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SUMMARY: Combining multiple studies is frequently undertaken in biomedical research to increase sample sizes for statistical

power improvement. We consider the marginal model for the regression analysis of repeated measurements collected in several

similar studies with potentially different variances and correlation structures. It is of great importance to examine whether there

exist common parameters across study-specific marginal models so that simpler models, sensible interpretations and meaningful

efficiency gain can be obtained. Combining multiple studies via the classical means of hypothesis testing involves a large number

of simultaneous tests for all possible subsets of common regression parameters, in which it results in unduly large degrees of

freedom and low statistical power. We develop a new method of fused lasso with the adaptation of parameter ordering (FLAPO)

to scrutinize only adjacent-pair parameter differences, leading to a substantial reduction for the number of involved constraints.

Our method enjoys the oracle properties as does the full fused lasso based on all pairwise parameter differences. We show that

FLAPO gives estimators with smaller error bounds and better finite sample performance than the full fused lasso. We also establish

a regularized inference procedure based on bias-corrected FLAPO. We illustrate our method through both simulation studies and

an analysis of HIV surveillance data collected over five geographic regions in China, in which the presence or absence of common

covariate effects are reflective to relative effectiveness of regional policies on HIV control and prevention.
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FLAPO 1

1. Introduction

This paper concerns regression analysis of repeated measurements from multiple studies using

the marginal model. When the sample size of a biomedical study is not large enough to achieve

adequate statistical precision, it is a common practice to combine data from several similar studies

(Zhang et al., 2007; Thase et al., 2009). For instance, in a study of prostate-specific antigen,

Inoue et al. (2004) studied the pattern of the prostate-specific antigen growth by combining three

longitudinal studies to obtain adequate sample sizes to reach satisfactory statistical power.

Arguably the increased sample size by combining data from similar studies cannot always lead

to desirable improvement in estimation efficiency or testing power, especially when datasets are

sampled from heterogeneous subpopulations. In meta analysis, a strong assumption of equal pa-

rameters from individual studies is routinely imposed in order to combine study-specific estimates.

When data from different subpopulations are blindly assumed to have common regression param-

eters without any a priori data evidence or as such, it would be hard to interpret the estimated

covariate effects. Thus, with the availability of subject-level data, one of the primary tasks before

combining multiple datasets is to check parameter homogeneity across multiple studies. In this

paper, we are interested in developing a methodology that enables us to examine and identify sets

of homogeneous (or common) regression coefficients across multiple studies. As a result, we may

simplify the formation of the mean model, and consequently yield sensible interpretations and

meaningful efficiency gain from combining multiple data sets.

Our methodology development was motivated by a national HIV surveillance project on injection

drug users (IDUs) in a southwestern province of China. By the end of 2006, China has established

393 national and 370 provincial monitoring sites reporting HIV incidences to the national center

for AIDS/sexually transmitted disease control and prevention (Sun et al., 2007). Provincial HIV

sentinel surveillance program involved community health center, hospitals and drug addiction

treatment centers at which surveys were conducted among high risk groups of IDUs.
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2 Biometrics, 2014

The HIV surveillance data were collected between 2006 and 2009 using stratified sampling from

67 hospitals, community health center, and drug addiction treatment centers as primary sample

units to monitor incidences of HIV infection among IDUs in the study area. All IDUs sampled in

the surveys were tested for HIV and interviewed for their behavioral characteristics related to drug

usage, e.g. if they inhale drugs, if they share needles with other IDUs, and if they are infected by

syphilis virus. Cluster sizes of primary sample units varied greatly from 11 to 440 IDUs.

The study contains five regions termed as A, B, C, D, and E, which are very different in many

aspects, such as population size, HIV prevalence, and socioeconomic status. For example, A is the

largest metropolitan city in the province, whereas E is primarily dominated by minorities living in

mountain villages. Thus, it is expected that highly diversified backgrounds and behaviors of IDUs

across these regions possibly lead to different trends and covariate effects on HIV positive.

The focus of this study was on the association between behavioral activities and HIV positive,

among which needle sharing is the central variable that has been proved as a critical factor for

the infection of HIV. In particular, the provincial Center for Disease Control was interested in

assessing the effectiveness of measures on needle sharing control across the five regions. This

required to identify common effects of needle sharing so that similar effectiveness of policies on

disease control and prevention may be clustered in the five regions.

Desirable properties for an approach used in combining multiple studies with repeated measure-

ments include flexibility and robustness with respect to heterogeneous characteristics across study

cohorts, such as discrepancies of within-cluster correlation, dispersion or longitudinal follow-

up schedule. Meta analysis (Hartung et al., 2008; Hedges and Olkin, 1985), e.g. Cocharn’s test

(Cochran, 1954), assumes all study-specific parameters are equal to a population parameter. Meta

analysis utilizes individual estimates, instead of full datasets, to provide an overall combined esti-

mator for the population parameter. This approach focuses more on providing inferential summary

than identifying parameter structures existing in multiple studies. Also, Wang et al. (2012) showed
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FLAPO 3

that Cocharn’s test is unable to control Type I error against heterogeneous covariances in multiple

longitudinal studies. In regard to generalized estimating equations (Zeger and Liang, 1986), several

versions of modified sandwich covariance estimators have been proposed to account for various

types of heterogeneities; refer to Wang et al. (2012) and more references therein. However, all

existing approaches are greatly challenged by the large number of simultaneous hypotheses to

be checked for coefficient homogeneity when many studies and/or many covariates in individual

studies are involved. In effect, the number of tests required in the case of K studies, each of which

contains p covariates, is of order C(K, 2)p, where C(K, 2) = K(K − 1)/2 is the number of

combinations of two studies out of K studies. When either K, or p, or both are large, the degrees

of freedom of a test statistic increase rapidly, leading to low power. To deal with such issue of

high-dimensionality, Ke et al. (2015) proposed a clustering algorithm to identify homogeneous

parameter groups in a single regression model by taking the advantage of preliminary estimates

obtained under full heterogeneity.

Alternatively, meta analysis may be tackled by Bayesian approaches in that random effects

models are typically used to account for similarity and discrepancy among multiple studies (Smith

et al., 1995). Müller et al. (2004) proposed a combined inference over several Bayesian models

using a mixture of a common distribution and an idiosyncratic distribution specific to each study.

Dunson (2006) considered a dynamic mixture of Dirichlet processes to account for heterogeneity

of latent response distributions. Also see Dunson et al. (2008) concerning an approach of matrix

stick-breaking processes for inter-study heterogeneity. In most of these Bayesian approaches, prior

specification and computing based on the MCMC algorithm are not straightforward.

In contrast to Ke et al. (2015)’s method in a single study, we consider issues arising from com-

bining multiple studies from a Frequentist point of view. We propose a new method by generalizing

the fused lasso method (Tibshirani et al., 2005) in a system of parallel estimating functions, each

formed for one study. We propose an objective function that automatically allocates balanced
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4 Biometrics, 2014

weighting on different studies, so that none of studies would dominate the resulting objective

function. Another contribution in this paper is rooted in an appealing adjustment on the penalty

function through the adaptation of parameter ordering. This new adaptive approach is different

from Zou’s (2006) adaptive lasso, which incorporates the magnitudes of initial estimates to rescale

the amounts of penalty on individual regression parameters. In the specification of contrasts in

the fused lasso, we hope make a trade-off between sufficiency and conciseness, so that although

only using a subset of adjacent parameter differences we can still sufficiently cover the spectrum

of parameter structures in the regularized estimation. As a result, our proposed method, termed as

fused lasso with the adaptation of parameter ordering (FLAPO), not only can identify common co-

efficients shared in multiple studies but also can reduce the uncertainty and complications pertinent

to redundant constraints in pairwise comparisons. As shown in simulation studies and Theorem

A in the Supplemental Materials, our proposed FLAPO exhibits smaller error bounds and better

finite-sample performance than the full fused lasso that uses all possible pairwise constraints in the

regularization. Following van de Geer et al. (2014), we provide an inference procedure in FLAPO,

which is applied to analyze the HIV surveillance data with conclusion of statistical significance.

The rest of this paper is organized as follows. Section 2 concerns both model formulation and

FLAPO methodology. Section 3 presents an algorithm for algorithmic implementation. Section 4

present theoretical results for FLAPO. After simulation studies in Section 5, Section 6 presents the

analysis of the HIV surveillance data. Section 7 provides concluding remarks. The Supplementary

Web Materials includes relevant technical details and extra numerical results.

2. Formulation and Method

We consider K studies, where study k, k = 1, . . . , K, collects nk clusters, and cluster i contains

mk,i repeated measurements, i = 1, . . . , nk. Let Yk,ij denote the outcome and Xk,ij denote a p-

dimensional covariate vector for the jth observation of cluster i in study k, where j = 1, . . . ,mk,i.

For the ease of exposition, we let n =
∑K

k=1 nk and assume all studies have the same numbers
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FLAPO 5

of repeated measurements; that is, all mk,i = m. For study k, the marginal model is specified as

follows: the conditional mean of Yk,ij takes the form of E(Yk,ij | Xk,ij) = µk,ij = h(XT
k,ijβ

0
k),

and the conditional variance of Yk,ij is given by var(Yk,ij | Xk,ij) = σkv(µk,ij), where σk is

the dispersion parameter, h(·) and v(·) are the known link and variance functions, respectively,

and β0
k = (β0

k,1, . . . , β
0
k,p)

T is the vector of regression coefficients associated with Xk,ij . Denote

Yk,i = (Yk,i1, . . . , Yk,im)T , µk,i = (µk,i1, . . . , µk,im)T , β0 = (β0
1
T
, . . . ,β0

K
T

)T . To describe the

underlying parameter configuration for each covariate xl, we introduce a collection of study-index

sets, Gl0, that constitutes, say, B distinct groups of parameters among K coefficients of xl, β0
(l) =

(β0
1,l, . . . , β

0
K,l)

T . It takes the form of Gl0 = ]Bb=1G
l,b
0 , where Gl,b0 ⊂ {1, . . . , K} contains indices

of studies whose βk,l’s equal to a common value. Operation ] denotes a union of multiple subsets

(not elements in subsets). Take an example of 5 studies in which parameters for the first covariate

have two clusters given by β0
1,1 = β0

2,1 = β0
3,1 < 0 < β0

4,1 = β0
5,1. Then G1,10 = {1, 2, 3},G1,20 =

{4, 5}, and moreover G10 = {1, 2, 3} ] {4, 5} = {{1, 2, 3}, {4, 5}}. Since these parameters can be

equivalently represented by parameter differences, we may instead use their pairwise differences to

describe Gl0. As a convention, elements in each cluster {β0
k,l, k ∈ G

l,b
0 } are always listed by an order

of their study indices. Thus, without loss of generality, we assume the true ordering is β0
1,l 6 · · · 6

β0
K,l. Then, β0

(l) may be reparameterized by φ0
(l) = (φ0

1,l, φ
0
2,l, . . . , φ

0
K,l)

T where φ0
1,l = β0

1,l and

φ0
k,l = β0

k,l − β0
k−1,l for k = 2, . . . , K. Denote φ0 = (φ0T

(1), . . . ,φ
0T
(p))

T . By the above convention,

two sets Gl0 and Al0 can be fully determined each other. Let Al0 = {{k} : φk,l = 0, 1 6 k 6 K} is

the set of study indices whose β0
k,l’s are identical to the lower adjacent ones (or no jumps between

pairs of adjacent coefficients). For the above example, A1
0 = {{2}, {3}, {5}}, and sets G10 and A1

0

can be uniquely converted each other, because φ0
2,1 = φ0

3,1 = 0 is equivalent to β0
1,1 = β0

2,1 = β0
3,1,

and so is φ0
5,1 = 0 to β0

4,1 = β0
5,1. Thus, we can characterize the underlying parameter configuration

by covariate-specific sets A1
0, . . . ,A

p
0. Denote A0 = ]pl=1Al0. Let the cardinality of A0 be a0 =
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6 Biometrics, 2014

card(A0) =
∑p

l=1 card(Al0). Then, the cardinality of its complement, Ac0, is b0 = card(Ac0) =

Kp− a0.

Our objective is twofold: To determine grouping structures in the set A0, and to estimate coeffi-

cients under the parameter configuration by A0. These two tasks can be achieved simultaneously

by using the regularization technique proposed in the paper.

As pointed out by Wang et al. (2012), the traditional estimating function approach is questionable

to draw inference when the data are heterogeneous from one study to another. To account for such

heterogeneity, we first establish a system of K study-specific estimating functions for β0
k, each for

one study, and then combine them by the means of the generalized method of moments (Hansen,

1982), which is also referred to as the quadratic inference function (QIF) by Qu et al. (2000).

This way of creating a meta estimating function enjoys the flexibility of accommodating different

variance-covariance structures across different studies. Another advantage of this approach is that

it allows data from multiple studies to contribute equally to the formation of the meta objective

function, regardless of individual study sample size. A detailed discussion of this point is given

at the end of this section. For each study we first approximate the inverse of working correlation

matrix Rk(αk) by R−1k (αk) ≈
∑sk

s=1 %sMk,s, where %1, . . . , %sk are constants possibly dependent

on αk, and Mk,1, . . . ,Mk,sk are known basis matrices with elements 0 and 1. Refer to Qu et al.

(2000) for more details concerning the basis matrices given in different working correlation struc-

tures, such as compound symmetry (CS) and first order autoregressive (AR-1). Also refer to Song

et al. (2009) for the extension of QIF for data of unequal cluster sizes.

Using the above expansion of R−1k we can construct a system of study-specific estimating

functions, ḡk(βk) for study k = 1, . . . , K, given as follows:

ḡk(βk) =
1

nk

nk∑
i=1

gk,i(βk) =
1

nk

nk∑
i=1


∂µT

k,iA
−1/2
k,i Mk,1A

−1/2
k,i (Yk,i − µk,i)

...

∂µT
k,iA

−1/2
k,i Mk,skA

−1/2
k,i (Yk,i − µk,i)


,
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FLAPO 7

∂µk,i = ∂µT
k,i/∂βk and Ak,i = diag

{
v(µk,i1), . . . , v(µk,im)

}
. The dimension of ḡk(βk) is skdim(βk).

Instead of summing these study-specific ḡk(βk), we stack them to form an extended score function:

ḡ(β) = 1
n

∑n
i=1 gi(β) = 1

n

∑n
i=1

{
δi(1)g1,i(β1)

T , . . . , δi(K)gK,i(βK)T
}T
,where δi(k) = 1

denotes that subject i belongs to study k, and δi(k) = 0 otherwise. Because the dimension of

ḡ(β) is much larger than that of β, namely the case of over-identification, following Qu et al.

(2000), we construct an objective function of the form: Q(β) = nḡ(β)TC−1(β)ḡ(β), where

C(β) = block-diag
{
n1

n
C1(β1), . . . ,

nk

n
CK(βk)

}
and C−1(β) is the inverse matrix of C(β). Thus,

the classical QIF estimator is β̂ = arg maxβQ(β). Note that the objective function Q(β) can also

be written as Q(β) =
∑K

k=1Qk(βk) =
∑K

k=1 nkḡk(βk)
TC−1k (βk)ḡk(βk), where Qk(βk) is a

study-specific QIF. According to Qu et al. (2000), when the mean model in study k is correctly

specified, Qk(β̂k) converges in distribution to χ2
rk−p where rk is the dimension of Ck(β

0
k). It is

worth pointing out that the asymptotic behavior of Qk does not depend on the sample size nk,

nor on the dispersion σk. In other words, the sample size will not dictate the contribution of an

individual QIF to the meta inference function.

Now we turn to the development of FLAPO methodology for parameter fusion. Denote all

regression coefficients by β = (βT(1), . . . ,β
T
(p))

T . To identify homogeneous parameter groups, we

propose to regularize the above QIF objective function, Q(β), using two new penalties with the

adaption of parameter ordering. To proceed, let us begin with the adaptive fused lasso (Tibshirani

et al., 2005; Zou, 2006), whose penalty takes the form: P (β) =
∑p

l=1

∑K
k=1

∑K
k′>k wkk′,l|βk,l −

βk′,l| +
∑p

l=1

∑K
k=1wk,l|βk,l|, where weights wk,l = 1/|β∗k,l|γ1 and wkk′,l = 1/|β∗k,l − β∗k′,l|γ2 are

typically specified by initial root-n consistent estimates β∗k,l’s of βk,l’s for some constants γ1, γ2 > 0

(Zou, 2006). In practice, often γ1 and γ2 are set equal to 1. Note that for each covariate the total

number of constraints is s = K+C(K, 2). Ueki (2009) and Ueki and Kawasaki (2011) considered

a similar problem of variable grouping in a much simpler setting of single cross-sectional study (i.e.

K = 1, m = 1), where the `2-norm penalty for group lasso was used. Equivalently, we may write
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8 Biometrics, 2014

the above fused lasso penalty P (β) in a matrix notation: P (β) = ‖Dβ‖1 = ‖WBβ‖1, where

‖ · ‖1 is L1-norm on Rsp, B is an sp×Kp matrix that defines sp constraints involving p covariates

across K studies, and W is an sp× sp diagonal matrix containing all weights corresponding to the

constraints in B. Thus, to compare a pair βk,l and βk′,l, k 6= k′, the corresponding two entries in B

are 1 and −1, and the corresponding diagonal entry in W is wkk′,l. For a single parameter βk,l, the

corresponding entry in B is 1 and the corresponding entry in W is wk,l.

A potential caveat with the above fused lasso penalty P (β) is that most of sp constraints in B are

redundant, especially when the regression parameters of a covariate are ordered. For an example

of β0
1,1 6 β0

2,1 6 β0
3,1, the term |β1,1−β3,1|may not be needed when two adjacent pairs |β1,1−β2,1|

and |β2,1 − β3,1| are used. Thus, when it is possible to arrange parameters in β0
(l) in an increasing

order as, say, β0
1,l 6 β0

2,l 6 · · · 6 β0
K,l, we can consider a simpler K × K constraint matrix B̃l

for adjacent pairs in the β(l) for covariate xl. B̃l is a lower-triangular matrix of all zero entries,

except the elements on the main diagonal being (1,−1, . . . ,−1) and those on the subdiagonal (i.e.

directly below the main diagonal) all equal to 1. Through row permutations in B̃l it is easy to

accommodate different orderings of parameters in β0
(l). Define a block-diagonal Kp ×Kp matrix

B̃ = block-diag{B̃1, . . . , B̃p}. In the fused lasso penalty P (β) above, matrix B can be partitioned

as B = (B̃T ,B
T

)T where B is a qp×Kp matrix of the redundant pairs that are not included in B̃,

q = s−K. Accordingly, matrix W may be partitioned as W = block-diag(W̃,W), where W̃ is a

Kp×Kpmatrix consisting of weights corresponding to B̃, and W is a qp×qpmatrix of the weights

associated with B. Unfortunately such partition for matrix B is unknown in practice. However, if

the parameter ordering were known and utilized, a new penalty (termed as the FLAPO penalty)

would be specified by the form: P̃ (β) = ‖D̃β‖1 = ‖W̃B̃β‖1. Thus, adequately estimating the

parameter ordering is crucial to carry out the above strategy, and when such ordering is available

from, say, certain initial root-n consistent estimates β∗, we could construct a matrix B̃e to estimate

B̃. Consequently, a new weight matrix W̃e replaces W̃, and moreover, an empirical counterpart of
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FLAPO 9

the FLAPO penalty P̃ (β) is given by

P̃e(β) =

p∑
l=1

K∑
k=1

K∑
k′>k

wkk′,lδ{|T ∗k,l − T ∗k′,l| = 1}|βk,l − βk′,l|+
p∑
l=1

wk∗l ,l|βk∗l ,l|, (1)

where T ∗k,l =
∑K

k′=1 δ{β∗k′,l > β∗k,l} is the ranking of β∗k,l among the elements in β∗(l), and k∗l is the

lowest position. A matrix form for (1) is now written as P̃e(β) = ‖D̃eβ‖1 = ‖W̃eB̃eβ‖1.

We consider three versions of the regularized estimators obtained, respectively, by minimizing

the following penalized objective functions, β̂D = arg min
β∈RKp

{
Q(β) + λP (β)

}
, and

β̂D̃ = arg min
β∈RKp

{
Q(β) + λP̃ (β)

}
, and β̂D̃e

= arg min
β∈RKp

{
Q(β) + λP̃e(β)

}
, (2)

where λ > 0 is a tuning parameter controlling the sparsity or cardinality of A0, which affects the

search of common parameters. We refer to the proposed regularization method using penalty P̃ (β)

or P̃e(β) as the fused lasso with the adaptation of parameter ordering (FLAPO). The second and

third estimators β̂D̃ and β̂D̃e
defined in (2) are our proposed estimators, using penalties with the

true and estimated parameter orderings. The first estimator β̂D, which does not incorporate the

ordering, is the traditional fused lasso with all possible pairwise differences in the penalty.

3. Implementation

For convenience, here we focus on FLAPO with the empirical penalty P̃e(β) in the algorithm; the

entire procedure is applicable to the other two penalties P̃ (β) and P (β). We begin by approximat-

ing QIF Q(β) by a second-order Taylor expansion at an initial consistent estimate β∗. This initial

estimate may be obtained by performing routine GEE analysis with one study at a time, where

the estimation consistency holds when the mean models are correctly specified. The second-order

approximation to the objective function Φ(β) = Q(β) + λP̃e(β) around β∗ is

Φ(β) ≈ Q∗ +
(
∂QT
∗
)

(β − β∗) +
1

2
(β − β∗)T

(
∂2Q∗

)
(β − β∗) + λ‖D̃eβ‖1, (3)

where Q∗, ∂Q∗ and ∂2Q∗ denote Q(β∗), the first- and second-order derivatives of Q(β) evaluated

at β∗, respectively. Following Kim et al. (2009), we propose the following algorithm to minimize
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10 Biometrics, 2014

(3) for a fixed λ.

Step 1: Evaluate both first- and second order approximations of Φ(β) at an update β̂(r) obtained at

iteration r. Set β̂(1) = β∗.

Step 2: Obtain τ̂ (r) by the following minimization:

min
τ∈R(K−1)p

+

−τ T D̃eβ
(r)+

1

2
(∂Q∗ + D̃T

e τ )T (∂2Q∗)
−1(∂Q∗ + D̃T

e τ )

∣∣∣∣
β=β(r)

subject to ‖τ‖∞ < λ.

Step 3: Update β̂(r+1) = β̂(r) − (∂2Q∗)
−1(∂Q∗ + D̃T

e τ̂
(r))
∣∣∣
β=β(r)

.

Step 4: If ‖β̂(r) − β̂(r+1)‖∞ < ε, then stop; otherwise, set r = r + 1 and go back to step 1.

In practice, ε is set at a small number, e.g. 10−5, and an optimal λ may be chosen by the smallest

BIC (Schwarz, 1978): BIC(λ) = Q(β̂λ) + df(β̂λ)log(n), where β̂λ is the final output given at the

algorithm convergence, and df(β̂λ) is the number of distinctive values in β̂λ. This criterion has

been widely used (e.g. Wang et al., 2007, 2009). See details in the Supplementary Materials.

4. Large sample properties

This section concerns the asymptotic properties of the three proposed estimators under certain reg-

ularity conditions listed in Section 1 of the Supplementary Materials. Given the parameter ordering,

we consider reparametrize β by φ as discussed in Section 2. Although this reparametrization is

not required in the first estimator β̂D, this formulation is still adopted for the ease of exposition.

To present these three estimators in the setting of reparametrization, first note the relationship:

block-diag(W̃,W)(B̃T ,B
T

)Tβ = (W̃T , (WBB̃−1)T )Tφ
def
= Fφ, where F = DB̃−1, B̃−1 is the

inverse of the full-rank square matrix B̃, and F = (F̃T ,F
T

)T with F̃ = W̃ and F = WBB̃−1.

Thus, the fused lasso penalty, the FLAPO penalty and the empirical FLAPO penalty become

P (φ) = ‖Fφ‖1, P̃ (φ) = ‖F̃φ‖1 = ‖W̃φ‖1, P̃e(φ) = ‖F̃eφ‖1 = ‖W̃eφ‖1, respectively, and

the expressions of both extended scores g(·) and QIF objective function Q(·) remain the same.

The three regularized estimators are equivalently obtained as follows:

φ̂F = arg min
φ∈RKp

{
Q(φ) + λP (φ)

}
, (4)
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FLAPO 11

φ̂F̃ = arg min
φ∈RKp

{
Q(φ) + λP̃ (φ)

}
, φ̂F̃e

= arg min
φ∈RKp

{
Q(φ) + λP̃e(φ)

}
. (5)

Given an estimator φ̂, which may be φ̂F , φ̂F̃ , or φ̂F̃e
, the estimated set Â0 is obtained by

Â0 = ]pl=1Â
l
0, with Âl0 = {{k} : φ̂k,l = 0, 1 6 k 6 K}, l = 1, . . . , p. (6)

Using A0 and its complementary set, Ac0, we decompose φ0 = (φ0
Ac

0

T
,φ0
A0

T
)T = (φ0

Ac
0

T
,0T )T ,

φ̂F = (φ̂T
FAc

0
, φ̂T

FA0
)T , φ̂F̃ = (φ̂T

F̃Ac
0

, φ̂T
F̃A0

)T , φ̂F̃e
= (φ̂T

F̃eAc
0

, φ̂T
F̃eA0

)T , D = (DT
Ac

0
,DT
A0

)T , F̃ =

(F̃T
Ac

0
, F̃T
A0

)T , and F = (F
T

Ac
0
,F

T

A0
)T .

The regularity conditions listed in Section 1 of the Supplementary Materials are required to

establish Proposition 1 and Theorem 2. Proposition 1 presents the oracle property for the estimator

φ̂F in the sense given by Fan and Li (2001), including selection consistency and asymptotic nor-

mality. Theorem 2 establishes these results for the estimator φ̂F̃ with known parameter ordering.

Consequently, φ̂F and φ̂F̃ have the same asymptotic distribution despite different penalties.

PROPOSITION 1: Suppose that λ → ∞, λn−1/2 → 0, and the initial estimator φ∗ is root-

n consistent. Under Assumptions 1 - 5 in the Supplementary Materials, the estimator φ̂F in (4)

satisfies: (a) φ̂F is root-n consistent, namely φ̂F − φ0 = Op(n
−1/2); (b) (selection consistency)

Â0 → A0 in probability, where the estimator Â0 is given in (6) based on the estimator φ̂F ; (c)

(asymptotic normality) n1/2(φ̂FAc
0
− φ0

Ac
0
) = −(GAc

0
Σ−1GT

Ac
0
)−1GAc

0
Σ−1Ψ + op(1), where G =

(GT
Ac

0
,GT
A0

)T and Ψ = (ΨT
Ac

0
,ΨT
A0

)T with n1/2ḡ(φ0)→ Ψ ∼ N(0,Σ) in distribution.

The proof of Proposition 1 is provided in Section 3.1 of the Supplementary Materials. Proposition

1 implies that the nonzero parameter φ0
Ac

0
can be consistently estimated at root-n rate, and that the

estimator of the zero parameter φ̂FA0 can be asymptotically shrunk to 0. The penalty used in φ̂F

contains many redundant constraints, giving rise of unnecessary extra noise to the regularization

procedure. The following theorem (its proof is given in Section 3.3 of the Supplementary Materials)

shows that our proposed estimator φ̂F̃ based only on adjacent-pair contrasts in the penalty can

achieves the same asymptotic results as those of φ̂F .
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12 Biometrics, 2014

THEOREM 2: Suppose that λ → ∞, λn−1/2 → 0, the initial estimator φ∗ is root-n consistent

and the ordering of regression coefficients is known. Under Assumptions 1-4 in the Supplementary

Materials, all results in parts (a), (b) and (c) stated for φ̂F in Proposition 1 hold for φ̂F̃ defined in

(5), where φ̂F̃ = (φ̂T
F̃Ac

0

, φ̂T
F̃A0

)T , and estimator Â0 is given in (6) based on φ̂F̃ .

In practice the ordering of parameters is unknown. For each covariate xl, we use T ∗k,l defined in

(1) based on initial root-n consistent estimates β∗(l) to estimate the true position Tk,l of β0
k,l, i.e.

T ∗k,l =
∑K

k′=1 δ{β∗k′,l > β∗k,l}. Let sets Tl = {T1,l, . . . , TK,l} and T∗l = {T ∗1,l, . . . , T ∗K,l}, in which

the elements are arranged in the same order of the β∗. Consider an event {T∗l = Tl} that represents

the coincidence of the estimated ordering with the true ordering of the parameters in β(l). Take an

example of 4 studies where the first covariate has two distinct parameter groups {β0
1,1, β

0
2,1} and

{β0
3,1, β

0
4,1} listed as, say, β0

1,1 = β0
2,1 < β0

3,1 = β0
4,1. Then, event {T∗1 = T1} occurs if one of

these four scenarios occurs: (i) β∗1,1 6 β∗2,1 6 β∗3,1 6 β∗4,1; (ii) β∗2,1 6 β∗1,1 6 β∗3,1 6 β∗4,1; (iii)

β∗2,1 6 β∗1,1 6 β∗4,1 6 β∗3,1; and (iv) β∗1,1 6 β∗2,1 6 β∗4,1 6 β∗3,1.

LEMMA 1: Assume estimator β∗ is root-n consistent for β0. Then pr({T∗l = Tl}) → 1 as

n→∞, for l = 1, . . . , p.

The proof of Lemma 1 is given in Section 3.1 of the Supplementary Materials. This lemma means

that we can estimate the parameter ordering correctly with probability tending to 1 as the sample

size n increases to infinity. Therefore, we can extend the results of Theorem 2 to the proposed third

estimator φ̂F̃e
, as stated in Theorem 3.

THEOREM 3: When the parameter ordering Tl is estimated by the T∗l using an initial root-

n consistent estimator β∗, under Assumptions 1 - 4, the results given in Theorem 2 hold for the

estimator φ̂F̃e
defined in (5).

The proof of Theorem 3 is given in Section 3.4 of the Supplementary Materials.

To close this section, we make an important remark on the inference. All the above results are
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FLAPO 13

not applicable to conduct statistical inference for parameter φ or β0. Following van de Geer et al.

(2014), we managed to establish the needed asymptotic distributions for bias-corrected PLAPO

estimator φ̂c
F̃e

. To do so, we first construct a bias-corrected estimator, φ̂c
F̃e

, for φ̂F̃e
, given by the

form: φ̂c
F̃e

= φ̂F̃e
+ n−1λ{∂ḡ(φ̂F̃e

)C(φ̂F̃e
)−1∂g(φ̂F̃e

)T}−1F̃T
e κ, where κ is the subdifferential of

‖F̃eφ‖1 and λ is the tuning parameter selected by the BIC. Applying similar arguments given in

van de Geer et al. (2014), we obtained
√
n(φ̂c

F̃e
− φ0)

d→ N
(
0, {GΣ−1GT}−1

)
, where G and

Σ are defined in Assumptions 3 and 4 in the Supplementary Materials. Moreover, a bias corrected

estimator of β̂D̃e
of β0 is β̂c

D̃e
= β̂D̃e

+ 1
n
λ{B̃T

e ∂ḡ(φ̂F̃e
)C(φ̂F̃e

)−1∂g(φ̂F̃e
)T B̃e}−1B̃T

e W̃T
e κ,which

leads to
√
n(β̂c

D̃e
− β0)

d→ N
(
0, (B̃T

e GΣ−1GT B̃e)
−1
)

.

5. Simulation Experiments

We conduct two simulation studies in the paper. The first one, presented in this section, aims to

examine the performance of the methods to identify the underlying homogeneity of parameters for

continuous outcomes. The second one, presented in the Supplementary Materials (Section 4) due

to the space limitations, considers binary longitudinal outcomes.

We simulate 8 longitudinal studies with 4 repeated measurements through the following linear

models: Yk,ij = β0
k,0 + β0

k,1Xk,i + β0
k,2Zk,ij + εk,ij, j = 1, . . . , 4, k = 1, . . . , 8, i = 1, . . . , nk,

where β0
k = (β0

k,0, β
0
k,1, β

0
k,2)

T is the vector of true regression parameters and the error term

εk,i = (εk,i1, . . . , εk,i4)
T follows N{0, σkRk(αk)}. Covariate Xk,i is a baseline covariate gener-

ated from N(0, 0.52). Covariate Zk,i = (Zk,i1, . . . , Zk,i4)
T is time-dependent and simulated from

N(0, 0.52). Covariance structures are set to mimic a situation where these 8 studies recruit subjects

from different subpopulations; set Rk(·) for k = 1, 4, 6, 7, 8 as AR-1 and for k = 2, 3, 5 as

compound symmetry (CS), with equal correlation αk = 0.5, 1 6 k 6 8. Set the variances

(σ1, . . . , σ8)
T = (0.6, 1.5, 1.5, 0.6, 1.5, 0.6, 0.6, 0.6)T . We consider two cases of the underlying

homogeneous parameters: All intercepts are always set at −1; the slope parameters for X are also

set the same in both cases at β0
1 = (2, 2, 3, 3, 3, 3, 3.3, 3.3)T ; and the parameters for Z are set
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14 Biometrics, 2014

different as β0
2 = (2.3, 2.3, 2, 2, 2, 2, 3, 3)T for case I and β0

2 = (2, 2, 2, 2, 2, 2, 3, 3)T for case II.

The former is slightly harder than the latter because case I contains more distinct parameter groups

with smaller magnitude of pairwise differences.

Clearly, an exhaustive search requires to check a total of 56 hypotheses to determine the ho-

mogeneity clusters for both slope parameters. The intercepts are ignored here as they may be

removed by centralizing the response variables. Here we mainly focus on identifying homogenous

parameter clusters across different studies, so no penalty is imposed on individual coefficients.

Figure 1 displays two BIC curves computed from one randomly chosen simulated dataset, and

their shapes appear to be quite representative to those obtained in our entire simulation study.

To summarize the simulation results, we report results based on three criteria of sensitivity,

specificity and model size in Table 1 under two working correlation structures (i.e. AR-1 and

CS) from 200 rounds of simulation. Sensitivity refers to the proportion of correctly identified equal

coefficient pairs, while specificity refers to the proportion of correctly identified unequal coefficient

pairs. Model size is the number of distinctive estimates in β̂(1) and β̂(2). The true numbers of

parameter clusters are 6 for case I and 5 for case II, respectively.

[Figure 1 about here.]

Results in Table 1 provide us numerical evidence to compare β̂D̃, β̂D̃e
and β̂D. Clearly, β̂D̃

gives a better performance in terms of sensitivity and specificity than both β̂D̃e
and β̂D. But β̂D̃e

,

not β̂D̃, is actually the method that is used in practice because the true parameter ordering is

unknown. Focusing on the comparison between β̂D̃e
and β̂D, the former clearly outperforms the

latter in both cases in terms of sensitivity, specificity and model size. This example suggests that

including redundant constraints in the regularization approach actually worsens the finite sample

performance. This also provides the supporting evidence to Theorem A in the Supplementary

Materials, which shows theoretically the FLAPO estimator has a smaller error bound than the

full fused lasso estimator. The performance of β̂D̃e
is greatly improved if the size of between-pair
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FLAPO 15

differences is larger than 0.3, and a small difference of 0.3 or less considered in our simulation

study presents a challenge for grouping. Also, Table 1 reveals that both sensitivity and specificity

get improved along the increase of the sample size. In regard to the choice of working correlation

structures, there is little effect observed on the performance of the methods. From the view of model

size comparison, in general β̂D̃ and β̂D̃e
can achieve better results in both smaller estimation bias

and standard deviation. With no surprise, all three methods uniformly perform better in case II than

in case I, due to the fact that case I has more complex parameter structures than case II.

[Table 1 about here.]

6. Analysis of HIV surveillance cohort data

We now apply the proposed regularization method to analyze the clustered dataset of the motivating

example from the HIV surveillance project on injection drug users (IDUs). Refer to Section 1 for

more details of the study background. To reduce heterogeneity within each primary sample unit

(e.g. spousal correlation), we further divide IDUs within each sample unit into 3 groups according

to martial status (single, marriage, divorce). This division enables to simplify the analysis, and does

not affect the estimation for the effect of needle sharing according to the finding of insignificant

association between marital status and needle sharing (Wu et al., 1996). This results in 194 smaller

but more homogeneous clusters of IDUs. The primary aim is to identify homogeneous groups of as-

sociation parameters between behavioral activities and HIV positive across five regions. We fit the

following marginal logistic model: logit{E(Yk,ij | Xk,i1, Xk,i2, Xk,i3, Xk,i4)} = βk,0 + βk,1Xk,i1 +

βk,2Xk,i2+βk,3Xk,i3+βk,4Xk,i4, where Yk,ij is a binary outcome of HIV positive for the jth subject

in the ith cluster from region k, and covariates Xk,i1 to Xk,i4 are gender (1 for male, 0 for female),

time (0 to 4 years), needle sharing (1 for yes, 0 otherwise) and syphilis (1 for yes, 0 otherwise).

Region index k is coded as 1 = A, 2 = B, 3 = C, 4 = D, 5 = D. All covariates are standardized.

First, the data is analyzed separately by region using the existing QIF method (Qu et al., 2000)



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

16 Biometrics, 2014

under the compound symmetry correlation. These initial estimates are reported in the upper panel

of Table 2, which are used to estimate the parameter ordering required in FLAPO. Second, we apply

FLAPO to identify groups of common effects of needle sharing and syphilis reflective to relative

effectiveness of regional policies for disease control and prevention, while the other parameters are

treated as confounding and not considered for fusion. In particular, using different intercepts in the

model allows to account for unequal regional HIV prevalence. Both BIC curves and solution paths

of needle sharing and syphilis are showed in Figure 2. FLAPO estimates and confidence intervals

for all four covariates are shown in the lower panel of Table 2 and in Figure 3. These estimates are

yielded at the minimum BIC, λ = 1.00625. This chosen tuning parameter is used to construct the

95% confidence intervals in Tables 2 and 3 using the inference described in Section 4.

[Figure 2 about here.]

[Table 2 about here.]

[Table 3 about here.]

[Figure 3 about here.]

The solution paths concerning the effects of needle sharing in Figure 2 indicate regions A and

B share a common effect of needle sharing, which is slightly higher than that in region C and

much higher than those in regions D and E. Using the p-values in Table 3, at the significance

level by the Bonferroni correction for multiplicity 0.05/4 = 0.0125, we detect three clusters of

needle sharing effects on HIV positive, {A,B,C}, {D}, {E}. We fail to conclude any significant

differential effects among three regions A, B, C. Furthermore, we apply the standard meta analysis

approach to combining both these three estimated effects of regions A, B, C, and their confidence

interval listed in Table 2. We obtain the weighted estimate equal to 0.7067 and 95% confidence

interval (0.6181, 0.7953) for {A,B,C}. Clearly, D is the only region at which we do not find a

significant effect of needle sharing on HIV positive as its confidence interval contains 0.
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FLAPO 17

A similar procedure is applied to examine the effects of syphilis. The p-values from Table 3

indicate an equal effect of syphilis on HIV positive across the 5 regions. By the standard meta

analysis approach, we obtain a weighted estimate of the common effect as 0.1286, with a 95%

CI (0.0915, 0.1658), which does not cover 0. So, there is a significant effect of syphilis on HIV

positive, and this effect has a smaller magnitude than that of needle sharing in regions A, B, C.

In summary, one interesting finding from this analysis is that in region D there was no significant

effect of needle sharing on HIV positive, while risk of HIV positive among IDUs in regions A,

B, C was significantly associated with needle sharing. This provides useful information to the

provincial CDC for a further investigation. Because of potential confounding in the data, the above

findings should be interpreted with great caution and may not be generalizable to represent a

general mechanism of risk prediction for HIV.

7. Concluding remarks

In this paper, we propose a new methodology of regularized estimation and inference to conduct

statistical analysis for combined datasets of repeated measurements, including longitudinal data

and clustered data as special cases. This method is developed to address the situation where the

underlying parameter homogeneity cannot be analyzed by using the classical hypothesis testing

procedures due to excessively high computing burden. The proposed method of fused lasso with the

adaptation of parameter ordering (FLAPO) incorporates parameter ordering in the regularization

procedures, so that the number of parameter constraints can be greatly reduced, leading to both

improved computing speed and better finite-sample performance. The numerical examples further

verify that the approach works well in terms of sensitivity and specificity as well as model size.

However, the proposed method may be challenged by the increased computational complexity

concerning the underlying pattern of homogeneous parameters. One of the limitations might be

attributive to the inflexibility of bearing the variable selection only on a single tuning parameter in

our method. In addition, when the number of parameters goes to infinity, it is not clear to us if it is
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possible to recover the true parameter ordering with probability 1. This problem deserves further

improvement for handling data integration involving a large number of similar studies.

8. Supplementary Materials

Web supplementary sections 1-4 referenced in Sections 3-5 are available with this paper at the

Biometrics website on Wiley Online Library. It provides all technical detail, including regularity

conditions, large-sample properties and finite-sample error bounds, as well as the proofs. Also, it

includes some extra information of the algorithm and the results of the second simulation study. A

file of the R code used in the simulation study is available online with the paper.
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Figure 1. Bayesian information criterion (BIC) curves for the selection of tuning parameters in
FLAPO under two different working correlations (AR-1 and Compound Symmetry (CS)).
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Figure 2. Bayesian information criterion and solution paths for the effects of needle sharing and
syphilis on HIV positive in five regions A (square), B (circle), C(triangle), D(plus), E(cross).



Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

Aut
ho

r M
an

us
cr

ipt

FLAPO 23

−0.5

0.0

0.5

A B C D E
Region

G
en

de
r

−0.5

0.0

0.5

A B C D E
Region

T
im

e

0.0

0.4

0.8

A B C D E
Region

N
ee

dl
e 

S
ha

rin
g

0.0

0.4

0.8

A B C D E
Region

S
yp

hi
lis

Figure 3. 95% confidence intervals of regression parameters in five regions A, B, C, D, E,
obtained by the bias-corrected FLAPO.
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Table 1
Sensitivity (se100, se90), specificity (sp100, sp90), model size (size) and standard deviation of model size for the Case I and Case
II in the simulation study I using different penalty matrices. Se100 and se90 represent the sensitivities computed based on 100%
and 90% correct identification of all equal parameter pairs, respectively. Sp100 and sp90 are defined in the similar way but for

unequal parameter pairs.
Case AR-1 CS

Penalty nk Se100(Se90) Sp100(Sp90) Size(Std) Se100(Se90) Sp100(Sp90) Size(Std)

I, D̃

100 0.57(0.67) 0.65(0.73) 6.19(0.82) 0.63(0.71) 0.59(0.67) 6.01(0.79)
200 0.62(0.68) 0.90(0.94) 6.44(0.76) 0.69(0.75) 0.87(0.91) 6.26(0.67)
400 0.79(0.83) 0.99(0.99) 6.25(0.51) 0.83(0.86) 0.99(0.99) 6.19(0.46)

I, D̃e

100 0.42(0.54) 0.26(0.44) 6.00(0.93) 0.43(0.57) 0.26(0.42) 5.95(0.86)
200 0.51(0.62) 0.57(0.74) 6.22(0.77) 0.55(0.64) 0.55(0.72) 6.14(0.76)
400 0.60(0.68) 0.84(0.98) 6.36(0.62) 0.62(0.69) 0.83(0.98) 6.30(0.55)

I, D
100 0.22(0.57) 0.19(0.28) 6.52(1.12) 0.19(0.57) 0.21(0.32) 6.62(1.17)
200 0.27(0.65) 0.54(0.63) 6.89(1.26) 0.31(0.67) 0.50(0.59) 6.76(1.26)
400 0.35(0.71) 0.81(0.90) 6.93(1.14) 0.38(0.74) 0.82(0.90) 6.84(1.05)

II, D̃

100 0.55(0.62) 0.63(0.71) 5.19(0.80) 0.66(0.71) 0.59(0.67) 5.00(0.78)
200 0.62(0.66) 0.90(0.93) 5.41(0.74) 0.72(0.77) 0.86(0.90) 5.21(0.66)
400 0.72(0.77) 0.99(0.99) 5.37(0.68) 0.81(0.83) 0.99(0.99) 5.20(0.47)

II, D̃e

100 0.55(0.64) 0.24(0.40) 4.79(0.79) 0.54(0.66) 0.26(0.42) 4.82(0.79)
200 0.56(0.66) 0.56(0.73) 5.14(0.73) 0.58(0.67) 0.55(0.71) 5.08(0.72)
400 0.62(0.68) 0.83(0.98) 5.33(0.61) 0.64(0.69) 0.83(0.98) 5.29(0.56)

II, D
100 0.37(0.74) 0.18(0.25) 5.02(0.96) 0.37(0.72) 0.19(0.29) 5.06(0.93)
200 0.43(0.78) 0.51(0.59) 5.35(1.06) 0.44(0.78) 0.50(0.58) 5.30(1.02)
400 0.46(0.81) 0.78(0.87) 5.56(0.94) 0.44(0.80) 0.80(0.90) 5.59(0.88)
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Table 3
Estimates of parameter differences obtained by FLAPO and bias-corrected (BC) FLAPO, 95% confidence intervals and p-values

obtained from the regularized inference.

βD,3 − βE,3 βE,3 − βC,3 βC,3 − βA,3 βA,3 − βB,3
Needle FLAPO -0.3790 -0.2991 -0.1595 0.0000

BC FLAPO -0.3792 -0.2990 -0.1598 0.0005
95% CI (-0.5174, -0.2409) (-0.4507, -0.1473) (-0.3529,0.0334) (-0.2732,0.2743)
p-value 0.0000 0.0001 0.1050 0.9969

βD,4 − βB,4 βB,4 − βE,4 βE,4 − βC,4 βC,4 − βA,4
Syphilis FLAPO -0.0395 -0.0889 -0.0743 0.0000

BC FLAPO -0.0393 -0.0894 -0.0742 -0.0001
95% CI (-0.2563,0.1778) (-0.2763,0.0974) (-0.1891,0.0407) (-0.1039,0.1038)
p-value 0.7230 0.3482 0.2058 0.9991


