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RESTRICTIONS OF ALGEBRAIC GROUP
REPRESENTATIONS TO FINITE SUBGROUPS

HARM DERKSEN

ABSTRACT

Suppose that H is a finite subgroup of a linear algebraic group, G. It was proved by Donkin that there
exists a finite-dimensional rational representation of G whose restriction to H is free. This paper gives a
short proof of this in characteristic 0. The author also studies more closely which representations of H
can appear as a restriction of G.

1. Introduction

Suppose that G is an algebraic group over a field K, and that H is a finite subgroup
of G. In this paper, we shall investigate which representations of H appear as a
restriction of a representation of G. Throughout the paper, all representations are
assumed to be finite-dimensional and rational. In [2], Donkin proves the following
theorem.

THEOREM 1.1 ([2]). There exists a finite-dimensional rational representation V of G
such that the restriction V |y of V to H is free; that is, V |y is isomorphic to Wrgg,
where N is a positive integer and Wy, is the regular representation of H.

Donkin thereby answered a question raised in [5] by Kuzucuoglu and Zalesskii,
who proved the theorem in the special case where K has positive characteristic
and H is reduced. In this paper we give a short alternative proof of the results of
Donkin in the case char(K) = 0, using representation theory. In fact, we shall show
the following theorem.

THEOREM 1.2.  Suppose that the characteristic of the base field K is 0. There exists
a GL,-representation Vi of dimension (E — 1)""=V/2E" such that Vi |g is free for
every subgroup H of GL, whose exponent divides E.

Theorem 1.1 is an easy corollary of Theorem 1.2. Indeed, suppose that G is a
linear algebraic group containing a finite subgroup H with exponent E. Now G
is a Zariski closed subgroup of GL, for some n. By Theorem 1.2, there exists a
finite-dimensional rational representation Vg of GL,, such that the restriction Vg |y
of Vg to H is free. Clearly, the restriction Vg | is a finite-dimensional rational
representation of G whose restriction to H is free.

Suppose that V' is a rational finite-dimensional representation of G with charac-
ter 7. Let V' |g be the restriction of H, and let y = 7 |y be the H-character of this
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restriction. If h, ' € H are conjugate in G, then we must have y(h) = x(/'). This gives
a necessary condition for an H-representation W to be liftable to a representation of
G, but it is not sufficient, as we shall see later. However, we shall prove the following
theorem.

THEOREM 1.3.  Suppose that G is a reductive group over a field K of characteristic 0,
that H < G is a finite subgroup, and that W is a finite-dimensional representation of H
whose character y satisfies y(h) = y(W') for all pairs h,h' € H which are conjugate in
G. Then there exists a rational finite-dimensional representation V of G such that V |y
is isomorphic to WM @ ng for some positive integers M and N.

Define X§ to be the monoid of all restrictions {7 |y : 7 is a character of G}. In
the last section we shall prove the following theorem.

THEOREM 1.4. If G is a connected reductive group over an algebraicially closed
field K (of characteristic 0), and H = G is a finite subgroup of G, then X$ is a finitely
generated monoid.

2. Notation

To avoid confusion, throughout the paper we shall stick to the following notation.
We assume that G is a reductive group, that g is its Lie algebra, that e € G is the
identity element, and that H < G is a finite subgroup. In general we shall denote
representations of G by ‘V’, representations of H by ‘W”, characters of G by ‘z” and
characters of H by ‘y’. The regular character of H is denoted by ys. We choose a
maximal torus T < G, and W = Ng(T)/T is the Weyl group, where Ng(T) is the
normalizer of T inside G. We shall write @ for the set of roots, we choose simple
roots oy,...,o, € ®, and @, will be the set of positive roots. If G is connected and
semisimple, then we have the following additional notation. The weight lattice A is
generated by fundamental weights A,...,4,, and Ay = NA; + NA, +... + N4, is
the set of dominant weights. We shall write p = Y[ 4 = 3 > ,cq, & For 1 € Ay
we shall write V) for the g-module with heighest weight 4. We shall write 7, for the
character of G on V, if the action of g extends to an action of G.

3. Examples

ExampLE 3.1. Take G = GLy (where s > 1) and H = {Id,—Id} < G. Let
%o be the trivial character, and let y; be the signum character of H. Let V, be
the irreducible representation corresponding to the partition 4 = (4y,...,4,). The
G-character of V; will be denoted by 7;. The restriction of the character 7(;) of the
representation V = V{y) to H is equal to 2°x;. The restriction of the character 7y, 1
of /\23 V to H is equal to yo. We shall show that X§ is generated by o and 2%y; as
follows.

If |A] == A1 4+ ...+ A is even, then 7, |y = dim(V})yo, and if || is odd, then
7, |g = dim(V})y1. Suppose that || is odd, and let p : GLy — GL(V,) be the group
homomorphism corresponding to the action. Then det(p(g)) = det(g)! for some I.
If we substitute g = ¢ - Id, then we obtain t4imVIIA = ¢/2° Tt follows that dim(V}) is
divisible by 2°.
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The character Ny is a restriction of a character of G if and only if N is divisible
by 2°.

ExampPLE 3.2. Take G = GLg and let H = {Id,—Id} < G. Note that
T(1,1,1,1,1,1) |H = X0, T(1) |H = 6}(1, and T(1,1,1) |H = 20}(1. One can show that XI(-;I
is generated by yo, 61 and 20y;. Now Ny is the restriction of a character of G if
and only if N =6, 12, 18, 20, 24, 26, 30, 32, or N = 2M with M > 18.

ExamPLE 3.3. Let G = SL,, and take H = (o), where

G=<(C) C(_)1>’

and where { is a fifth root of unity. Let y; be the irreducible one-dimensional
character defined by ¢ — (' for i = 0, 1,2,3,4. Denote the binary forms of degree d
by Vy, and let 7, be its character. Then we have

Tsq g = (d+ Dyo +d( + x2 + x3 + xa),
Tsa+1 |m = d(xo + 22 + 13) + (d + D0 + 1a)s
Tsat2 ln = (d+ V(o + 22 + x3) + d(x1 + 74),
Tsa+3 [m = dyo + (d + D)(x1 + x2 + 23 + 14),
Tsara [m = (d+ V(o + 11 + 02 + 23 + 24)-

The monoid X is generated by yo. x1 + x4, %0 + 72 + 13 and y1 + 12 + 13 + Za-

Now ¢ and ¢* are conjugate in G, ¢*> and ¢> are conjugate in G, and Id,
o and ¢” generate distinct conjugacy classes in G. Take y = x> + 3, and note
that y(o) = x(0*) and y(6?) = x(¢”). Now (12 4+ 13) |u = % + Jfreg Where
Yree = X0 + x1 + x2 + 13 + x4 is the regular character of H. However, there is
no character t of G such that 7 |y = My with M positive.

ExaMPLE 3.4. Let G = GLj, and take H = {Id,{ Id,{?Id}, where { is a primitive
third root of unity. Let y; be the character ' Id + {’. Using similar arguments to
those in Example 3.1, one can prove that whenever © |z = My + N, it must be
true that 3° divides M and N. This shows that M cannot always be taken equal to
1 in Theorem 1.3.

4. A lemma from representation theory

At this beginning of this section we shall prove a lemma in representation theory,
which will be applied to the proof of Theorem 1.2 at the end of this section.
Let g be a semisimple Lie algebra. The character 7, has the following formal

expression:
E mj e,

HeEA
where m;,, is the multiplicity of the weight u in V;. A well-known formula of Weyl
(see [3, 24.3]) states that for every 1 € Ay, we have

( > sgn(w)e“’“”).r;, =Y sgn(w)e ¥+,

wew” weW”
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LemMa 4.1. If 2+ p+w(u) € Ay for all w € W, then

< ) eW(u)) -

wew”

is a character of a representation of g.

Proof. We can write

( Z ew”‘)).m = Za‘,‘c\,, 4.1)

wew
where v runs through a finite set of dominant weights, and where the a, are integers.
We shall prove that a, > 0 for all v. We multiply (4.1) with

> sen(w)e” ),

wew”
and by using Weyl’s formula we get

< Z ew(”)> . Z sgn(w')e" ) = Zav Z sgn(w')e” "), (4.2)

wew” wew v wew
If w'(p+24)+w(u) € p+ Ay, then w must be trivial because

W)W (o 4+ 2) +w(w) = p+ 2+ (W) 'w)(p) € Ay
Of we consider only the ¢’ in (4.2) where y lies in p + A, then we get

E eﬂ+/1+w(u) — E aveerv'
N

weW
pHitw(w)ep+Ay

O

Proof of Theorem 1.2. Let T < GL, be the set of diagonal matrices. Define
x; € X*(T) as the function which maps an element of T to its (i,i)-entry. The Weyl
group #" of GL, is the symmetric group S, which acts transitively on xi, x,..., X,.
Let us define u as
Axi+x 4+ XN+ + 3+ x4 x + X2+ xED),
Since u is # -invariant, it can be seen as a class function on GL,. Define a partition

Let 7, be the corresponding irreducible character of GL,. We claim that the class
function 7, - u is a character of a representation of GL,. Let us put x; = e". The
formal character of u is

(T4e e+ e B 1 e 4.+ eE02) (1 el + e ... 4 e EDn),

Now p corresponds to the weight (E —2)(n—1)t; +(E —2)(n—2)ta+...+(E —2)t,—1
and p = %((n — Dty +(m=3)t, +...+ (1 —n)t,). A weight ajt; + arty + ... + at,
is dominant if and only if a; = a, = ... = a,. A weight p appearing in u is of
the form ajt; + axts + ... + apty, with ay,as,...,a, € {0,1,...,E — 1}, and it is easy
to check that p + p + u is dominant. Define deg(e®!'™T"i) = q; + ay + ...a,, and
write u = Z;‘g_l) u;, where u; is the homogeneous part of degree i. We restrict to
sl,, the Lie algebra of SL,, and we apply Lemma 4.1. So 7, - u; is a character of a
representation V; of sl,,, and the Lie algebra action extends to an action of the simply
connected group SL,. For 1 € K \ {0} we have 7, - u;(Ald) = 7, - u;(1d)A" = dim(V;) A"
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Now we can extend the action of SL, on V; to GL, by defining AId - v = A'v for all
v € V, and we see that 7, - u; is the GL,-character of Vi. So 7, - u is a character of
the GL, module V = @, V; of dimension t,(Id)u(Id). Clearly, u(Id) = E", and by
Weyl’s formula we get

_ (p+pa) (E—=2)p+p,a) nin—
o,(1d) = [] o) I1 T—(E—l)( 7z,

The function u vanishes on H \ {Id}, and so does u " 7,. It follows that V | is a free
H-module. U

oaedy oDy

5. The monoid €

Let d be the order of H, and write H = {e,hy,hy,...,hy_1}. Let Xg be the set
of characters of all finite-dimensional representations of G over K, the algebraic
closure of K. This monoid is generated by infinitely many irreducible characters.

Characters of H have values in € (or to be precise in Q < C, the algebraic closure
of @Q). We define a map Xg — C¢! by

n(t) := (t(h1), o(ha), ..., t(ha-1)).
Let € be the image of 7.

LEMMA 5.1.  The monoid € is in fact a Z-module.

Proof. 1t is enough to show that —=n(t) € ¥ for all = € Xs. By Theorem 1.1,
there exists a representation V' of G such that V |y is a free H-module. Let ¢ be
the character of V. We have n(tg) = 0. Let 7y be the character of V*, the dual space.
Then 1979 = 1 + 11, where 1 is the trivial character and t; is a character. We have
10707 = T+ 171 and 7n(t) + n(t71) = (Tt + 771) = 7W(T0T0T) = 0, S0 —7(7) = 7(771) € F.

U
For h € H, we write [h]¢ to denote the conjugacy class of h in G.

LEMMA 5.2.  The rank of € as a Z-module is equal to r, where r is the cardinality
of the set of conjugacy classes {[hilg, [h2]G,- .-, [hi-1lG}-

Proof. If [hilc = [hjlg, then t(h;) = t(h;) for all y € X(G), so it is clear
that the rank of ¥ is < r. Without loss of generality, we may assume that
[h]g, [h2]G, ..., [h]g are all different. The elements hy,...,h. are semisimple in G,
so the conjugacy classes [h;]g are Zariski-closed subsets of G (see [1, 9.2], or
[4, 1.3]). Let O(G) be the coordinate ring G over the algebraic closure K, and we
let G act on itself by conjugation. There exists an invariant f € O(G)¢ (a class
function) such that f(hy), f(h),..., f(h;) are all different (see [6, Corollary 1.2]). We
can write f = Zle a;t; with a; € K and 1; a character for i = 1,...,s. For a generic
choice of positive integers by,...,bs we see that 7 := Zle b;t; 1s a character such
that t(hy), 7(ha),. .., t(h,) are all different. Now n(1), (1), n(z%),..., n(z"~") are linearly
independent, because these vectors form the matrix

1 1 1
©(hy) thy) ... t(ha—y)

s

) Ty . T ()



170 HARM DERKSEN

and the first r X r minor is a Vandermonde determinant, whose value is
[T @) —=h))),
I<i<j<r

which is nonzero. O

Proof of Theorem 1.3. Let 2 = C*! be the set of all

(X(hl)a X(hZ)’ EERE] X(hd—l))a

where y is a character of H with the property that y(h;) = y(h;) for all h;,h; € H
which are conjugate in G. Let 2’ be the Z-module generated by 2. It is easy to see
that 2’ has rank less than or equal to r, and clearly ¥ € Y = %', s0 ¢ =< %' is a
submodule of finite index (and in fact it follows that 2 = 2'). Suppose that W is
a finite-dimensional H-module, and that y is its character. For some M we have

M(xh)..... b)) = n(x) € .

So 1 |y — My is a class function on H vanishing on hy, hy,...,hs_1, so it must be
a multiple of the regular character jr, of H, say 7 |g — My = Ny With N € Z.
Without loss of generality, we may assume that N > 0. (We can replace t by 7 + It/
where | is a positive integer and 7’ is a character such that 7' |y = Ay, for some
positive integer A as in Theorem 1.1.) Let V' be the representation of G (defined
over K) corresponding to 7. Then V |z = WM @ Wr{;’g. There exists a finite algebraic
extension L of K such that the representation V is defined over L. Let V' be the
G(L) module V seen as a G(K)-module. Then V' |z = WM @ ng, where s is the

degree of the field extension [L : K]. O

6. The finitely generated monoid of restricted characters

LeEmMA 6.1.  Suppose that G is connected, that g is simple, and that h € G is of
finite order and not in the center of G. Then for every ¢ > 0 there exists a positive
integer N such that for every dominant weight A with (p,.) > N we have

7,(h)
7;(e)

Proof. We choose a maximal torus T of G containing h. Let

g=b®@Kx“

acd

be the Cartan decomposition of g, where [j is the Lie algebra of T. Because h is not
in the center of G, there exists an x, such that hx, = {x, with { # 1. We shall show
that there exists a constant M > 0 such that

ty(h)| < M dim V=

for all dominant weights 4, where V;* is the kernel of x, acting on V;. The elements
x, and x_, generate a sub-Lie algebra of g isomorphic to sl,. Having obtained an
slb-module, we have a decomposition

V, = é} R;
i=1

where R; is h-stable, and irreducible as an sl,-module for all i.
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For each i, R is one-dimensional and spanned by a heighest weight vector v;. A

basis of R; is given by
Vis X_oUiy X2 00, X0
for some nonnegative integer d;. Now hv; = y;v; for some v;, and we get
h(xL i) = (Xl = (il ).

Let 7;(h) be the trace of h on R;. Then we have
2

1— Cfdfl
) = (L4 + 74+ =) <7

Vi -1

For an integer M > 2/|{ — 1| we have
|T;(h)| < Mr = M dim V.

We shall now show that dim V;*/dimV; — 0 if (p,A) — oo. For a pair of
dominant weights A and u, there exists a natural G-equivariant multiplication
V, x Vy = V4, constructed as follows. Let U = G be the maximal unipotent
subgroup. Let ((G) be the coordinate ring, and let ((G/U) be the subring of
U-invariant functions, where U acts on G by right-multiplication. It is known that,
as a left-module, O(G/U) has the decomposition

0(G/U) = @VA,

where / runs through all the dominant we1ghts. Now O(G/U) is a graded ring,
graded by the monoid of dominant weights. Let «y,...,o be the simple roots, and
let 4i,...,4; be the fundamental weights. For the moment we shall fix an i with
1 < i < [ The element x, acts non-trivially on V,,, because otherwise G would
act trivially on V, by the simplicity of g. Choose an element p € V;, such that
q = x,p # 0 and x2p = 0. For all nonnegative integers j and k with j <k, we have
pP*7q'V; = Viiks,. So we have an inclusion p* V= + pF= gV + ...+ ¢" V" < V..
In fact, the sums are direct because p € ((G/U) is transcendental over O(G/U)*-.
(x, acts as a derivation on ((G/U), so the kernel of x, is algebraically closed within
0(G/U).) Note that multiplication with p or ¢ is injective, since ¢O(G/U) is a domain.
So we get dim V1, = (k+ 1)dim V. By Weyl’s formula, we get

dim Vf“ < dim V4, _ H (p+ A+ ki, o)
k +1

dimV, > (k+)dimV, (p+ 7,0)
1 k<}“i: OC) ) < k<ii5 a) >
= — 1+ - < 1+
k+1 ag ( (p+ A o) k—l—l “1;{ (A, 04
because (4;,a) = 0 or (p+A,a) = (4,a;) for all . There is a constant M;(k) such that

dimV;* 1

. < -
dimV; k

for all 1 with (4,0;) > M;(k). Write p = Zﬁzl kio;. Take
N = kiM{(kM) + kyMy(kM) + ... + k;M;(kM).
If (p,2) > N, then (4,0;) > M;(kM) for some i, and

7, (h) dmV® M 1
x . — < — < .
1,(e) dimV, ~ Mk "k U
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LEMMA 6.2.  Suppose that # < N" is a submonoid. Let C = IRo.# be the cone in
R" spanned by 4. If C has finitely many extremal rays, then ./ is finitely generated.

Proof. We can choose my,...,m, € .4 which span the cone C. If m € .#, then
there exist real numbers ay,a,...,a, > 0 such that m = >_'_, a;m;. Assume that the
cardinality of the set S = {i € {1,...,r} | a; # 0} is minimal. It is easy to see that
the set {m; | i € S} is linearly independent. It follows that ay,...,a, € Q. Choose
an N such that Ng; € N for all i. It follows that Nm € .#. Let .#’ be the monoid
generated by my,...,m,. Let C[.#] and C[.#'] be the algebras on the monoids .#
and .#'. The algebra C[.#] is integral over C[.#']. The quotient field of C[.#] is a
finite extension of the quotient field of C[.#'] because Z.#' = Z.# has finite index.
We conclude that C[.#] is a finite module over C[.#'], and therefore .# must be
finitely generated. O

Proof of Theorem 1.4. The monoid Xy of characters of H is isomorphic to IN",
where n is the number of irreducible representations of H. The set X§ is a submonoid
of Xy. Let C = IR" be the cone spanned by X§. By Lemma 6.2 we have to show
that C has finitely many extremal rays. By Theorem 1.1, jy, lies in C, and moreover,
by Theorem 1.2, yce lies in the relative interior: inside the vector space RC, yr, lies
in the interior of C.

Step 1. First we shall deal with the case where G is connected and simple. Because
Xreg lies in the relative interior of C, we can choose finitely many fi,f2,...,fi € C
such that y., lies in the interior of the cone spanned by fi,...,f; (inside the
topological space C). There exists an ¢ > 0 such that every f € C with

Xreg(h) ‘
<eg
|H|

lies in the cone spanned by fi,...,f;. The cone C is spanned by all 7; |g. By
Lemma 6.1 there are only finitely many / such that

Ti(h) _ Xreg(h) >
7;(e) |H|

This proves that C is spanned by fi,...,f; and 1, |y, for 4 € I, where I is a finite
set of dominant weights. By Lemma 6.2, X§ is finitely generated.

max
heH

f(h)—

heH

Step 2. We assume that G is connected, and that g is simple. The group G has a
finite center Z(G). For an irreducible character ¢ of Z(G) we define X5(¢) = Xy as
the monoid of all 7 |z where 7 is a character of G satisfying 7 |z(g) = t(e)¢. We also
define C(¢) as the cone generated by X5(&). We shall prove that C(¢) has finitely
many extremal rays. Assume that X5 (&) # {0}. Choose a non-zero character t of G
such that 7 |z(G) = t(e)¢, and let T be the dual character in X5(£~1). We can choose
7 in such a way that for every h € H we have t(h) = 0 if and only if y(h) = 0 for all
% € X5(&). We define maps u : C(¢) — C(1) and v : C(1) — C(¢) by

u(f)=f7lag (where f € C()) and  o(f)=ft|z (where f € C(1)).

The maps u and v o u are injective on C(&), because of our choice of 7. Note

that X5(1) can be identified with ng(zfﬁ?z(m). Let yre be the regular character

of H/(H N Z(G)). We see that u(v(Jreg)) = T(€)*Jreg» SO Jreg is in the image of wu.
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Moreover, jrg lies in the relative interior of u(v(C(1)), because yrg lies in the relative
interior of C(1). We have

dim u(v(C(1)) = dimv(C(1)) = dim p(u(C(¢)) = dim C(&) > dim u(C(&)).

It follows that y.e is in the relative interior of u(C(&)). If (p,4) — oo (with
75 |z(6) = t:(e)¢), then by Lemma 6.1,
T N Xreg

vi(e)yie)  [H/(HNZ(G)]
With similar arguments to those in Step 1, we see that u(C(¢)) has finitely many
extremal rays; therefore C(¢) has finitely many extremal rays. It follows that X§(&)
is finitely generated by Lemma 6.2. Now X§ is finitely generated, because it is
generated by all X§(¢), where ¢ is a character of Z(G).

Step 3.  Suppose now that G = Gy X G, X ... X G, where, for each i, G; is
connected with a simple Lie algebra, or G; is a one-dimensional torus. The irreducible
representations of G are exactly all V1 ® V>, ® ... ® V,,,, where V; is an irreducible
representation of G; for all i. Let p; : G — G; be the projection onto G;. By
restricting to H, we get a homomorphism p; |g: H — G;. We know that Xg_‘iH)
is finitely generated (if G; is connected with a simple Lie algebra, then this was
done in Step 2; if G; is a torus, then this is very easy), and therefore Xg" is finitely
generated. Let S; = Xg" be a finite set of generators. Now X§ is generated by all
1O ®...0 y, with y; € §; for all i. We conclude that Xg is finitely generated.

Step 4.  Now G is connected and reductive. It is known that G is a quotient of
some G with G as in Step 3, and some finite central group Z. Let H be the inverse
image of H of the map G - G/Z = G. Now X§ is the monoid of all characters
7 € X§ with y(z) = y(e) for all z € Z N H. Let L be the Z-module of all y € ZXf;
satisfying y(z) = y(e) for all z € Z. Then X§ is the intersection of a finitely generated
monoid Xg with a Z-module L, and therefore X§ is finitely generated. O
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