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1. Regularity Conditions

ASSUMPTION 1: The parameter φ0 lies in the interior of a compact set B and gi(φ) is unbiased,

namely E0(gi(φ)) = 0, and continuously differentiable in φ.

ASSUMPTION 2: The meta extended score vector ḡ(φ) converges to Egi(φ) in probability

uniformly over B and Egi(φ) is continuous in φ.

ASSUMPTION 3: The sensitivity matrix ∂ḡ(φ) converges to E{∂gi(φ)} in probability uni-

formly in a neighbourhood N of φ0. E{∂gi(φ)} is continuous in φ and E{∂gi(φ
0)} = G.

Moreover, under the partition of G = (GAc
0
,GA0)

T , GAc
0

corresponds to the nonzero component

φAc
0

of φ.

ASSUMPTION 4: The weight matrix C(φ) in the QIF Q(·) is positive definite and is continuous

in φ ∈ B and C(φ) converges to cov{gi(φ)} in probability uniformly over B. At φ = φ0, let

Σ = cov{gi(φ0)}.

ASSUMPTION 5: For any k 6= k′ and φ0
k = φ0

k′ = 0, the initial root-n consistent estimators φ∗k

and φ∗k′ satisfy φ∗k − φ∗k′ = op(1).

Assumptions 1 - 4 are the standard regularity conditions required in the theory of Generalized

Method of Moment estimation (Hansen, 1982). Assumption 5 is required for the estimator φ̂F to

evaluate the ratio of two weights, which is, however, not required for the two proposed FLAPO

estimators φ̂F̃ and φ̂F̃e
. To establish finite-sample L1-norm error bounds, we need two extra

Assumptions 6 and 7 for λ and ∂Q(φ).

ASSUMPTION 6: The tuning parameter λ satisfies λ > J‖∂Q(φ0)‖∞ for a constant J > 1.

ASSUMPTION 7: For a given weight matrix F, there exists a constant κ > 0 so that Q(φ0 +

u)−Q(φ0) + ∂Q(φ0)Tu > κ‖u‖22 for u ∈ C(F) defined below in (1).
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Let û = φ̂− φ0, where φ̂ is the minimizer of the proposed penalized objective function when a

weight matrix F is used in the penalty function. By Assumptions 1 and 4, we knowQ(φ) is convex

around φ0, and therefore Q(û+ φ0) > ∂Q(φ0)T û. Thus, Assumption 6 leads to

λ(‖Fû+ Fφ0‖1 − ‖Fφ0‖1) 6 −Q(û+ φ0) 6 ‖∂Q(φ0)‖∞‖û‖1 6 J−1λ‖û‖1.

It follows that ‖FA0ûA0‖1 − ‖FAc
0
ûAc

0
‖1 6 J−1‖û‖1. Using this fact, we can define a set

C(F) = {u ∈ RKp : ‖FA0uA0‖1 − ‖FAc
0
uAc

0
‖1 6 J−1‖u‖1}. (1)

When the Hessian matrix of Q(φ) exists, assumption 7 essentially requires the smallest eigenvalue

of the Hessian matrix bounded away from 0 in a neighborhood of φ0 defined by C(F).

2. Algorithm for optimization

Since the proposed penalties use adjacent contrasts, their optimization procedures appear more

challenging than that of the popular lasso method. Our idea is to convert the optimization problem

into a computationally more manageable setup in order to facilitate numerical calculation. In the

following presentation, for convenience we focus on penalty P̃e(β) in the algorithm; but the entire

procedure can also be applicable to the other two penalties P̃ (β) and P (β) as well. As discussed in

Section 3 of the paper, we begin by approximating QIF Q(β) by a second-order Taylor expansion

at an initial consistent estimate β∗. These initial estimates may be obtained by performing routine

generalized estimating equation analysis with one study at a time, where the estimation consistency

holds when individual study mean models are correctly specified. Specifically, the second-order

approximation to the objective function Φ(β) = Q(β) + λP̃e(β) around β∗ is given by

Φ(β) ≈ Q∗ +
(
∂QT
∗
)

(β − β∗) +
1

2
(β − β∗)T

(
∂2Q∗

)
(β − β∗) + λ‖D̃eβ‖1, (2)

where Q∗, ∂Q∗ and ∂2Q∗ denote Q(β∗), the first-order and second-order derivatives of Q(β)

evaluated at β∗, respectively. Following the argument of Kim et al. (2009), let z = D̃eβ ∈ RKp
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and rewrite the local quadratic minimization of (2) as follows:{
min

β∈RKp,z∈RKp

{
Q∗ +

(
∂QT
∗
)

(β − β∗) + 1
2
(β − β∗)T (∂2Q∗) (β − β∗) + λ‖z‖1

}
subject to D̃eβ = z.

It follows that the Lagrangian formulation takes the form:

L(β, z, τ ) = Q∗ +
(
∂QT
∗
)

(β − β∗) +
1

2
(β − β∗)T

(
∂2Q∗

)
(β − β∗) + λ‖z‖1 + τ T (D̃eβ − z),

where τ ∈ RKp
+ is the Lagrangian multiplier. Being a function of β, the above objective function

L(β, z, τ ) is actually minimized at β = β∗ − (∂2Q∗)
−1(∂Q∗ + D̃T

e τ ), provided the existence of

(∂2Q∗)
−1. Moreover, the corresponding minimum is given by, up to a constant,

min
β∈RKp

L(β, z, τ ) = τ T D̃eβ
∗ − 1

2
(∂Q∗ + D̃T

e τ )T (∂2Q∗)
−1(∂Q∗ + D̃T

e τ ).

Also, minimizing the above objective function L(β, z, τ ) with respect to z gives the minimum:

min
z∈RKp

L(β, z, τ ) =

{
0, if ‖τ‖∞ < λ,

−∞, otherwise,

where ‖·‖∞ is the sup-norm. Therefore the dual optimization is to minimize the following (3) with

respect to τ : { min
τ∈R(K−1)p

+

− τ T D̃eβ
∗ + 1

2
(∂Q∗ + D̃T

e τ )T (∂2Q∗)
−1(∂Q∗ + D̃T

e τ )

subject to ‖τ‖∞ < λ.

(3)

Having the solution τ̂ of (3), we can update β via β̂ = β∗− (∂2Q∗)
−1(∂Q∗+ D̃T

e τ̂ ). In effect, the

optimization required in (3) is a quadratic programming problem with boundedness restrictions,

‖τ‖∞ < λ, which can be easily solved by applying one of the standard convex optimization

algorithms, e.g. the interior-point method (Nocedal and Wright, 2006).

3. Theorem

3.1 Lemmas

We first prove Lemma 1 given in Section 4 of the paper that is needed for Theorem 3, and then

establish Lemma 2 that is needed for the proof of Theorem A in a later section 3.5.
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Proof of Lemma 3.1. The estimated ordering of distinct parameter groups is determined by the

estimated ordering of different parameters. Parameters in the same parameter group do not matter

at all. This is because when β0
k,l = β0

k′,l, for any ε ∈ (0, 1)

pr(δ{β∗k′,l > β∗k,l} > ε) = pr(β∗k′,l > β∗k,l),

which depends on the asymptotic distributions of β∗k′,l and β∗k,l and does not necessarily converge to

0. However, the estimated ordering of β0
k,l and β0

k′,l when β0
k,l = β0

k′,l can not change the estimated

ordering of the parameter group that β0
k,l and β0

k′,l belong to.

Thus to prove this lemma, it is sufficient to show that when β0
k,l > β0

k′,l,

δ{β∗k′,l > β∗k,l}→δ{β0
k′,l > β0

k,l} = 0

in probability as n→∞. For any ε ∈ (0, 1),

pr(δ{β∗k′,l > β∗k,l} > ε) = pr(β∗k′,l > β∗k,l)

6 pr
{
|β∗k′,l − β∗k,l − (β0

k′,l − β0
k,l)| > β0

k,l − β0
k′,l

}
→ 0,

by the fact that β∗k′,l and β∗k,l are root-n consistent. This completes the proof of Lemma 3.1.

For a generalm×nmatrix A, we define (1, 1) operator norm ‖A‖1 for A by supu∈Rn:‖u‖1=1 ‖Au‖1.

LEMMA 2: For any weight matrix W,

‖W(φ0 + u)‖1 − ‖Wφ0‖1 > ρa
−1/2
0 ‖uA0‖1 − ‖WAc

0
‖1‖uAc

0
‖1,

where ρ = {ρmin(WT
A0

WA0)}1/2, ρmin(·) > 0 is the smallest nonzero eigenvalue of any square

matrix, a0 = |A0|, and ‖WAc
0
‖1 is (1, 1) operator norm for matrix WAc

0
.

Proof of Lemma 2.

‖W(φ0 + u)‖1 − ‖Wφ0‖1 =‖WA0uA0‖1 + ‖WAc
0
(φ0
Ac

0
+ uAc

0
)‖1 − ‖WAc

0
φ0
Ac

0
‖1

>‖WA0uA0‖1 − ‖WAc
0
uAc

0
‖1

>ρa−1/20 ‖uA0‖1 − ‖WAc
0
‖1‖uAc

0
‖1,

where ‖WAc
0
uAc

0
‖1 6 ‖WAc

0
‖1‖uAc

0
‖1 and ‖WA0uA0‖1 > ‖WA0uA0‖2 > ρa

−1/2
0 ‖uA0‖1.
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3.2 Proof of Proposition 1

Proof of Proposition 1. For notational simplicity, let φ̂ = φ̂F and Φ(φ) = Q(φ) + λP (φ).

Part (a): Following the argument of Fan and Li (2001) and Peng and Fan (2004), we show for any

ε > 0, there exists a large L independent of n such that the following (4) holds for all n sufficiently

large depending on ε

pr
{

inf
‖u‖2=L

Φ(φ0 + un−1/2) > Φ(φ0)

}
> 1− ε. (4)

This implies a local minimizer satisfying that φ̂−φ0 = Op(n
−1/2). Let φ = φ0 + un−1/2. By the

Taylor expansion of ḡ(φ) at φ0, ḡ(φ) = ḡ(φ0) + ∂ḡ(φ̃)T (φ − φ0), where φ̃ is between φ and

φ0. Applying Lemma 2 to F̃ and F respectively, we obtain

Φ(φ)− Φ(φ0)

=Q(φ) + λ‖F̃φ‖1 + λ‖Fφ‖1 −Q(φ0)− λ‖F̃φ0‖1 − λ‖Fφ0‖1

=nḡ(φ0)TC(φ)−1ḡ(φ0) + 2n(φ− φ0)T∂ḡ(φ̃)C(φ)−1ḡ(φ0)

+ n(φ− φ0)T∂ḡ(φ̃)C(φ)−1∂ḡ(φ̃)T (φ− φ0)− nḡ(φ0)TC(φ0)−1ḡ(φ0)

+ λ
(
‖F̃φ‖1 + ‖Fφ‖1 − ‖F̃φ0‖1 − ‖Fφ0‖1

)
>2uT∂ḡ(φ̃)C(φ)−1n1/2ḡ(φ0) + uT∂ḡ(φ̃)C(φ)−1∂ḡ(φ̃)Tu

+ λn−1/2
{

(ρ̃+ ρ)a
−1/2
0 ‖uA0‖1 − (‖F̃Ac

0
‖1 + ‖FAc

0
‖1)‖uAc

0
‖1
}

+ op(1)

=Op(‖u‖2) + uT∂ḡ(φ0)C(φ0)−1∂ḡ(φ0)Tu+ op(1),

where by Assumption 1 and the central limit theory, the unbiased estimating function n1/2ḡ(φ0) is

the order of Op(1), and

nḡ(φ0)TC(φ)−1ḡ(φ0)− nḡ(φ0)TC(φ0)−1ḡ(φ0) = op(1)

∂ḡ(φ̃)C(φ)−1n1/2ḡ(φ0)

=
[
∂ḡ(φ̃)C(φ)−1 − E{∂ḡ(φ0)C(φ0)−1}

]
n1/2ḡ(φ0) + GΣ−1n1/2ḡ(φ0)

=op(1) +Op(1),
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ρ̃ = {ρmin(F̃T
A0

F̃A0)}1/2, ρ = {ρmin(F
T

A0
FA0)}1/2, and by the condition of this theorem λn−1/2 →

0. Thus, when ‖u‖2 = L is large, Φ(φ) − Φ(φ0) is dominated by uT∂ḡ(φ0)C(φ0)−1∂ḡ(φ0)Tu,

which is bounded below by a spectral lower bound ‖u‖22λ(∂ḡ(φ0)C(φ0)−1ḡ(φ0)T ), positive defi-

nite and independent of n. This implies (4) and the proof is completed.

Part (b): Without loss of generality, we may assume p = 1 for simplicity of exposition. The

case of p > 1 can be proved similarly. Besides A0, we also define sets E0, E1, . . . , EK−1 where

E0 = {(1), (1, 2), (1, 2, 3), . . . , (1, . . . , K)}, E1 = {2, . . . , K}, E2 = {(2, 3), . . . , (k−1, k), (k, k+

1). . . . , (K−1, K)}, E3 = {(2, 3, 4), . . . , (k−2, k−1, k), (k−1, k, k+1), (k, k+1, k+2), . . . , (K−

2, K − 1, K)}, and EK−1 = {(2, 3, . . . , K)}. By this definition, E0 corresponds to K regression

coefficients represented by φ1, φ1 + φ2, . . . , φ1 + · · · + φK and E1 represents all differences of

adjacent parameter pairs, namely φ2, . . . , φK .

Let u = (u1, . . . , uK)T be a K-dimensional vector where uk ∈ [−ε, ε], ε > 0, for k = 1, . . . , K.

Around the true φ0, the objective function can be rewritten as

Φ(u) = Q(φ0 + un−1/2) + λ
∑
k∈E0

w1,...,k|
k∑
j=1

φj|+ λ
∑
k∈E1

wk(φ
0
k + ukn

−1/2)

+ λ
∑

(k,k+1)∈E2

wk,k+1

{
φ0
k + φ0

k+1 + (uk + uk+1)n
−1/2

}
+ · · ·

+ λ
∑

(2,...,K)∈EK−1

w2,...,K

{
φ0
2 + φ0

3 + · · ·+ φ0
K + (u2 + u2 + · · ·+ uK)n−1/2

}
,

where w1,...,k, wk, wk,k+1, . . . , w2,...,K are exactly the weights defined in equation (2) in the paper

but represented by φ1, . . . , φK . For example, wk = |β∗k+1 − β∗k|−1 = |φ∗k|−1, wk,k+1 = |β∗k+1 −
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β∗k−1|−1 = |φ∗k+1 + φ∗k|−1, and w2,3,...,K = |β∗K − β∗1 |−1 = |φ∗2 + · · ·+ φ∗K |−1. Using Φ(u), we let

V (u) =Φ(u)− Φ(0)

=Q(φ0 + un−1/2)−Q(φ0) + λ
∑
k∈E1

wk(|φ0
k + ukn

−1/2| − |φ0
k|)

+ λ
∑

(k1,k2)∈E2

wk1,k2

[
|φ0
k1

+ φ0
k2

+ (uk1 + uk2)n
−1/2| − |φ0

k1
+ φ0

k2
|
]

+ · · ·

+ λ
∑

(1,2,...,K)∈EK

w1,2,...,K

[
|φ0

1 + φ0
2 + · · ·+ φ0

K + (u1 + u2 · · ·+ uK)n−1/2|

− |φ0
1 + φ0

2 + · · ·+ φ0
K |
]

=Q(φ0 + un−1/2)−Q(φ0) + λI1(u) + · · ·+ λIK(u),

(5)

which is minimized at û = n1/2(φ̂− φ0). We first consider the limit of λI1(u), . . . , λIK(u).

(i) If φ0
k = 0 and uk 6= 0,

λwk(|φ0
k + ukn

−1/2| − |φ0
k|) = λn−1/2wk|uk| → ∞

by λ→∞ and (n−1/2wk)
−1 = n1/2φ∗k = Op(1).

(ii) If φ0
k 6= 0 and uk 6= 0,

λwk(|φ0
k + ukn

−1/2| − |φ0
k|)

= λn−1/2wk
[
(n1/2φ0

k + uk)sgn(n1/2φ0
k + uk)− n1/2φ0

ksgn(φ0
k)
]
→ 0 in probability

by λn−1/2 → 0, wk converges to (φ0
k)
−1 in probability and sgn(n1/2φ0

k + uk) → sgn(φ0
k) = 1 by

φ0
k > 0.

(iii) If uk = 0,

λwk(|φ0
k + ukn

−1/2| − |φ0
k|) = 0.

Let uA0 is the subvector of u indexed by the set A0. Thus, we can write (i), (ii) and (iii) as

λI1(u)→

{
0 if uA0 = 0

∞ if uA0 6= 0

in probability.

For λI2(u), we check (i) if φ0
k1

+φ0
k2
6= 0 and uk1 +uk2 6= 0, (ii) if φ0

k1
+φ0

k2
= 0 and uk1 +uk2 6= 0
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and (iii) if uk1 + uk2 = 0 to show

λI2(u)→

{
0 if uA0 = 0

∞ if uA0 6= 0

in probability.

Thus, we have that for k = 2, . . . , K,

λIk(u)→

{
0 if uA0 = 0

∞ if uA0 6= 0

in probability.

Now we consider the term Φ(φ0 + un−1/2)− Φ(φ0) in (5). Notice that

n1/2ḡ(φ0 + un−1/2) = n1/2ḡ(φ0) + ∂ḡ(φ∗)Tu→ Ψ + GTu in distribution

C(φ0 + un−1/2)−1 → Σ−1 in probability,

where φ∗ is between φ0 and φ0 + un−1/2, n1/2ḡ(φ0) converges to Ψ ∼ N(0,Σ) in distribution

and ∂ḡ(φ∗) converges to G in probability. Thus as n→∞

Φ(φ0 + un−1/2)− Φ(φ0)→ (Ψ + GTu)TΣ−1(Ψ + GTu)−ΨTΣ−1Ψ

= 2ΨTΣ−1GTu+ uTGΣ−1GTu,

and

V (u)→

{
2ΨTΣ−1GT

Ac
0
uAc

0
+ uTAc

0
GAc

0
Σ−1GT

Ac
0
uAc

0
if uA0 = 0

∞ if uA0 6= 0

,

in distribution, which is minimized at uAc
0

= −(GAc
0
Σ−1GT

Ac
0
)−1GAc

0
Σ−1Ψ and uA00 = 0.

By the part (a), we know û = Op(1). Then, according to the Lemma 5.1 and Proposition 4.2 in

Geyer (1994), we have

n1/2(φ̂− φ0) = û =

 ûAc
0

ûA0

→
 −(GAc

0
Σ−1GT

Ac
0
)−1GAc

0
Σ−1Ψ

0

 .

in distribution as n→∞.

Part (c): Next we show the sparsity result, Â0→A0 in probability, which is equivalent to

pr(k ∈ Â0 | k ∈ A0)→ 1, pr(k ∈ Â0 | k ∈ Ac0)→ 0.

When k ∈ Ac0, the above normality results show pr(k ∈ Â0 | k ∈ Ac0) → 0. When k ∈ A0 but
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φ̂k 6= 0, we consider the following KKT optimality condition,

∂kΦ(φ̂) =∂kQ(φ̂) + bk(φ̂),

and

b1(φ̂) =λw1

{
sgn(φ̂1) +

w1,2

w1

∂k|
2∑
j=1

φ̂j|+ · · ·+
w1,...,K

w1

∂k|
K∑
j=1

φ̂j|
}

k = 1,

bk(φ̂) =λwk

{
1 +

∑
k′∈E0,k′>k

w1,...,k′

wk
|
k′∑
j=1

φj|+
wk,k+1

wk
(φ̂k + φ̂k+1) +

wk−1,k
wk

(φ̂k−1 + φ̂k)

+ · · ·+ w2,...,K

wk
(φ̂2 + · · ·+ φ̂K)

}
1 < k < K,

bK(φ̂) =λwK

{
1 +

w1,...,K

wK
|
K∑
j=1

φj|+
wK−1,K
wK

(φ̂K−1 + φ̂K)

+ · · ·+ w2,...,K

wK
(φ̂2 + · · ·+ φ̂K)

}
k = K,

where ∂kQ(φ) = ∂Q(φ)/∂φk and ∂k is the subdifferential operation for φ̂k. By the root-n consis-

tency of φ̂, it can be obtained that

∂kQ(φ̂) = 2nḡ(φ̂)TC(φ̂)−1∂kḡ(φ̂) + op(1)

= 2nḡ(φ0)TC(φ̂)−1∂kḡ(φ̂) + n(φ̂− φ0)T∂g(φ̃)TC(φ̂)−1∂kg(φ̂) + op(1) = Op(n
1/2).

Next we consider the following two cases:

(i) Any weight w∗, whose calculation involves, besides φ∗k for k ∈ A0, an initial estimate φ∗k′ for

k′ ∈ Ac0 and k′ 6= k, is op(wk). For example if k2 ∈ Ac0 and k2 6= k

wk,k2
wk

=
n1/2φ∗k

n1/2φ∗k + n1/2(φ∗k2 − φ
0
k2

) + n1/2φ0
k2

= Op(n
−1/2).

(ii) Any weight w∗, whose calculation only involves, besides φ∗k for k ∈ A0, an initial zero

estimate φ∗k′ for k′ ∈ A0 and k′ 6= k, satisfies that

w∗

wk
= ζ∗ + op(1),

where ζ∗ is a fraction with 0 < ζ∗ < 1. For example, for k2 ∈ A0 and k2 6= k, according to
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assumption 5,

wk,k2
wk

=
φ∗k

φ∗k + φ∗k2
=

1

2
+ op(1).

When 1 ∈ A0 and φ̂1 6= 0, there always exists k′, 1 6 k′ 6 K, such that φ0
1 = · · · = φ0

k′ = 0 and

we can obtain

b1(φ̂) =λw1

{
sgn(φ̂1) +

w1,2

w1

∂1|
2∑
j=1

φ̂j|+ · · ·+
w1,...,K

w1

∂1|
K∑
j=1

φ̂j|
}

=λw1

{
sgn(φ̂1) +

1

2
∂1|

2∑
j=1

φ̂j|+ · · ·+
1

k′
∂1|

k′∑
j=1

φ̂j|+Op(n
−1/2)

}
,

where 1
2
∂1|
∑2

j=1 φ̂j| + · · · +
1
k′
∂1|
∑k′

j=1 φ̂j| cannot be an integer by the properties of partial sum

of harmonic series. Thus

b1(φ̂)n−1/2 =
λ

n1/2w−11

=
λ

Op(1)
→∞.

When k ∈ A0, 1 < k 6 K, and φ̂k 6= 0, we have

bk(φ̂) =λwk

{
1 +

∑
k′∈E0,k′>k

w1,...,k′

wk
∂k|

k′∑
j=1

φj|+
wk,k+1

wk
+
wk−1,k
wk

+ · · ·+ w2,...,K

wk

}
,

where
∑

k′∈E0,k′>k
w1,...,k′

wk
∂k|
∑k′

j=1 φj|+
wk,k+1

wk
+

wk−1,k

wk
+ · · ·+ w2,...,K

wk
converges in probability to

a partial sum of a harmonic series, which can not be an integer. Thus,

bk(φ̂)n−1/2 =
λ

n1/2w−1k
=

λ

Op(1)
→∞.

When K ∈ A0 and φ̂K 6= 0, similarly we can obtain

bK(φ̂)n−1/2 =
λ

n1/2w−1K
=

λ

Op(1)
→∞.

Thus for k ∈ A0 and φ̂k 6= 0,

∂kΦ(φ̂)n−1/2 = ∂kQ(φ̂)n−1/2 + bk(φ̂)n−1/2 = Op(1) +
λ

n1/2w−1k
,

which is nonzero and converges to∞ in probability. This implies

pr(k ∈ Âc0 | k ∈ A0)→ 0.
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3.3 Proof of Theorem 2

Proof of Theorem 2. Part (a) and (b) can be proved in the exact same way as Proposition 1. For

part (c), we only need to modify bk(φ) for φ̂F̃ , which is

b1(φ̂) = λw1sgn(φ̂1)

bk(φ̂) = λwk, for k = 2, . . . , K.

The result is proved by following the steps in Proposition 1.

3.4 Proof of Theorem 3

Proof of Theorem 3. Let us define a set T =
⋂p
l=1{T ∗l = Tl} and let φ̂T be φ̂F̃e

when T occurs;

otherwise the estimator is denoted by φ̂T c . Thus φ̂F̃e
may be represented as φ̂F̃e

= φ̂T δ{T } +

φ̂T cδ{T c}, where δ{T } is an indicator for whether T occurs. Then

n1/2(φ̂F̃e
− φ0) = n1/2(φ̂T − φ0)δ{T }+ n1/2(φ̂T c − φ0)δ{T c}.

Note the following facts: (i) n1/2(φ̂T − φ0) = Op(1) by Theorem 2; (ii) n1/2(φ̂T c − φ0) = Op(1)

by part (a) of Proposition 1; and (iii) δ{T c} = op(1) and δ{T } − 1 = op(1) by Lemma 1. It

follows that n1/2(φ̂F̃e
−φ0) isOp(1). Furthermore, given n1/2(φ̂T c−φ0)δ{T c} = op(1), Slutsky’s

Theorem ensures that n1/2(φ̂F̃e
−φ0) and n1/2(φ̂T −φ0) converge weakly to the same distribution

as n goes to infinity. Let Â0e denote the estimated configuration of parameter homogeneity given

by equation (10) in the paper based on the estimator φ̂F̃e
, then we have

pr(Â0e = A0) = pr
(
Â0e = A0 | T

)
pr (T ) + pr

(
Â0e = A0 | T c

)
pr (T c)→ 1 as n→∞.

Summarizing the above outline of arguments, Theorem 3 is proved.

3.5 Finite-sample error bounds

Here we establish finite-sample error bounds for the proposed three estimators. Our derivation is

made along the lines similar to that given by Negahban et al. (2009) for general M-estimators under

the lasso penalty. Although the three estimators φ̂F , φ̂F̃ and φ̂F̃e
share the same asymptotic prop-

erties, φ̂F̃ turns out to have smaller finite-sample error bounds than φ̂F , when weights are properly
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assigned to zero parameters in φ0
A0

. Let ρmin(A) > 0 generically denote the smallest nonzero

eigenvalue of a square matrix A, and let ρ̃ = {ρmin(F̃T
A0

F̃A0)}1/2 and ρ = {ρmin(F
T

A0
FA0)}1/2.

For a generalm×nmatrix A, we use ‖A‖1 to denote (1, 1) operator norm defined by supu∈Rn:‖u‖1=1 ‖Au‖1.

The following Theorem A establishes error bounds for estimators of nonzero and zero parameters

φ0
Ac

0
and φ0

A0
, respectively, when the parameter ordering is known.

THEOREM A: Let r = a0/b0, with a0 = card(A0) and b0 = card(Ac0). Under assumptions 1-5

and 6-7 given in the Supplementary Materials, we have the following finite-sample L1-norm error

bounds.

(a) The estimator φ̂F satisfies:

‖φ̂FA0‖1 6 λ
−ωA0 +

(
ω2
A0

+ ϕA0ϕ
−1
Ac

0
ω2
Ac

0

)1/2
2ϕA0

6 λ
−2ωA0δ{ωA0 < 0}+ r1/2ωAc

0

2ϕA0

‖φ̂FAc
0
− φ0

Ac
0
‖1 6 λ

ωAc
0

+
(
ω2
Ac

0
+ ϕAc

0
ϕ−1A0

ω2
A0
δ{ωA0 < 0}

)1/2
2ϕAc

0

6 λ
2ωAc

0
− r−1/2ωA0δ{ωA0 < 0}

2ϕAc
0

,

(6)

where ωA0 = (ρ̃ + ρ)a
−1/2
0 − J−1, ωAc

0
= ‖F̃Ac

0
‖1 + ‖FAc

0
‖1 + J−1 > 0, ϕA0 = κ/a0, and

ϕAc
0

= κ/b0. Two constants J > 1 and κ > 0 are given in assumptions 6 and 7, respectively, in the

Supplementary Materials.

(b) For the estimator φ̂F̃ , the error bounds of ‖φ̂F̃A0
‖1 and ‖φ̂F̃Ac

0
− φ0

Ac
0
‖1 satisfy inequalities in

(6) with ωA0 = ρ̃a
−1/2
0 − J−1 and ωAc

0
= ‖F̃Ac

0
‖1 + J−1 > 0.

(c) When a1/20 < ρ̃J , we have ‖φ̂F̃Ac
0
− φ0

Ac
0
‖1 < ‖φ̂FAc

0
− φ0

Ac
0
‖1, and ‖φ̂F̃A0

‖1 < ‖φ̂FA0‖1.

We have a few remarks on the results of finite sample error bounds given in Theorem A.

Remark 1: For large n, with a probability close to 1 we can estimate the parameter ordering, so
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the estimator φ̂F̃e
also satisfies ‖φ̂F̃eAc

0
− φ0

Ac
0
‖1 < ‖φ̂FAc

0
− φ0

Ac
0
‖1, and ‖φ̂F̃eA0

‖1 < ‖φ̂FA0‖1.

This theoretical result is confirmed numerically in our simulation study.

Remark 2: (ρ̃ + ρ)a
−1/2
0 may be regarded as the “average smallest weight” for zero coefficients

in φA0 , while ‖F̃Ac
0
‖1 + ‖F̄Ac

0
‖1 may be regarded as “the largest weight” for nonzero coefficients

in φAc
0
. If ωA0 is nonnegative, namely (ρ̃ + ρ)a

−1/2
0 > J−1, then δ{ωA0 < 0} = 0, implying that

neither the error bounds for ‖φ̂A0‖ nor those for ‖φ̂Ac
0
− φ0

Ac
0
‖1 depends on ωA0 . However, if ωA0

is negative or (ρ̃ + ρ)a
−1/2
0 < J−1, then δ{ωA0 < 0} = 1, and therefore the two error bounds are

inversely proportional to ωA0 .

It is interesting to note that the former case (ωA0 > 0) may occur for large n. This is because

in this case the weights for zero parameters in φA0 diverge, so both ρ and ρ̃ tend to ∞, leading

to positive ωA0 . Thus, for large n, the two error bounds are smaller for φ̂F̃e
than φ̂F . The latter

case may occur when b0 = card(Ac0) is large, i.e. the pattern of unequal parameters becomes more

complex.

Remark 3: the two error bounds in (6) are both proportional to the weight ωAc
0
. This implies that

large weights used in the penalty for nonzero parameters in Ac0 may weaken the finite sample

performance of the proposed FLAPO method.

Theorem A and the above remarks provide a theoretical basis to apply the penalty P̃e(·) in

practice, as φ̂F̃e
enjoys smaller error bounds than φ̂F for large n. These properties are further

examined and confirmed by the simulation studies in Section 5 of the paper.

Proof of Theorem A.

We here provide the proof of part (a), and proofs of part (b) and part (c) are trivial consequences

from part (a), so the detail is omitted. Let φ̂ = û+φ0. First, according to the definition of the first

estimator φ̂ using all possible pairwise differences in the penalty, Φ(φ0 + û) − Φ(φ0) 6 0. Next

we derive the upper bound of û from Φ(φ0 + û)−Φ(φ0). By Assumptions 6 and 7, for û ∈ C(F),
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we have

Q(φ0 + û)−Q(φ0) > −λ
J
‖û‖1 + κ‖û‖22, (7)

We also can bound ‖F̃(φ0 + û)‖1 − ‖F̃φ0‖1 from below as follows,

‖F̃(φ0 + û)‖1 − ‖F̃φ0‖1 =‖F̃A0ûA0‖1 + ‖F̃Ac
0
(φ0
Ac

0
+ ûAc

0
)‖1 − ‖F̃Ac

0
φ0
Ac

0
‖1

>‖F̃A0ûA0‖1 − ‖F̃Ac
0
ûAc

0
‖1

>ρ̃a−1/20 ‖ûA0‖1 − ‖F̃Ac
0
‖1‖ûAc

0
‖1,

where ‖F̃Ac
0
ûAc

0
‖1 6 ‖F̃Ac

0
‖1‖ûAc

0
‖1, ‖F̃A0ûA0‖1 > ‖F̃A0ûA0‖2 > ρ̃a

−1/2
0 ‖ûA0‖1. Similarly we

obtain

‖F(φ0 + û)‖1 − ‖Fφ0‖1 >ρa−1/20 ‖ûA0‖1 − ‖FAc
0
‖1‖ûAc

0
‖1.

Therefore

‖F̃(φ0 + û)‖1 − ‖F̃φ0‖1 + ‖F(φ0 + û)‖1 − ‖Fφ0‖1

>(ρ̃+ ρ)a
−1/2
0 ‖ûA0‖1 − (‖F̃Ac

0
‖1 + ‖FAc

0
‖1)‖ûAc

0
‖1.

(8)

(7) and (8) imply

−λ
J
‖û‖1 + κ‖û‖22 + λ(ρ̃+ ρ)a

−1/2
0 ‖ûA0‖1 − λ(‖F̃Ac

0
‖1 + ‖FAc

0
‖1)‖ûAc

0
‖1 6 0

κ‖ûA0‖22 + κ‖ûAc
0
‖22 + λωA0‖ûA0‖1 − λωAc

0
‖ûAc

0
‖1 6 0

ϕA0‖ûA0‖21 + ϕAc
0
‖ûAc

0
‖21 + λωA0‖ûA0‖1 − λωAc

0
‖ûAc

0
‖1 6 0,

(9)

where ϕA0 = κa−10 , ϕAc
0

= κb−10 , ωA0 = (ρ̃+ ρ)a
−1/2
0 − J−1, ωAc

0
= ‖F̃Ac

0
‖1 + ‖FAc

0
‖1 + J−1 > 0

and ωA0 + ωAc
0
> 0. Next we solve (9) for two cases:

(i) ωA0 > 0.

(i.a) We solve (9) for ‖ûA0‖1 when ‖ûAc
0
‖1 is fixed. It is easy to derive two inequalities, namely,

b2 − 4c > 0, −b+ (b2 − 4c)1/2 > 0,
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where b =
λωA0

ϕA0
and c = 1

ϕA0
(ϕAc

0
‖ûAc

0
‖21 − λωAc

0
‖ûAc

0
‖1). The two inequalities imply that

‖ûAc
0
‖1 6 min

{
λ
ωAc

0
+ (ω2

Ac
0

+ ϕAc
0
ϕ−1A0

ω2
A0

)1/2

2ϕA0

, λ
ωAc

0

ϕAc
0

}
= λ

ωAc
0

ϕAc
0

‖ûAc
0
‖1 > max

{
λ
ωAc

0
− (ω2

Ac
0

+ ϕAc
0
ϕ−1A0

ω2
A0

)1/2

2ϕA0

, 0

}
= 0.

Thus we have

0 6 ‖ûAc
0
‖1 6 λ

ωAc
0

ϕAc
0

.

(i.b) Similarly by solving (9) for ‖ûAc
0
‖1 when ‖ûA0‖1 is fixed, we obtain

b2 − 4c > 0, −b+ (b2 − 4c)1/2 > 0,

where b = −
λωAc

0

ϕAc
0

and c = 1
ϕAc

0

(ϕA0‖ûA0‖21 + λωA0‖ûA0‖1). Thus, we obtain

‖ûA0‖1 6 λ
−ωA0 + (ω2

A0
+ ϕA0ϕ

−1
Ac

0
ω2
Ac

0
)1/2

2ϕA0

‖ûA0‖1 > max

{
λ
−ωA0 − (ω2

A0
+ ϕA0ϕ

−1
Ac

0
ω2
Ac

0
)1/2

2ϕA0

, 0

}
= 0.

Thus, ‖ûA0‖1 satisfies

0 6 ‖ûA0‖1 6 λ
−ωA0 + (ω2

A0
+ ϕA0ϕ

−1
Ac

0
ω2
Ac

0
)1/2

2ϕA0

.

(ii) ωA0 < 0.

(ii.a) We repeat the same procedure to solve (9) for ‖ûA0‖1 when ‖ûAc
0
‖1 is fixed as we did in part

(i.1). Let a = ϕA0 , b = λωA0 and c = ϕAc
0
‖ûAc

0
‖21−λωAc

0
‖ûAc

0
‖1. Thus, we obtain two inequalities

b2 − 4ac > 0, −b+ (b2 − 4ac)1/2 > 0.

Solving the two inequalities, we have

‖ûAc
0
‖1 6 λ

ωAc
0

+ (ω2
Ac

0
+ ϕAc

0
ϕ−1A0

ω2
A0

)1/2

2ϕAc
0

,

‖ûAc
0
‖1 > max

{
λ
ωAc

0
− (ω2

Ac
0

+ ϕAc
0
ϕ−1A0

ω2
A0

)1/2

2ϕAc
0

, 0

}
= 0,

and thus

0 6 ‖ûAc
0
‖1 6 λ

ωAc
0

+ (ω2
Ac

0
+ ϕAc

0
ϕ−1A0

ω2
A0

)1/2

2ϕAc
0

.
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(ii.b) Similarly we fix ‖ûA0‖1 and obtain two inequalities

b2 − 4ac > 0, −b+ (b2 − 4ac)1/2 > 0,

where a = ϕAc
0
, b = −λωAc

0
and c = ϕA0‖ûA0‖21 + λωA0‖ûA0‖1. We solve the two inequalities

and obtain

‖ûA0‖1 6 λ
−ωA0 + (ω2

A0
+ ϕA0ϕ

−1
Ac

0
ω2
Ac

0
)1/2

2ϕA0

,

‖ûA0‖1 > max

{
λ
−ωA0 − (ω2

A0
+ ϕA0ϕ

−1
Ac

0
ω2
Ac

0
)1/2

2ϕA0

, 0

}
= 0,

which implies

0 6 ‖ûA0‖1 6 λ
−ωA0 + (ω2

A0
+ ϕA0ϕ

−1
Ac

0
ω2
Ac

0
)1/2

2ϕA0

.

Thus we complete the proof of Theorem A.

4. Simulation study II

Here we include the detail of the second simulation experiment for longitudinal binary outcomes.

Refer to Section 5 for the aims of the simulation study. To examine our method’s performance in

a different setting, we design the another simulation study which generates 6 datasets with binary

longitudinal outcomes from the following logistic models:

logit{E(Yk,ij | Xk,i, Zk,ij)} = β0
k,0 + β0

k,1Xk,i + β0
k,2Zk,ij

j = 1, . . . , 4, k = 1, . . . , 6, i = 1, . . . , nk,

where a baseline covariate Xk,i is generated from Bernoulli(0.2) and a time-dependent covari-

ate Zk,i = (Zk,i1, . . . , Zk,i4)
T is simulated from 4-variate normal N(0, 0.5I4). We set Rk(·) for

k = 1, 4, 6 as AR-1 and for k = 2, 3, 5 as CS, respectively, with equal correlation 0.5. The

two cases of parameter homogeneity are considered, where Case II is set to have more distinct

parameter groups than Case I. The vector of intercepts is set the same for both cases with all

elements being −1; in Case I, the vectors of slope parameters for covariates X and Z are re-

spectively set as β0
1 = (−2,−2,−2,−2,−2,−2)T and β0

2 = (3, 3, 3, 4, 4, 4)T , while in Case
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II, β0
1 = (−2,−2,−1, 2, 2, 2)T and β0

2 = (3, 3, 4, 4, 4, 4)T . Clearly, the numbers of distinctive

parameters in β0
(1) and β0

(2) are 4 for Case I and 5 for Case II, respectively.

Given the above configuration of slope parameters and correlation structures, the multivariate

binary outcome Yk,i is simulated by an algorithm proposed by Oman (2009). Matrices D, D̃ and

D̃e are formed in the same way as those given in the first simulation study. The dimensions of

resulting penalty matrices D, D̃ and D̃e are 30 by 18, 10 by 18 and 10 by 18, respectively.

Based on 200 rounds of simulation, we summarize results in Table 1, from which we can draw

similar conclusions to those given in the first simulation study. Again, we see all three methods

perform better in Case I than in Case II as Case II has more distinct parameter groups. Using the

criteria of sensitivity and specificity, we see that β̂D̃ remains the best performer, and that the overall

performance of β̂D̃e
again outperforms β̂D. The model sizes obtained by the three methods all stay

close to the true model sizes.

[Table 1 about here.]
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Table 1
Sensitivity (se100, se90), specificity (sp100, sp90), model size (size) and standard deviation of model size for the Case I and Case
II in the simulation study II using different penalty matrices. Se100 and se90 represent the sensitivities computed based on 100%
and 90% correct identification of all equal parameter pairs, respectively. Sp100 and sp90 are defined in the similar way but for

unequal parameter pairs.
Case AR-1 CS

Penalty nk Se100(Se90) Sp100(Sp90) Size(Std) Se100(Se90) Sp100(Sp90) Size(Std)

I, D̃

100 0.300(0.400) 1.000(1.000) 5.585(1.978) 0.225(0.305) 0.990(0.990) 5.885(2.050)
200 0.440(0.545) 1.000(1.000) 4.805(1.064) 0.350(0.470) 1.000(1.000) 5.195(1.533)
400 0.545(0.630) 1.000(1.000) 4.600(0.737) 0.545(0.650) 1.000(1.000) 4.630(0.910)

I, D̃e

100 0.255(0.385) 0.995(1.000) 5.380(1.999) 0.185(0.290) 1.000(1.000) 5.620(1.906)
200 0.440(0.550) 1.000(1.000) 4.745(1.075) 0.350(0.460) 1.000(1.000) 5.185(1.491)
400 0.530(0.620) 1.000(1.000) 4.580(0.711) 0.490(0.600) 1.000(1.000) 4.655(0.754)

I, D
100 0.260(0.480) 0.985(0.985) 5.120(1.904) 0.250(0.400) 0.995(1.000) 5.310(1.950)
200 0.430(0.650) 1.000(1.000) 4.515(1.121) 0.345(0.555) 1.000(1.000) 4.910(1.443)
400 0.495(0.740) 1.000(1.000) 4.675(0.838) 0.490(0.740) 1.000(1.000) 4.660(0.817)

II, D̃

100 0.290(0.505) 0.610(0.640) 5.935(1.598) 0.200(0.375) 0.650(0.685) 6.470(1.793)
200 0.495(0.650) 0.790(0.790) 5.535(1.102) 0.405(0.590) 0.775(0.780) 5.805(1.355)
400 0.600(0.725) 0.960(0.970) 5.515(0.757) 0.540(0.705) 0.965(0.970) 5.580(0.853)

II, D̃e

100 0.190(0.370) 0.455(0.535) 5.900(1.742) 0.130(0.300) 0.520(0.610) 6.285(1.800)
200 0.355(0.585) 0.645(0.645) 5.525(1.129) 0.270(0.490) 0.645(0.660) 5.795(1.265)
400 0.460(0.640) 0.890(0.925) 5.665(0.828) 0.445(0.635) 0.885(0.920) 5.700(0.857)

II, D
100 0.160(0.410) 0.390(0.465) 5.630(1.693) 0.110(0.310) 0.445(0.540) 6.070(1.664)
200 0.275(0.615) 0.615(0.615) 5.555(1.306) 0.230(0.550) 0.625(0.635) 5.715(1.372)
400 0.340(0.630) 0.850(0.885) 5.945(1.085) 0.360(0.650) 0.860(0.890) 5.955(1.131)


