benford’s law, see Hill [9, 10]. Finally we observe that the approach of
Kontorovich and Miller [11] to Benford’s law for 3x + 1 iterates introduced several
ideas to this problem, including approximation to a stochastic process (not the one
studied here), as well as a relation to Diophantine properties of certain constants.
Their approach starts from a structure formula for odd iterates of the 3x+1 function
given by Sinai [24] and extended in Kontorovich and Sinai [12] to a wider class of
maps. Their main result (see [11, Theorem 5.3]) for the 3x + 1 function establishes
the uniform distribution in a double limit of yi := logB(wi/w0) for any real base B
such that logB 2 satisfies a one-dimensional Diophantine property, as defined in § 4.

Notation. We let �x� denote the largest integer that does not exceed x, and we
let {{x}} := x − �x� denote the fractional part of x, with 0 � {{x}} < 1. Finally,
‖x‖ = minn∈Z |n − x| denotes the distance of x from its nearest integer.
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2. Main result

Benford’s law concerns the distribution of the initial digits in the base B expan-
sion of an infinite sequence X = {x1, x2, x3, . . . } of positive real numbers. An infinite
sequence is said to satisfy the strong Benford’s law (to base B) if the associated
infinite sequence Y = {y1, y2, y3, . . . } given by the base B logarithms yi := logB xi

is uniformly distributed modulo one. Suppose that the numbers xn have B-ary
expansion

xn = BMn

( ∞∑
k=0

d
(n)
k B−k

)

with 1 � d
(n)
0 � B − 1 and 0 � d

(n)
k � B − 1 for k � 1. Benford’s law is the

statement that
Prob[d(n)

0 = d] = logB(d + 1) − logB d

for 1 � d � B−1, in which the ‘probability’ is interpreted as a limiting frequency in
the first N values of xn as N → ∞. More generally the strong Benford probability
of observing a given block of K digits [d0d1 · · · dK−1], with d0 �= 0, is given by

Prob[d(n)
0 d

(n)
1 · · · d(n)

K−1 := d0d1 · · ·dK−1] = logB(r + B−K+1) − logB r,

where

r =
K−1∑
j=0

djB
−j . (2.1)

The departure from uniform distribution modulo one of a finite set Y can be
measured using the discrepancy.

Definition 2.1. The discrepancy D(Y) of a finite set Y = {y1, y2, . . . , yN} of
real numbers is defined as follows. For 0 � α � β � 1 set

Z(Y; α, β) :=
1
N

#{i : α � {{yi}} � β}, (2.2)

in which {{y}} = y − �y� is the fractional part of y, and then let

D(Y; α, β) := Z(Y; α, β) − (β − α). (2.3)

The (normalized) discrepancy D(Y) is then

D(Y) := sup
0�α�β�1

|D(Y; α, β)|. (2.4)

It is also given by

D(Y) = sup
0�α�1

D(Y; 0, α) − inf
0�α�1

D(Y; 0, α). (2.5)

One has 0 � D(Y) � 1; smaller values of D(Y) correspond to more uniformly
spaced sets Y modulo one. No finite distribution can be perfectly uniform, so there is
a nonzero lower bound on the discrepancy of all sequences of length N . This minimal
value of the discrepancy is attained by equally spaced elements yi = i/N for 0 �
i � N − 1, with D(Y) = 1/N. This notion of discrepancy is translation-invariant;
that is, for any real y0, one has

D(Y + y0) = D(Y). (2.6)
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Some authors treat instead a (normalized) non-translation invariant discrepancy

D∗(Y) := sup
0�α�1

|Z(Y; 0, α) − α|.

This is related to D(Y) by the inequalities D∗(Y) � D(Y) � 2D∗(Y).
Our definition of discrepancy follows Kuipers and Niederreiter [13] and Drmota

and Tichy [7]. A few authors (Montgomery [19]) study an unnormalized discrepancy
that does not divide by N ; this version of the discrepancy takes values between 0
and N .

The main result of this paper is an upper bound on discrepancy of the base B
logarithms of most initial 3x + 1 sequences.

Theorem 2.1. Let B � 2 be a fixed integer base. For each N � 1 and each
X � 2N, most initial seeds x0 in 1 � x0 � X have first N initial 3x + 1 iterates
{xk : 1 � k � N} that satisfy the discrepancy bound

D({logB xk : 1 � k � N}) � 2N−1/36. (2.7)

The set E(X, B) of exceptional initial seeds x0 in 1 � x0 � X that do not satisfy
this bound has cardinality

|E(X, B)| � c(B)N−1/36X, (2.8)

where c(B) is a positive constant depending only on B.

This result implies approximation to base B Benford’s law, as follows. Let X =
{x1, . . . , xN} be a set of positive real numbers, and set yi = logB xi and Y =
{y1, . . . , yN}. Let 1 � r < B be a B-ary rational as in (2.1) with 1 � r < B.
Requiring that the first K digits of xn match the digits of r is clearly equivalent to
having {{yn}} lie in the interval [logB r, logB(r + B−K+1)). From the definition of
discrepancy, we have that∣∣∣∣ 1
N

#
{
1 � i � N : logB r � {{logB xi}} < logB(r+B−K+1)

}−logB

(
r + B−K+1

r

)∣∣∣∣
is bounded above by D({y1, y2, . . . , yN}), independent of K. Theorem 2.1 provides
an upper bound for this discrepancy for the initial iterates of most 3x+1 sequences.

3. Discrepancy and exponential sums

We will use standard criteria for uniform distribution of an infinite sequence
Y = {y1, y2, . . . } in terms of exponential sums and of the discrepancy of its initial
segments [19, Chapter 1].

For an infinite sequence Y = {y1, y2, . . . } we let YN denote the first N elements
of Y. For integers k, we associate to YN the ‘Fourier coefficients’

ÛN (k,Y) = Û(k,YN ) :=
N∑

j=1

e2πikyj . (3.1)

Proposition 3.1. For an infinite sequence Y = {y1, y2, . . . } of real numbers,
the following conditions on Y are equivalent.

(1) The sequence Y is uniformly distributed modulo one.
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(2) (Weyl’s criterion.) For each nonzero integer k we have

lim
N→∞

1
N

|ÛN (k,Y)| = 0. (3.2)

(3) For any properly Riemann integrable function F on [0, 1],

lim
N→∞

1
N

N∑
j=1

F (yj) =
�1

0

F (t) dt. (3.3)

(4) The discrepancy D(YN ) satisfies

lim
N→∞

D({y1, y2, . . . , yN}) = 0. (3.4)

Proof. Here conditions (1)–(3) are Weyl’s criterion in [19, p. 1], and the equiv-
alence of conditions (1) and (4) appears in [19, p. 2].

We will need a quantitative relation between exponential sums ÛN(k,Y) and
discrepancy, given by the Erdős–Turan inequality.

Proposition 3.2 (Erdős–Turan inequality). For any positive integer K � 1,

D({y1, y2, . . . , yN}) � 1
K + 1

+ 3
K∑

k=1

1
k

∣∣∣∣ 1
N

N∑
n=1

e2πikyn

∣∣∣∣. (3.5)

Proof. This is a weak form of the Erdős–Turan inequality. A short proof of it is
given by Montgomery [19, p. 8] (after normalizing the discrepancy). For a stronger
form, see Kuipers and Neiderreiter [13, Chapter 2, Theorem 2.5].

We will also need the following simple bound on the change in discrepancy under
perturbation.

Proposition 3.3. If |yi − ỹi| � ε for 1 � i � N , then

|D({y1, y2, . . . , yN}) − D({ỹ1, ỹ2, . . . , ỹN})| � 2ε. (3.6)

Proof. Let Y and Y ′ denote the sets in the Proposition. Suppose first that the
discrepancy D(Y) is attained on an interval J = [α, β] with Z(Y; J) − |J | > 0.
If α > ε and β < 1− ε, then with J ′ = [α− ε, β + ε] we see that J(Y ′; J ′) � Z(Y; J),
and it follows that

D(Y ′) � Z(Y ′; J ′) − |J ′| � Z(Y; J) − |J | − 2ε = D(Y) − 2ε.

If α < ε or β > 1 − ε we would still like to consider J ′ ⊂ [0, 1] which is the image
(mod 1) of the interval [α − ε, β + ε]. The only issue is that J ′ now consists of two
intervals, one near 0 and the other near 1. However, the complement J ′c is a genuine
interval and we have |J ′c|−Z(Y ′; J ′c) = Z(Y ′; J ′)−|J ′| � D(Y)−2ε. Thus we have
again D(Y ′) � D(Y) − 2ε.

In the remaining case where the discrepancy D(Y) is attained on an interval
J = [α, β] with |J | −Z(Y; J) > 0, we consider J ′ = [α + ε, β − ε] if β −α > 2ε, and
J ′ to be the empty interval otherwise. We deduce in this case also that D(Y ′) �
D(Y) − 2ε.

Since Y and Y ′ are interchangeable in the argument, we obtain D(Y) �
D(Y ′) − 2ε, completing the proof.
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In the sequel we will obtain bounds on exponential sums and from this derive
bounds on the discrepancy using the Erdős–Turan inequality. We will approximate
the values yi = logB xi of the 3x + 1 iterates of a randomly drawn initial value x0

by the values of a stochastic process, of a type which we analyze in the next section.

4. Stochastic process

We study the following family of stochastic processes. We suppose that we are
given two real numbers (θ1θ2), and an initial value y0. The discrete stochastic
process P(θ1, θ2, y0) has realizations of the form

ω = (y1, y2, y3, . . . ) (4.1)

in which the yi are generated from the initial value y0 by choosing

yn+1 = yn+θ1 with probability 1
2 and yn+1 = yn+θ2 with probability 1

2 , (4.2)

where each step is an independent Bernoulli trial. We think of the yi as given
modulo one, in which case this process is a Bernoulli mixture of two rotations of
the circle.

Theorem 4.1. If at least one of θ1 or θ2 is irrational, then for any fixed
initial value y0 the process P(θ1, θ2, y0) has a probability one subset of realizations
ω = (y1, y2, . . . ) that are uniformly distributed modulo one. Equivalently, with
probability one,

lim
N→∞

D({y1, . . . , yN}) = 0. (4.3)

Note that if θ1 and θ2 are both rational numbers, then the values yi can only
take a finite number of distinct values modulo one and no realization ω is uniformly
distributed modulo one. We also remark that Theorem 4.1 may be easily generalized
to cover Bernoulli mixtures of K rotations of the circle.

Theorem 4.1 will be derived using exponential sums. We first study finite initial
segments of length N of such a stochastic process P(θ1, θ2, y0). We let

ωN := (y1, y2, . . . , yN )

denote such an initial segment, and write EωN [f(ωN )] for the expected value of
a random variable over the process restricted to these initial segments. We begin
by calculating the second moment of the individual Fourier coefficients ÛN (k, ω)
of ωN .

Lemma 4.1. For each N � 1 and each k ∈ Z

EωN [|ÛN (k, ω)|2] = N + 2 Re
( N∑

r=1

(N − r)
(

e2πikθ1 + e2πikθ2

2

)r)
. (4.4)

If at least one of θ1 or θ2 is irrational, then for each non-zero integer k and each
N � 1

EωN [|ÛN (k, ω)|2] �
(

1 +
8

|2 − e2πikθ1 − e2πikθ2 |
)

N �
(

1 +
1

‖kθ1‖2 + ‖kθ2‖2

)
N,

(4.5)
where ‖ξ‖ = minn∈Z |ξ − n| denotes the distance between ξ and its nearest integer.
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Proof. Observe that

|ÛN(k, ω)|2 =
∣∣∣∣

N∑
j=1

e2πikyj

∣∣∣∣
2

= N + 2 Re
( ∑

1�j<��N

e2πik(y�−yj)

)
.

If we write r = � − j, then y� − yj is a sum of r random variables each taking the
values θ1 or θ2 with equal probability. Thus,

EωN [e2πik(y�−yj)] =
(

e2πikθ1 + e2πikθ2

2

)�−j

.

Since for 1 � r � N there are N − r pairs 1 � j < � � N with � − j = r, we
conclude that

EωN [|ÛN (k, ω)|2] = N + 2 Re
( N∑

r=1

(N − r)
(

e2πikθ1 + e2πikθ2

2

)r)
.

This proves (4.4).
For any z �= 1 we note that

N∑
r=1

(N − r)zr =
(N − 1)z − Nz2 + zN+1

(1 − z)2
,

and so, if |z| � 1 and z �= 1 we get that
∣∣∣∣

N∑
r=1

(N − r)zr

∣∣∣∣ � N |z − z2| + |z − zN+1|
|1 − z|2 � 2N

|1 − z| . (4.6)

If at least one of θ1 or θ2 is irrational, then for non-zero k we have that e2πikθ1 +
e2πikθ2 �= 2, and, of course |e2πiθ1 + e2πiθ2 | � 2. Combining (4.4) and (4.6) with
z = (e2πikθ1 + e2πikθ2)/2, we obtain that

EωN [|ÛN (k, ω)|2] �
(

1 +
8

|2 − e2πikθ1 − e2πikθ2 |
)

N.

For |ξ| � 1
2 note that sin2(πξ) � 4ξ2 and so

|2 − e2πikθ1 − e2πikθ2 | � 2 − cos(2πkθ1) − cos(2πkθ2)

= 2(sin2(πkθ1) + sin2(πkθ2)) � 8(‖kθ1‖2 + ‖kθ2‖2),

which completes the proof of (4.5).

Proof of Theorem 4.1. We suppose that at least one of θ1 or θ2 is irrational.
We claim that for each nonzero k the following holds:

Probω

[
lim

N→∞
1
N

|ÛN (k, ω)| = 0
]

= 1. (4.7)

Thus, for each fixed non-zero integer k, there is a probability one set of ω such
that limN→∞ N−1|ÛN (k, ω)| = 0. Since the set of non-zero integers k is countable,
it follows that the set of all ω for which limN→∞ N−1|ÛN (k, ω)| = 0 holds simulta-
neously for all non-zero integers k still has probability one. (Its complement is
a countable union of sets of measure zero.) Now by Weyl’s criterion (Proposi-
tion 3.1(2)) all such ω are uniformly distributed modulo one. Proposition 3.1(4)
then yields (4.3) with probability one.
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To prove (4.7) it suffices to show that for each 1 � δ > 0,

Pδ := Probω

[
lim sup
N→∞

1
N

|ÛN (k, ω)| � δ

]
= 0. (4.8)

For j � 1 set Nj := �1/(1−δ/2)j�. If Nj � N < Nj+1 is such that |ÛN (k, ω)| � δN ,
then we see that

|ÛNj(k, ω)| � |ÛN (k, ω)| −
∣∣∣∣

N∑
�=Nj+1

e2πiky�

∣∣∣∣ � δN − (N − Nj)

� Nj −
(

1 − δ

1 − δ/2

)
Nj � δ

2
Nj .

Therefore, for any B � 1,

Pδ � Probω

[
lim sup

j→∞
1

Nj
|ÛNj (k, ω)| � δ

2

]
�

∞∑
j=B

Probω

[
|ÛNj (k, ω)| � δNj

2

]
. (4.9)

Now

Probω

[
|ÛNj(k, ω)| � δNj

2

]
�

(
δNj

2

)−2

Eω[|ÛNj (k, ω)|2],

and by Lemma 4.1 this gives

Probω

[
|ÛNj (k, ω)| � δNj

2

]
� 4

δ2

(
1 +

1
‖kθ1‖2 + ‖kθ2‖2

)
1

Nj
.

We use this in (4.9), and obtain that for any B � 1,

Pδ � 4
δ2

(
1 +

1
‖kθ1‖2 + ‖kθ2‖2

) ∞∑
j=B

1
Nj

.

Since the Nj grow exponentially, letting B → ∞ we may conclude that Pδ = 0.
This establishes (4.8), and (4.7) and the theorem follow.

For general non-rational pairs (θ1, θ2) the convergence rate to zero in (4.3), or
equivalently (4.7), can be arbitrarily slow. To obtain explicit bounds on the conver-
gence rate in (4.3) one must impose restrictions on the Diophantine approximation
properties of the numbers θ1 and θ2. The following definition has been much used
in connection with ‘small divisors’ problems in dynamical systems (cf. Herman [8]
and Yoccoz [26, 27]) and in number theoretical dynamics (cf. Marklof [16]).

Definition 4.1. A real number θ is said to be Diophantine with exponent α if
there is a positive constant C(θ) such that for all integers k � 1

‖kθ‖ � C(θ)|k|−α. (4.10)

Any real number that is Diophantine with some positive exponent α is irrational;
necessarily α � 1. For any α > 1, the set of real numbers that are Diophantine with
exponent α has full Lebesgue measure. In fact, the exceptional set of real numbers
that are not Diophantine with a given exponent α > 1 has Hausdorff dimension f(α)
with f(α) < 1. Liouville numbers are those real numbers that are not Diophantine
for any finite exponent, and they form an uncountable set of Hausdorff dimension
zero. The set of real numbers that are Diophantine with exponent α = 1 comprise
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the badly approximable numbers, and these form a set of Hausdorff dimension one
but Lebesgue measure zero.

In this paper we use the following generalization of this notion to simultaneous
approximation, which is the complement of the notion of d-dimensional very well
approximable vectors appearing in [23].

Definition 4.2. The vector (θ1, θ2, . . . , θd) of real numbers is said to be
d-dimensional Diophantine with exponent α if there is a positive constant C(θ1, θ2,
. . . , θd) such that for all integers k � 1,

max(‖kθ1‖, ‖kθ2‖, . . . , ‖kθd‖) � C(θ1, θ2, . . . , θd)k−α. (4.11)

This notion has been used in the dynamical system context by Marklof [17, 18].
Here we use the case d = 2. The multidimensional notion is less restrictive than the
case d = 1 in the sense that if any θi is one-dimensional Diophantine with exponent
α, then the vector (θ1, . . . , θd) will be d-dimensional Diophantine with the same or
smaller exponent.

The next result gives bounds on the expected size of the discrepancy of a finite
initial segment of this stochastic process, under suitable Diophantine conditions
on (θ1, θ2).

Theorem 4.2. Suppose that the pair (θ1, θ2) is two-dimensional Diophantine
with exponent α. Then there is a constant C2(θ1, θ2) such that for all N � 1,

EωN [D({y1, y2, . . . , yN})] � C2(θ1, θ2)N−2(1+α)−1
. (4.12)

Proof. The Erdős–Turan inequality (Proposition 3.2) gives that for any K,

EωN [D({y1, . . . , yN})] � 1
K + 1

+ 3
K∑

k=1

1
kN

EωN [|ÛN (k, ω)|]. (4.13)

By the Cauchy–Schwarz inequality, (4.5), and the definition of the two-dimen-
sional Diophantine property, we have that

EωN [|ÛN (k, ω)|] � (EωN [|ÛN (k, ω)|2])1/2 � (1 + C(θ1, θ2)−2k2α)1/2
√

N. (4.14)

Using this in (4.13) we obtain that for an appropriate constant C1(θ1, θ2),

EωN [D({y1, . . . , yN})] � 1
K + 1

+ C1(θ1, θ2)
Kα

√
N

.

Choosing K = N2(1+α)−1
we obtain the theorem.

Remark. The stochastic process studied in this section can be reformulated in
terms of the iterates of a skew-product dynamical system, as defined by Cornfeld,
Fomin and Sinai [5, Chapter 10] and Petersen [21]. Let Σ = {0, 1}N denote the set
of all zero–one sequences s = (s0, s1, s2, . . . ), with the product topology, which is
a compact space with natural invariant measure, and let S : Σ → Σ be the shift
operator S(s0, s1, s2, . . . ) = (s1, s2, s3, . . . ). The skew-product dynamical system
T : Σ × T → Σ × T over the base Σ, with fibers T = R/Z, is defined by

T (s, x) := (S(s), x + f(s0) (mod 1)),
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with f(0) = θ1, f(1) = θ2, respectively. Here the initial condition is (s(0), x0), with
s(0) ∈ Σ being a random starting point. The invariant measure on Σ × T is the
product measure, using Lebesgue measure on T, and T is ergodic with respect to
this measure if at least one of θ1 and θ2 is irrational. The initial result of this section
(Theorem 4.1) shows weak convergence of almost all orbits to Lebesgue measure on
T for the dynamical system. This result is true in great generality for ergodic skew
products. However, the detailed result on rate of convergence to Lebesgue measure
(Theorem 4.2) relies on specific properties of this dynamical system.

5. Application to the 3x + 1 map

We can describe the 3x+1 iteration applied to an integer m in terms of the parity
of its iterates. We set T (0)(m) = m and define the parity sequence {bk(m) : k � 0}
with each bk(m) ∈ {0, 1} by

bk(m) ≡ T (k)(m) (mod 2). (5.1)

Proposition 5.1. We have the following.

(1) The kth iterate T (k)(m) for k � 1 has the form

T (k)(m) =
3b0(m)+...+bk−1(m)

2k
m + Rk(m) (5.2)

in which the remainder term

Rk(m) :=
k−1∑
j=0

bj(m)
3bj+1(m)+...+bk−1(m)

2k−j
(5.3)

depends only on m (mod 2k).
(2) Each bk(m) depends only on m (mod 2k+1). For each vector (b0, b1, . . . , bN−1)

∈ {0, 1}N there is a unique residue class m (mod 2N) such that

bk(m) = bk for 0 � k � N − 1. (5.4)

Proof. (1) This is easily proved by induction on k, see Lagarias [14, (2.6)].
(2) This is also proved by induction on k, see Lagarias [14, Theorem B].

We define xk(m) = T (k)(m) and view

x̃k(m) :=
3b0(m)+...+bk−1(m)

2k
m (5.5)

as an approximation to xk(m). Viewing the base B � 2 as fixed, we set
yk(m) := logB xk(m) and the main result will concern the discrepancy of most
sets YN (m) := {y1(m), . . . , yN (m)}. We approximate the yk(m) by

ỹk(m) := logB x̃k(m) = logB m +
(k−1∑

j=0

bj(m)
)

logB 3 − k logB 2. (5.6)

and we will study the sets ỸN (m) := {ỹ1(m), . . . , ỹN (m)} for variable m as realiza-
tions of a stochastic process of the kind treated in § 4.

The following lemma shows that the error of approximation of YN (m) by ỸN (m)
is exponentially small in N for most m.
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Lemma 5.1. Let the integer B � 2 be fixed. There exists an exceptional subset
EB(N) of integers 1 � m � 2N such that

|EB(N)| � 21+(99/100)N ,

and such that if 1 � m � 2N is not in EB(N), then

|yk(n) − ỹk(n)| � 21−(1/100)N for 1 � k � N, (5.7)

for every n ≡ m (mod 2N ).

Proof. We will prove more, and show that the set EB(N) may be taken to be
the set of integers 1 � m � 2N such that either m � 2(99/100)N , or b0(m) + . . . +
bN−1(m) � (2/5)N . Since all 2N possible choices for the parities b0(m), . . . ,
bN−1(m) occur exactly once, we see that the number of m satisfying the second
criterion above is less than or equal to

∑
j�(2/5)N

(
N
j

)
� 2H(2/5)N � 2(99/100)N ,

where H(x) = −x log2 x − (1 − x) log2(1 − x) is the binary entropy function.
Thus, |EB(N)| � 21+(99/100)N , as desired. It remains now to show (5.7) holds
for m /∈ EB(N).

Suppose now that m /∈ EB(N) and that n ≡ m(mod 2N ). Proposition 5.1 gives
that bk−1(n) = bk−1(m) and Rk(n) = Rk(m) for 1 � k � N . Observe that

xk(n)
x̃k(n)

= 1 +
Rk(n)
x̃k(n)

= 1 +
Rk(m)
x̃k(n)

� 1 +
Rk(m)
x̃k(m)

=
xk(m)
x̃k(m)

,

from which it follows that yk(n) − ỹk(n) � yk(m) − ỹk(m). Thus, it suffices to
verify (5.7) for n = m.

From (5.3) we see that

Rk(m) �
k−1∑
j=0

3k−j−1

2k−j
�

(
3
2

)k

.

Applying this bound together with log(1 + ξ) � ξ, we obtain that

yk(m)− ỹk(m) = logB

(
1+

Rk(m)
x̃k(m)

)
� 1

log B

Rk(m)
x̃k(m)

� 1
log B

1
m

3k−b0(m)−...−bk−1(m).

(5.8)
Since m /∈ EB(N) we have that m > 2(99/100)N , and in addition that

k −
k−1∑
j=0

bj(m) =
k−1∑
j=0

(1 − bj(m)) �
N−1∑
j=0

(1 − bj(m)) � N − 2
5
N =

3
5
N.

Thus, from (5.8) we deduce for m /∈ EB(N) that

yk(m) − ỹk(m) � 1
log B

2−(99/100)N3(3/5)N � 21−(1/100)N ,

(since 33/5 < 298/100) which proves the lemma.

We wish to bound the discrepancy of most sets ỸN (m), viewed over a range
1 � m � X , with X � 2N . We will study the translated sets

Ỹ∗
N (m) := ỸN (m) − logB m, (5.9)

so that the initial element ỹ∗
0(m) is zero. Since the discrepancy function is transla-

tion invariant we have that

D(Ỹ∗
N (m)) = D(ỸN (m)). (5.10)
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Note also that Ỹ∗
N (m) = Ỹ∗

N (m + 2N ) and so it will suffice to consider the range
1 � m � 2N .

Lemma 5.2. Let B � 2 and N � 1 be fixed. Then the ensemble {Ỹ∗
N (m) : 1 �

m � 2N} of 2N sequences of length N is identical in distribution with the distri-
bution ωN of the first N elements of the stochastic process P(θ1, θ2, y0 = 0), with
parameters θ1 = logB

3
2 and θ2 = logB

1
2 .

Proof. From the definitions we see easily that ỹ∗
k(m) = ỹ∗

k−1(m) + θ1 if
bk−1(m) = 1, and that ỹ∗

k(m) = ỹ∗
k−1(m) + θ2 if bk−1(m) = 0. Proposition 5.1(2)

shows that for 1 � m � 2N all possible patterns (b0, b1, . . . , bN−1) occur exactly
once. This corresponds exactly to independent draws in the stochastic process
P(θ1, θ2, y0 = 0); the 2N possible sequences ωN of length N of P(θ1, θ2, y0 = 0)
have equal probabilities and match the sequences above.

Lemma 5.3. For each real B > 1 the pair (θ1, θ2) = (logB
3
2 , logB

1
2 ) is two-

dimensional Diophantine with exponent 7.616.

Proof. We invoke a result of Rhin [22] (see inequality (8) there) obtained using
Padé approximation methods. There exists a positive constant C such that for
integers u0, u1 and u2 with max(|u1|, |u2|) � 1 we have

|u0 + u1 log 2 + u2 log 3| � C(max(|u1|, |u2|))−7.616. (5.11)

Let k be a large positive integer and suppose that �1 is the nearest integer to
kθ1 and that −�2 is the nearest integer to kθ2. Thus, |kθ1 − �1| = ‖kθ1‖ and
|k logB 2 − �2| = |kθ2 + �2| = ‖kθ2‖. Note that both �1 and �2 are positive and
roughly of size k. On the one hand, we see that∣∣∣∣ log(3/2)

log 2
− �1

�2

∣∣∣∣ =
∣∣∣∣�2k logB(3/2)− �1k logB 2

k�2 logB 2

∣∣∣∣ � �2‖kθ1‖ + �1‖kθ2‖
k�2 logB 2

.

On the other hand, we see that by (5.11),∣∣∣∣ log(3/2)
log 2

− �1

�2

∣∣∣∣ =
∣∣∣∣�2 log 3 − (�1 + �2) log 2

�2 log 2

∣∣∣∣ � C
(�1 + �2)−7.616

�2 log 2
.

Since �1 and �2 are roughly of size k, combining the above two statements immedi-
ately gives the lemma.

Proof of Theorem 2.1. We view the integer B � 2 and N � 1 as fixed. Consider
the realizations ωN of the stochastic process P(θ1, θ2, y0 = 0) with θ1 = logB

3
2 and

θ2 = logB
1
2 . By Lemma 5.3 and Theorem 4.2 we obtain that (with α = 7.616)

EωN [D({y1, . . . , yN})] � CN−2(1+α)−1 � CN−1/18,

for an appropriate positive constant C. Using Markov’s inequality that Prob[Y � a]
� E[Y ]/a for a nonnegative random variable Y , we deduce that

Prob[D({y1, . . . , yn}) � N−1/36] � CN−1/36.

Invoking Lemma 5.2 we conclude that the exceptional set of m with 1 � m � 2N

such that D(ỸN (m)) � N−1/36 has cardinality at most CN−1/362N . By Lemma 5.1,
we know that for most 1 � m � 2N the sets YN (m) and ỸN (m) are very close
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term by term, and by Proposition 3.3 for such m the discrepancies D(YN (m)) and
D(ỸN (m)) are very nearly equal. Thus, we may deduce that the exceptional set of
m with 1 � m � 2N such that

D(YN (m)) � N−1/36 + 22−(1/100)N

has cardinality at most

CN−1/362N + 21+(99/100)N .

This easily gives the conclusion of the theorem for X = 2N .
It remains to treat the case X > 2N . Suppose �2N < X � (� + 1)2N , for some

� � 1. Since the discrepancies D(ỸN (m)) are periodic(mod 2N ) we see that the
exceptional set of m � X with large discrepancy contains no more than �+1 times
the number of exceptional m � 2N . This completes the proof.
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rotation vérifie une condition diophantienne’, Ann. Sci. École Norm. Sup. (4) 17 (1984)
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