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RESTRICTIONS OF ALGEBRAIC GROUP
REPRESENTATIONS TO FINITE SUBGROUPS

HARM DERKSEN

Abstract

Suppose that H is a finite subgroup of a linear algebraic group, G. It was proved by Donkin that there
exists a finite-dimensional rational representation of G whose restriction to H is free. This paper gives a
short proof of this in characteristic 0. The author also studies more closely which representations of H
can appear as a restriction of G.

1. Introduction

Suppose that G is an algebraic group over a field K , and that H is a finite subgroup
of G. In this paper, we shall investigate which representations of H appear as a
restriction of a representation of G. Throughout the paper, all representations are
assumed to be finite-dimensional and rational. In [2], Donkin proves the following
theorem.

Theorem 1.1 ([2]). There exists a finite-dimensional rational representation V of G
such that the restriction V |H of V to H is free; that is, V |H is isomorphic to WN

reg,
where N is a positive integer and Wreg is the regular representation of H .

Donkin thereby answered a question raised in [5] by Kuzucuoğlu and Zalesskiı̆,
who proved the theorem in the special case where K has positive characteristic
and H is reduced. In this paper we give a short alternative proof of the results of
Donkin in the case char(K) = 0, using representation theory. In fact, we shall show
the following theorem.

Theorem 1.2. Suppose that the characteristic of the base field K is 0. There exists
a GLn-representation VE of dimension (E − 1)n(n−1)/2En such that VE |H is free for
every subgroup H of GLn whose exponent divides E.

Theorem 1.1 is an easy corollary of Theorem 1.2. Indeed, suppose that G is a
linear algebraic group containing a finite subgroup H with exponent E. Now G

is a Zariski closed subgroup of GLn for some n. By Theorem 1.2, there exists a
finite-dimensional rational representation VE of GLn, such that the restriction VE |H
of VE to H is free. Clearly, the restriction VE |G is a finite-dimensional rational
representation of G whose restriction to H is free.

Suppose that V is a rational finite-dimensional representation of G with charac-
ter τ. Let V |H be the restriction of H , and let χ = τ |H be the H-character of this
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restriction. If h, h′ ∈ H are conjugate in G, then we must have χ(h) = χ(h′). This gives
a necessary condition for an H-representation W to be liftable to a representation of
G, but it is not sufficient, as we shall see later. However, we shall prove the following
theorem.

Theorem 1.3. Suppose that G is a reductive group over a field K of characteristic 0,
that H ⊂ G is a finite subgroup, and that W is a finite-dimensional representation of H
whose character χ satisfies χ(h) = χ(h′) for all pairs h, h′ ∈ H which are conjugate in
G. Then there exists a rational finite-dimensional representation V of G such that V |H
is isomorphic to WM ⊕WN

reg for some positive integers M and N.

Define XG
H to be the monoid of all restrictions {τ |H : τ is a character of G}. In

the last section we shall prove the following theorem.

Theorem 1.4. If G is a connected reductive group over an algebraicially closed
field K (of characteristic 0), and H ⊂ G is a finite subgroup of G, then XG

H is a finitely
generated monoid.

2. Notation

To avoid confusion, throughout the paper we shall stick to the following notation.
We assume that G is a reductive group, that g is its Lie algebra, that e ∈ G is the
identity element, and that H ⊂ G is a finite subgroup. In general we shall denote
representations of G by ‘V ’, representations of H by ‘W ’, characters of G by ‘τ’ and
characters of H by ‘χ’. The regular character of H is denoted by χreg. We choose a
maximal torus T ⊂ G, and W = NG(T )/T is the Weyl group, where NG(T ) is the
normalizer of T inside G. We shall write Φ for the set of roots, we choose simple
roots α1, . . . , αr ∈ Φ, and Φ+ will be the set of positive roots. If G is connected and
semisimple, then we have the following additional notation. The weight lattice Λ is
generated by fundamental weights λ1, . . . , λr , and Λ+ = Nλ1 +Nλ2 + . . . +Nλr is
the set of dominant weights. We shall write ρ =

∑r
i=1 λi = 1

2

∑
α∈Φ+

α. For λ ∈ Λ+

we shall write Vλ for the g-module with heighest weight λ. We shall write τλ for the
character of G on Vλ if the action of g extends to an action of G.

3. Examples

Example 3.1. Take G = GL2s (where s > 1) and H = {Id,−Id} ⊂ G. Let
χ0 be the trivial character, and let χ1 be the signum character of H . Let Vλ be
the irreducible representation corresponding to the partition λ = (λ1, . . . , λr). The
G-character of Vλ will be denoted by τλ. The restriction of the character τ(1) of the
representation V = V(1) to H is equal to 2sχ1. The restriction of the character τ(1,1,...,1)

of
∧2s

V to H is equal to χ0. We shall show that XG
H is generated by χ0 and 2sχ1 as

follows.

If |λ| := λ1 + . . . + λr is even, then τλ |H = dim(Vλ)χ0, and if |λ| is odd, then
τλ |H = dim(Vλ)χ1. Suppose that |λ| is odd, and let ρ : GL2s → GL(Vλ) be the group
homomorphism corresponding to the action. Then det(ρ(g)) = det(g)l for some l.
If we substitute g = t · Id, then we obtain tdim(Vλ)|λ| = tl2

s

. It follows that dim(Vλ) is
divisible by 2s.
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The character Nχreg is a restriction of a character of G if and only if N is divisible
by 2s.

Example 3.2. Take G = GL6 and let H = {Id,−Id} ⊂ G. Note that
τ(1,1,1,1,1,1) |H = χ0, τ(1) |H = 6χ1, and τ(1,1,1) |H = 20χ1. One can show that XG

H

is generated by χ0, 6χ1 and 20χ1. Now Nχreg is the restriction of a character of G if
and only if N = 6, 12, 18, 20, 24, 26, 30, 32, or N = 2M with M > 18.

Example 3.3. Let G = SL2, and take H = 〈σ〉, where

σ =

(
ζ 0
0 ζ−1

)
,

and where ζ is a fifth root of unity. Let χi be the irreducible one-dimensional
character defined by σ 7→ ζi for i = 0, 1, 2, 3, 4. Denote the binary forms of degree d
by Vd, and let τd be its character. Then we have

τ5d |H = (d+ 1)χ0 + d(χ1 + χ2 + χ3 + χ4),

τ5d+1 |H = d(χ0 + χ2 + χ3) + (d+ 1)(χ1 + χ4),

τ5d+2 |H = (d+ 1)(χ0 + χ2 + χ3) + d(χ1 + χ4),

τ5d+3 |H = dχ0 + (d+ 1)(χ1 + χ2 + χ3 + χ4),

τ5d+4 |H = (d+ 1)(χ0 + χ1 + χ2 + χ3 + χ4).

The monoid XG
H is generated by χ0, χ1 + χ4, χ0 + χ2 + χ3 and χ1 + χ2 + χ3 + χ4.

Now σ and σ4 are conjugate in G, σ2 and σ3 are conjugate in G, and Id,
σ and σ2 generate distinct conjugacy classes in G. Take χ = χ2 + χ3, and note
that χ(σ) = χ(σ4) and χ(σ2) = χ(σ3). Now (τ2 + τ3) |H = χ + χreg where
χreg = χ0 + χ1 + χ2 + χ3 + χ4 is the regular character of H . However, there is
no character τ of G such that τ |H = Mχ with M positive.

Example 3.4. Let G = GL3s , and take H = {Id, ζ Id, ζ2 Id}, where ζ is a primitive
third root of unity. Let χi be the character ζi Id 7→ ζi. Using similar arguments to
those in Example 3.1, one can prove that whenever τ |H = Mχ1 +Nχreg, it must be
true that 3s divides M and N. This shows that M cannot always be taken equal to
1 in Theorem 1.3.

4. A lemma from representation theory

At this beginning of this section we shall prove a lemma in representation theory,
which will be applied to the proof of Theorem 1.2 at the end of this section.

Let g be a semisimple Lie algebra. The character τλ has the following formal
expression: ∑

µ∈Λ

mλ,µe
µ,

where mλ,µ is the multiplicity of the weight µ in Vλ. A well-known formula of Weyl
(see [3, 24.3]) states that for every λ ∈ Λ+, we have( ∑

w∈W
sgn(w)ew(ρ)

)
.τλ =

∑
w∈W

sgn(w)ew(ρ+λ).
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Lemma 4.1. If λ+ ρ+ w(µ) ∈ Λ+ for all w ∈ W, then( ∑
w∈W

ew(µ)

)
.τλ

is a character of a representation of g.

Proof. We can write ( ∑
w∈W

ew(µ)

)
.τλ =

∑
ν

aντν , (4.1)

where ν runs through a finite set of dominant weights, and where the aν are integers.
We shall prove that aν > 0 for all ν. We multiply (4.1) with∑

w′∈W
sgn(w′)ew′(ρ),

and by using Weyl’s formula we get( ∑
w∈W

ew(µ)

)
· ∑
w′∈W

sgn(w′)ew′(ρ+λ) =
∑
ν

aν
∑
w′∈W

sgn(w′)ew′(ρ+ν). (4.2)

If w′(ρ+ λ) + w(µ) ∈ ρ+ Λ+, then w′ must be trivial because

(w′)−1(w′(ρ+ λ) + w(µ)) = ρ+ λ+ ((w′)−1w)(µ) ∈ Λ+.

Of we consider only the eγ in (4.2) where γ lies in ρ+ Λ+, then we get∑
w∈W

ρ+λ+w(µ)∈ρ+Λ+

eρ+λ+w(µ) =
∑
ν

aνe
ρ+ν .

q

Proof of Theorem 1.2. Let T ⊂ GLn be the set of diagonal matrices. Define
xi ∈ X?(T ) as the function which maps an element of T to its (i, i)-entry. The Weyl
group W of GLn is the symmetric group Sn which acts transitively on x1, x2, . . . , xn.
Let us define u as

(1 + x1 + x2
1 + . . .+ x

(E−1)
1 )(1 + x2 + x2

2 + . . .+ x
(E−1)
2 ) . . . (1 + xn + x2

n + . . .+ x(E−1)
n ).

Since u isW-invariant, it can be seen as a class function on GLn. Define a partition

p = ((E − 2)(n− 1), (E − 2)(n− 2), . . . , (E − 2), 0).

Let τp be the corresponding irreducible character of GLn. We claim that the class
function τp · u is a character of a representation of GLn. Let us put xi = eti . The
formal character of u is

(1 + et1 + e2t1 + . . .+ e(E−1)t1 )(1 + et2 + . . .+ e(E−1)t2 ) . . . (1 + etn + e2tn + . . .+ e(E−1)tn ).

Now p corresponds to the weight (E−2)(n−1)t1 + (E−2)(n−2)t2 + . . .+ (E−2)tn−1

and ρ = 1
2
((n − 1)t1 + (n − 3)t2 + . . . + (1 − n)tn). A weight a1t1 + a2t2 + . . . + antn

is dominant if and only if a1 > a2 > . . . > an. A weight µ appearing in u is of
the form a1t1 + a2t2 + . . . + antn, with a1, a2, . . . , an ∈ {0, 1, . . . , E − 1}, and it is easy
to check that p + ρ + µ is dominant. Define deg(ea1t1+...+antn ) = a1 + a2 + . . . an, and
write u =

∑n(E−1)
i=0 ui, where ui is the homogeneous part of degree i. We restrict to

sln, the Lie algebra of SLn, and we apply Lemma 4.1. So τp · ui is a character of a
representation Vi of sln, and the Lie algebra action extends to an action of the simply
connected group SLn. For λ ∈ K \ {0} we have τp · ui(λId) = τp · ui(Id)λi = dim(Vi)λ

i.
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Now we can extend the action of SLn on Vi to GLn by defining λId · v = λiv for all
v ∈ V , and we see that τp · ui is the GLn-character of Vi. So τp · u is a character of
the GLn module V =

⊕
i Vi of dimension τp(Id)u(Id). Clearly, u(Id) = En, and by

Weyl’s formula we get

τp(Id) =
∏
α∈Φ+

〈p+ ρ, α〉
〈ρ, α〉 =

∏
α∈Φ+

〈(E − 2)ρ+ ρ, α〉
〈ρ, α〉 = (E − 1)n(n−1)/2.

The function u vanishes on H \ {Id}, and so does u · τp. It follows that V |H is a free
H-module. q

5. The monoid C
Let d be the order of H , and write H = {e, h1, h2, . . . , hd−1}. Let XG be the set

of characters of all finite-dimensional representations of G over K , the algebraic
closure of K . This monoid is generated by infinitely many irreducible characters.
Characters of H have values in C (or to be precise in Q ⊂ C, the algebraic closure
of Q). We define a map XG → Cd−1 by

π(τ) :=
(
τ(h1), τ(h2), . . . , τ(hd−1)

)
.

Let C be the image of π.

Lemma 5.1. The monoid C is in fact a Z-module.

Proof. It is enough to show that −π(τ) ∈ C for all τ ∈ XG. By Theorem 1.1,
there exists a representation V of G such that V |H is a free H-module. Let τ0 be
the character of V . We have π(τ0) = 0. Let τ0 be the character of V?, the dual space.
Then τ0τ0 = 1 + τ1, where 1 is the trivial character and τ1 is a character. We have
τ0τ0τ = τ+ ττ1 and π(τ) +π(ττ1) = π(τ+ ττ1) = π(τ0τ0τ) = 0, so −π(τ) = π(ττ1) ∈ C.

q

For h ∈ H , we write [h]G to denote the conjugacy class of h in G.

Lemma 5.2. The rank of C as a Z-module is equal to r, where r is the cardinality
of the set of conjugacy classes {[h1]G, [h2]G, . . . , [hd−1]G}.

Proof. If [hi]G = [hj]G, then τ(hi) = τ(hj) for all χ ∈ X(G), so it is clear
that the rank of C is 6 r. Without loss of generality, we may assume that
[h1]G, [h2]G, . . . , [hr]G are all different. The elements h1, . . . , hr are semisimple in G,
so the conjugacy classes [hi]G are Zariski-closed subsets of G (see [1, 9.2], or
[4, I.3]). Let O(G) be the coordinate ring G over the algebraic closure K , and we
let G act on itself by conjugation. There exists an invariant f ∈ O(G)G (a class
function) such that f(h1), f(h2), . . . , f(hr) are all different (see [6, Corollary 1.2]). We
can write f =

∑s
i=1 aiτi with ai ∈ K and τi a character for i = 1, . . . , s. For a generic

choice of positive integers b1, . . . , bs we see that τ :=
∑s

i=1 biτi is a character such
that τ(h1), τ(h2), . . . , τ(hr) are all different. Now π(1), π(τ), π(τ2), . . . , π(τr−1) are linearly
independent, because these vectors form the matrix

1 1 . . . 1
τ(h1) τ(h2) . . . τ(hd−1)

...
...

. . .
...

τr−1(h1) τr−1(h2) . . . τr−1(hd−1)

 ,
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and the first r × r minor is a Vandermonde determinant, whose value is∏
16i<j6r

(τ(hi)− τ(hj)),

which is nonzero. q

Proof of Theorem 1.3. Let D ⊂ Cd−1 be the set of all(
χ(h1), χ(h2), . . . , χ(hd−1)

)
,

where χ is a character of H with the property that χ(hi) = χ(hj) for all hi, hj ∈ H
which are conjugate in G. Let D′ be the Z-module generated by D. It is easy to see
that D′ has rank less than or equal to r, and clearly C ⊆ D ⊆ D′, so C ⊆ D′ is a
submodule of finite index (and in fact it follows that D = D′). Suppose that W is
a finite-dimensional H-module, and that χ is its character. For some M we have

M
(
χ(h1), . . . , χ(hd−1)

)
= π(τ) ∈ C.

So τ |H − Mχ is a class function on H vanishing on h1, h2, . . . , hd−1, so it must be
a multiple of the regular character χreg of H , say τ |H − Mχ = Nχreg with N ∈ Z.
Without loss of generality, we may assume that N > 0. (We can replace τ by τ+ lτ′
where l is a positive integer and τ′ is a character such that τ′ |H = Aχreg for some
positive integer A as in Theorem 1.1.) Let V be the representation of G (defined
over K) corresponding to τ. Then V |H ∼= WM ⊕WN

reg. There exists a finite algebraic
extension L of K such that the representation V is defined over L. Let V ′ be the
G(L) module V seen as a G(K)-module. Then V ′ |H = WMs ⊕WNs

reg , where s is the
degree of the field extension [L : K]. q

6. The finitely generated monoid of restricted characters

Lemma 6.1. Suppose that G is connected, that g is simple, and that h ∈ G is of
finite order and not in the center of G. Then for every ε > 0 there exists a positive
integer N such that for every dominant weight λ with 〈ρ, λ〉 > N we have∣∣∣∣τλ(h)τλ(e)

∣∣∣∣ < ε.

Proof. We choose a maximal torus T of G containing h. Let

g = h⊕⊕
α∈Φ

Kxα

be the Cartan decomposition of g, where h is the Lie algebra of T . Because h is not
in the center of G, there exists an xα such that hxα = ζxα with ζ 6= 1. We shall show
that there exists a constant M > 0 such that

|τλ(h)| 6M dimVxα
λ

for all dominant weights λ, where Vxα
λ is the kernel of xα acting on Vλ. The elements

xα and x−α generate a sub-Lie algebra of g isomorphic to sl2. Having obtained an
sl2-module, we have a decomposition

Vλ =

r⊕
i=1

Ri

where Ri is h-stable, and irreducible as an sl2-module for all i.
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For each i, Rxαi is one-dimensional and spanned by a heighest weight vector vi. A
basis of Ri is given by

vi, x−αvi, x2−αvi, . . . , xdi−αvi
for some nonnegative integer di. Now hvi = γivi for some γi, and we get

h(xj−αvi) = ζ−jxj−αhvi = ζ−jγi(xj−αvi).

Let τi(h) be the trace of h on Ri. Then we have

|τi(h)| = |γi(1 + ζ−1 + ζ−2 + . . .+ ζ−d)| =
∣∣∣∣γi 1− ζ−d−1

1− ζ−1

∣∣∣∣ 6 2

|ζ − 1| .
For an integer M > 2/|ζ − 1| we have

|τλ(h)| 6Mr = M dimVxα
λ .

We shall now show that dimVxα
λ / dimVλ → 0 if 〈ρ, λ〉 → ∞. For a pair of

dominant weights λ and µ, there exists a natural G-equivariant multiplication
Vλ × Vµ → Vλ+µ constructed as follows. Let U ⊂ G be the maximal unipotent
subgroup. Let O(G) be the coordinate ring, and let O(G/U) be the subring of
U-invariant functions, where U acts on G by right-multiplication. It is known that,
as a left-module, O(G/U) has the decomposition

O(G/U) =
⊕
λ

Vλ,

where λ runs through all the dominant weights. Now O(G/U) is a graded ring,
graded by the monoid of dominant weights. Let α1, . . . , αl be the simple roots, and
let λ1, . . . , λl be the fundamental weights. For the moment we shall fix an i with
1 6 i 6 l. The element xα acts non-trivially on Vλi , because otherwise G would
act trivially on Vαi by the simplicity of g. Choose an element p ∈ Vλi such that
q := xαp 6= 0 and x2

αp = 0. For all nonnegative integers j and k with j 6 k, we have
pk−jqjVλ ⊂ Vλ+kλi . So we have an inclusion pkV xα

λ + pk−1qVxα
λ + . . .+ qkV xα

λ ⊂ Vλ+kλi .
In fact, the sums are direct because p ∈ O(G/U) is transcendental over O(G/U)xα .
(xα acts as a derivation on O(G/U), so the kernel of xα is algebraically closed within
O(G/U).) Note that multiplication with p or q is injective, since O(G/U) is a domain.
So we get dimVλ+kλ1

> (k + 1) dimVxα
λ . By Weyl’s formula, we get

dimVxα
λ

dimVλ
6

dimVλ+kλi
(k + 1) dimVλ

=
1

k + 1

∏
α∈Φ+

〈ρ+ λ+ kλi, α〉
〈ρ+ λ, α〉

=
1

k + 1

∏
α∈Φ+

(
1 +

k〈λi, α〉
〈ρ+ λ, α〉

)
6

1

k + 1

∏
α∈Φ+

(
1 +

k〈λi, α〉
〈λ, αi〉

)
because 〈λi, α〉 = 0 or 〈ρ+λ, α〉 > 〈λ, αi〉 for all α. There is a constant Mi(k) such that

dimVxα
λ

dimVλ
6

1

k

for all λ with 〈λ, αi〉 > Mi(k). Write ρ =
∑l

i=1 kiαi. Take

N = k1M1(kM) + k2M2(kM) + . . .+ klMl(kM).

If 〈ρ, λ〉 > N, then 〈λ, αi〉 > Mi(kM) for some i, and∣∣∣∣τλ(h)τλ(e)

∣∣∣∣ 6M dimVxα
λ

dimVλ
6

M

Mk
6

1

k
. q
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Lemma 6.2. Suppose thatM⊂ Nn is a submonoid. Let C = R>0M be the cone in
Rn spanned by M. If C has finitely many extremal rays, then M is finitely generated.

Proof. We can choose m1, . . . , mr ∈ M which span the cone C . If m ∈ M, then
there exist real numbers a1, a2, . . . , ar > 0 such that m =

∑r
i=1 aimi. Assume that the

cardinality of the set S = {i ∈ {1, . . . , r} | ai 6= 0} is minimal. It is easy to see that
the set {mi | i ∈ S} is linearly independent. It follows that a1, . . . , ar ∈ Q. Choose
an N such that Nai ∈ N for all i. It follows that Nm ∈ M. Let M′ be the monoid
generated by m1, . . . , mr . Let C[M] and C[M′] be the algebras on the monoids M
and M′. The algebra C[M] is integral over C[M′]. The quotient field of C[M] is a
finite extension of the quotient field of C[M′] because ZM′ ⊂ ZM has finite index.
We conclude that C[M] is a finite module over C[M′], and therefore M must be
finitely generated. q

Proof of Theorem 1.4. The monoid XH of characters of H is isomorphic to Nn,
where n is the number of irreducible representations of H . The set XG

H is a submonoid
of XH . Let C ⊂ Rn be the cone spanned by XG

H . By Lemma 6.2 we have to show
that C has finitely many extremal rays. By Theorem 1.1, χreg lies in C , and moreover,
by Theorem 1.2, χreg lies in the relative interior: inside the vector space RC , χreg lies
in the interior of C .

Step 1. First we shall deal with the case where G is connected and simple. Because
χreg lies in the relative interior of C , we can choose finitely many f1, f2, . . . , fl ∈ C
such that χreg lies in the interior of the cone spanned by f1, . . . , fl (inside the
topological space C). There exists an ε > 0 such that every f ∈ C with

max
h∈H

∣∣∣∣f(h)− χreg(h)

|H |
∣∣∣∣ < ε

lies in the cone spanned by f1, . . . , fl . The cone C is spanned by all τλ |H . By
Lemma 6.1 there are only finitely many λ such that

max
h∈H

∣∣∣∣τλ(h)τλ(e)
− χreg(h)

|H |
∣∣∣∣ > ε.

This proves that C is spanned by f1, . . . , fl and τλ |H , for λ ∈ I , where I is a finite
set of dominant weights. By Lemma 6.2, XG

H is finitely generated.

Step 2. We assume that G is connected, and that g is simple. The group G has a
finite center Z(G). For an irreducible character ξ of Z(G) we define XG

H (ξ) ⊂ XH as
the monoid of all τ |H where τ is a character of G satisfying τ |Z(G) = τ(e)ξ. We also
define C(ξ) as the cone generated by XG

H (ξ). We shall prove that C(ξ) has finitely
many extremal rays. Assume that XG

H (ξ) 6= {0}. Choose a non-zero character τ of G
such that τ |Z(G) = τ(e)ξ, and let τ be the dual character in XG

H (ξ−1). We can choose
τ in such a way that for every h ∈ H we have τ(h) = 0 if and only if χ(h) = 0 for all
χ ∈ XG

H (ξ). We define maps u : C(ξ)→ C(1) and v : C(1)→ C(ξ) by

u(f) = fτ |H (where f ∈ C(ξ)) and v(f) = fτ |H (where f ∈ C(1)).

The maps u and v ◦ u are injective on C(ξ), because of our choice of τ. Note

that XG
H (1) can be identified with X

G/Z(G)

H/(H∩Z(G)). Let χreg be the regular character

of H/(H ∩ Z(G)). We see that u(v(χreg)) = τ(e)2χreg, so χreg is in the image of u.
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Moreover, χreg lies in the relative interior of u(v(C(1)), because χreg lies in the relative
interior of C(1). We have

dim u(v(C(1)) = dim v(C(1)) > dim v(u(C(ξ)) = dimC(ξ) > dim u(C(ξ)).

It follows that χreg is in the relative interior of u(C(ξ)). If 〈ρ, λ〉 → ∞ (with
τλ |Z(G) = τλ(e)ξ), then by Lemma 6.1,

τλτ

τλ(e)τ(e)
→ χreg

|H/(H ∩ Z(G))| .
With similar arguments to those in Step 1, we see that u(C(ξ)) has finitely many
extremal rays; therefore C(ξ) has finitely many extremal rays. It follows that XG

H (ξ)
is finitely generated by Lemma 6.2. Now XG

H is finitely generated, because it is
generated by all XG

H (ξ), where ξ is a character of Z(G).

Step 3. Suppose now that G = G1 × G2 × . . . × Gm where, for each i, Gi is
connected with a simple Lie algebra, or Gi is a one-dimensional torus. The irreducible
representations of G are exactly all V1 ⊗ V2 ⊗ . . . ⊗ Vm, where Vi is an irreducible
representation of Gi for all i. Let pi : G → Gi be the projection onto Gi. By
restricting to H , we get a homomorphism pi |H : H → Gi. We know that XGi

πi(H)

is finitely generated (if Gi is connected with a simple Lie algebra, then this was
done in Step 2; if Gi is a torus, then this is very easy), and therefore XGi

H is finitely
generated. Let Si ⊂ XGi

H be a finite set of generators. Now XG
H is generated by all

χ1 ⊗ χ2 ⊗ . . .⊗ χm with χi ∈ Si for all i. We conclude that XG
H is finitely generated.

Step 4. Now G is connected and reductive. It is known that G is a quotient of
some G̃ with G̃ as in Step 3, and some finite central group Z . Let H̃ be the inverse
image of H of the map G̃ → G̃/Z ∼= G. Now XG

H is the monoid of all characters

χ ∈ XG̃
H̃

with χ(z) = χ(e) for all z ∈ Z ∩ H̃ . Let L be the Z-module of all χ ∈ ZXG
H

satisfying χ(z) = χ(e) for all z ∈ Z . Then XG
H is the intersection of a finitely generated

monoid XG̃
H̃

with a Z-module L, and therefore XG
H is finitely generated. q

References

1. A. Borel, Linear algebraic groups, 2nd edn, Grad. Texts in Math. 126 (Springer, New York/Berlin,
1991).

2. S. Donkin, ‘On free modules for finite subgroups of algebraic groups’, J. London Math. Soc. (2) 55
(1997) 287–296.

3. J. E. Humphreys, Introduction to Lie algebras and representation theory, Grad. Texts in Math. 9
(Springer, New York/Berlin, 1972).

4. H. Kraft, Geometrische Methoden in der Invariantentheorie, Aspects Math. (Vieweg, Braunschweig,
1984).
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