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ABSTRACT

The degree sequences of finite graphs, finite connected graphs, finite trees and finite forests have all
been characterized. Our present purpose is to provide such characterizations in the infinite case.

Introduction and assumptions

All graphs in this paper are without loops and multiple edges, as in [3], but they
need not be finite. The degree of a vertex in a graph is the cardinality of its
neighbourhood (the set of all vertices adjacent to it). A graph is locally finite if every
vertex has finite degree. For a countable locally finite graph, the degrees of the
vertices can be listed as a sequence of integers, called the degree sequence of the
graph. The degree sequences of finite graphs of finite connected graphs, of finite trees,
and of finite forests have been characterized by several authors, as documented in
Hakimi and Schmeichel [1]. Our present purpose is to give such characterizations in
the infinite case. We treat countable locally finite graphs in Section 1 and all other
infinite graphs in Section 2.

Strictly speaking, the concept of degree sequence applies only to the countable
locally finite case, though it could easily be generalized by allowing (possibly)
transfinite sequences of (possibly) infinite cardinals. However, since degree sequences
involve an ordering of the vertices (or at least of their degrees) that is entirely
irrelevant to the problem under consideration, it is preferable to dispense with them,
using instead the following construct. The multiplicity function m of a graph assigns
to each cardinal number d the number m(d) of vertices having degree d. (The domain
of m consists of all cardinal numbers, but m(d) = 0 for all sufficiently large d, so we
need not be concerned about any set-theoretic difficulties.) Thus, for example, the

number of vertices of the graph is ]T m(d\ and the graph is locally finite if and only if
d

m{d) = 0 for all infinite d. We shall characterize those functions m from cardinals to
cardinals that occur as the multiplicity functions of infinite graphs, forests, trees, and
connected graphs.

Three assumptions (A1-A3 below) about m will be in force throughout the paper.

Al. m(d) = 0 for all sufficiently large cardinal numbers d.

Clearly, the multiplicity function of any graph satisfies this requirement. Al
implies that the cardinal sum ]T m(d) is well-defined; it is the number of vertices in

any graph with multiplicity function m, and we denote it by p.

A2. p is infinite.

This simply means that we are dealing with infinite graphs.

A3. m(0) = 0.
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This assumption entails no loss of generality, for if m(0) > 0 then m cannot be the
multiplicity function of a connected graph, while the question whether m is the
multiplicity function of a graph or a forest reduces immediately to the same question
for the function m! that agrees with m except that m'(0) = 0.

1. Countable locally finite graphs

Throughout this section, we assume, in addition to our blanket assumptions A l -

A3, the following two conditions.

A4. m(d) = 0 for all infinite d.

A5. m(d) ^ Ko for all d.

Thus, any graph with multiplicity function m is countable and locally finite.

THEOREM 1. Every function satisfying A1-A5 is the multiplicity function of a
forest.

THEOREM 2. For a function m satisfying A1-A5, the following are equivalent:

(a) m is the multiplicity function of a connected graph;

(b) m is the multiplicity function of a tree;

(c) 1+ £ (d-2)-m(d)>m(\).

Before proving these two theorems, we introduce a way of viewing graphs that
will be useful in describing the construction of graphs with prescribed multiplicity
functions. Think of vertices as geometrical points and edges as (Jordan) arcs joining
pairs of points, and think of each arc as being bisected, half of the arc being
associated with each of the incident vertices. (This point of view is applied to
digraphs in [4, 5].) Thus, we view the graph as being composed of "pieces", where
each piece consists of a vertex of some degree d together with its d incident semi-
edges, and where the pieces are assembled into a graph by splicing together the open
ends of certain pairs of semi-edges. We call such pieces, containing one vertex each,
atoms, and we use the term semi-graph for the result of splicing some (or none or all)
of the semi-edges of some collection of atoms in such a way as not to introduce
loops or multiple edges. Thus, a semi-graph looks like a graph plus unspliced semi-
edges attached to some (or all or none) of the vertices.

This can be expressed formally by defining a semi-graph to be a triple (G, if, a),
where G is a graph, H is a set called the set of (unspliced) semi-edges, and a is a
function associating to every semi-edge in if a vertex of G said to be incident with
that semi-edge. The degree of a vertex v in this semi-graph is defined to be the sum of
its degree in G (called its spliced degree) and the number |a~ 1{f}| of incident semi-
edges in H (called its unspliced degree). To splice a pair of semi-edges in H means to
replace (G, H, a) with (G', H', a') where H' is H minus the two semi-edges in
question, a' is a restricted to H', and G' is G plus a new edge joining the vertices of
those two semi-edges. Such splicing is possible only if these vertices are distinct and
not adjacent in G. Similarly, one can define simultaneous splicing of several pairs of
semi-edges.
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Given a proposed multiplicity function m, we have an associated semi-graph
consisting of m{d) vertices of unspliced degree d and spliced degree 0 for every d (a
disjoint union of p atoms). To construct a graph with multiplicity function m is to
splice all the semi-edges of this semi-graph. Such splicing will be carried out in stages
to construct the required graphs in the proofs of Theorems 1 and 2, to which we now
turn.

Proof of Theorem 1. Let m be given, and let Po be the associated semi-graph as
in the preceding paragraph. By assumptions A2-A5, P has denumerably many
vertices v0, v{,..., and denumerably many semi-edges s0, s1?.. . . We splice the semi-
edges together in denumerably many steps, splicing one pair of semi-edges at each
step, as follows. Let sn be the first semi-edge (that is, with smallest subscript) not
spliced at a previous stage; let vk be the first vertex that is distinct from <x(sn) and is
not incident to any semi-edge already spliced. Then splice sn and an arbitrary semi-
edge incident to vk. By the choice of vk and by A3 the splicing is possible, while the
choice of sn ensures that every semi-edge is eventually spliced, so we will obtain a
graph after countably many steps. Furthermore, the new edge formed at any stage of
the construction cannot complete a cycle, for one of its endpoints was not previously
joined to anything. Thus, no cycle is ever formed, and the construction yields a forest.

Proof of Theorem 2. Obviously (b) implies (a).

(c) => (b). Assume that m satisfies (c), and let Po be the associated semigraph, as
in the proof of Theorem 1.

We shall first splice all but one of the (semi-edges of) vertices of degree 1 to (semi-
edges incident to) vertices of degree ^ 3 in such a way as to leave the unspliced
degrees of the latter ^ 2. To do this, we set aside for each vertex of degree ^ 3, two
of its incident semi-edges to be kept unspliced, and declare the rest available for
splicing to vertices of degree 1. There are £ (d — 2) • m(d) available semi-edges,

rf» 3

which, by (c), are enough to accommodate all but one of the m(l) vertices of degree 1.
Let the components of the resulting semi-graph be listed as Co, C l s . . . , and let

the unspliced semi-edges be so>
si> ••• • (Both sets are countable by A4 and A5.) If

there is a component with only one unspliced semi-edge, then, by the preceding
paragraph, there is only one such; let it be Co and let its unspliced semi-edge be s0.
By A3, every component has unspliced semi-edges, so every component but Co has at
least two. Since A4 guarantees that each component has only finitely many semi-
edges, we arrange the lists so that, if n < k, then all the semi-edges in Cn precede
those in Ck in the s,-list.

Now splice as in the proof of Theorem 1, using the Cn in place of the vn. Since no
Cn contains a cycle (the underlying graph of each Cn being a star), we again obtain a
forest; it remains to prove connectedness.

We claim that, after n steps of the construction, the component containing Co

consists of Co, Cl 5. . . , Cn and has at least one unspliced semi-edge, and that no Cm

with m > n has yet been spliced to anything. This is obvious for n = 0, that is, before
the construction begins. If it is true for n, then at step n+1, the first unspliced semi-
edge will be in the component consisting of Co,... , Cn (by our convention about the
ordering of the semi-edges and the induction hypothesis), and it will be spliced to a
semi-edge of the first Ck not yet spliced to anything, namely, Cn + 1. Thus, the
component of Co after this step consists of Co,... , Cn + 1. Furthermore, since Cn + 1
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had at least two unspliced semi-edges and since only one of them has been spliced, at
least one remains. So the claim is true for n +1. The claim is therefore true, by
induction on n, and connectedness of the final graph follows immediately.

(a) => (c). Suppose there were a connected graph whose multiplicity function
violates (c) while satisfying A1-A5. Since m(l) ^ Xo by A5, the sum
S = Y, (^ — 2) • m(d) must be finite for any such graph. Let G be such a graph with

the smallest possible value of S, and let m be its multiplicity function. Of course, since
(c) is violated, m(l) is non-zero, so let v0 be a vertex of degree 1. Let vy be the unique
vertex adjacent to v0. If yx has degree 2, let v2 be the unique vertex other than v0

adjacent to vx. If v2 has degree 2, let v3 be the unique vertex other than vx adjacent to
v2, etc. If any vn has degree ^ 2, then vk is undefined for all k > n. There are three
cases to consider.

Case 1, in which vn is defined for all n. Then, since the only vertices adjacent to vn

are vn±i, and since G is connected, the vn must be all the vertices of G. Thus, m(l) = 1
and m{d) = 0 for all d ^ 3. This contradicts the assumption that (c) is violated.

Case 2, in which there is a last vn and its degree is 1. Then the set of vn again
contains all vertices adjacent to any of its members, so, by connectedness, it exhausts
G. This contradicts A2.

Case 3, in which there is a last vn, say vk> and its degree is S ^ 3. Form a graph G'
by deleting from G the vertices vo,...,vk.l and the edges incident with them. The
multiplicity function m' of G' differs from m in that m(l) has been reduced by 1
(because of v0), m(2) has been reduced by k — 1 (because of vlt..., vk_i), m(S) has
been reduced by 1 and m(d — 1) has been increased by 1 (because the degree of vk was
changed from S to <5 —1). The effect on both sides of the inequality (c) is to reduce
them by 1. So G' also violates (c), is clearly connected yet has a smaller S than G.
This contradicts the choice of G as minimizing S.

Having obtained a contradiction in every case, we have established the
implication from (a) to (c) and thus completed the proof of Theorem 2.

Remark. Compare condition (c) in Theorem 2 with the criterion

(c') 2+ £ (d-2)-m(d) = m(l)

for m to be the multiplicity function of a finite tree; see [2; p. 62] for the
characterization of the degree sequence of a finite tree. This condition suggests the
following alternate proof that (a) implies (c) which was kindly supplied by the
referee, using our notation as above.

(a) => (c), another proof. Since 2 + S ^ m(l), we can identify 2 + S vertices of
degree 1 in G. We will now construct a subgraph of G which is a finite tree T having
just these 2 + S vertices as its endpoints. To form T, we first use the connectedness of
G to join the chosen vertices pairwise with paths in G. From the union of the
resulting paths we extract a spanning subtree and prune away any excess vertices of
degree 1 to obtain T.
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Thus if mT is the multiplicity function of T, we have

2 + S = mT(l) = 2 + £ (d-2)-mT(d) (bye')
d > 3

(d-2)-m(d) =
3

the inequality arising because any vertex u of T not of degree 1 contributes
degT(u) — 2 to the first sum and degG(u) — 2 to the second sum, while each vertex not
in T contributes zero to the first and at least zero to the second. It follows that the
inequality cannot be strict, so every vertex of T has the same degree in T as in G. In
other words, no vertex of T has neighbors outside T. As G is connected, G = T,
contrary to the assumption that G is infinite.

2. Uncountable or non-locally finite graphs

In this section, we assume the following, in addition to the assumptions A1-A3
that are in force throughout the paper.

A6. Either m(d) > 0 for some infinite cardinal d, or m(d) is uncountable for
some d.

In other words, m does not satisfy the hypothesis of Section 1. We recall that the
sum Y;m(d) is denoted by p, and we write supd for the least upper bound of the

d

cardinals d for which m(d) > 0. Thus, any graph with the multiplicity function m has
p vertices and has degree supd.

THEOREM 3. For a function m satisfying A1-A3 and A6, the following are
equivalent:

(a) m is the multiplicity function of a graph;

(b) m is the multiplicity function of a forest;

(c) supd ^ p.

THEOREM 4. For a function m satisfying A1-A3 and A6, the following are
equivalent:

(a) m is the multiplicity function of a connected graph;

(b) m is the multiplicity function of a tree;

(c) supd = p, and if p is regular then m(p) > 0.

In connection with condition (c) of Theorem 4, we recall that a cardinal number
q is said to be singular if it is the least upper bound (or, equivalently, the sum) of
fewer than q cardinals each of which is smaller than q\ otherwise, q is said to be
regular. For example Ko is regular, and so are all successor cardinals; for these, the
condition m(p) > 0 follows from supd = p (and A6 if p = Ko). Other regular
cardinals, called "weakly inaccessible cardinals", cannot be proved to exist on the
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basis of the usual axioms of set theory. It is only when p is one of these that the
second clause in Theorem 4 (c) makes any difference.

Proofs of Theorems 3 and 4. In both theorems, the implication from (b) to (a) is
trivial. We prove (a) => (c) first for Theorem 3, then for Theorem 4, and we prove
(c) => (b) first for Theorem 4, then for Theorem 3.

3(a) => 3(c). Suppose supd > p. This means, by definition of supd, that
m(d) > 0 for some d > p. So, in any graph G with multiplicity function m, there
would have to be a vertex of degree d, which is more than the total number p of
vertices in G. This is obviously absurd.

4(a) => 4(c). Let G be a connected graph with multiplicity function m. By what
was just proved, supd ^ p. Suppose the inequality were strict. Let v0 be any vertex
of G, and inductively define Vn to be the set of vertices adjacent to vertices in
{v0} u Vl u ... u Vn_x. By connectedness, G is covered by {v0} and the Vn. Since
each vertex has degree at most supd, we have, by induction on n, that
\Vn\ ^ max (supd, Xo), so that p = \G\ ^ max (supd, Ko). Since we are assuming
p > supd, we must have p < Ko and supd finite. But this contradicts A6.

So p = supd. Suppose that p is regular but the supremum is not attained, that is,
m(p) = 0. If p were countable, A6 would be violated, so p must be uncountable. Let
v0, Vx, V2, be as in the preceding paragraph; again, connectedness implies that
they exhaust G. We show, by induction on n, that the set
Wn = {v0} u Vt u u ... u Vn_l has cardinality strictly less than p. This is trivial for
n = 1 as | Wx | = 1. Assume that it holds for n. The number of points in Vn is bounded
by the sum of the degrees of all the points in Wn (since every vertex in Vn is adjacent
to one in Wn), which is the sum of fewer than p cardinals each smaller than p. By
regularity, \Vn\ < p, so Wn+1 = Wn u Vn also has cardinality strictly less than p. This
completes the proof that every \Wn\ < p. Thus G is the union of Ko sets of cardinality
strictly less than p, which contradicts the fact that p is regular and uncountable.

4(c) => 4(b). Let m satisfy 4(c). Proceeding as in Section 1, we start with a semi-
graph Po consisting of p vertices, all of spliced degree 0, of which m(d) have unspliced
degree d, and we try to splice all the semi-edges to produce a tree.

Suppose first that m(p) > 0, so Po has a vertex v0 of degree p. If m(l) = p, we
splice (one semi-edge incident with) each vertex v ^ v0 of degree > 1 (if any) to
(some semi-edge incident with) v0, obtaining a semi-graph Pt in which the
component of v0 has p unspliced semi-edges (for whenever an unspliced semi-edge of
v0 is used to attach some v, this v brings with it at least one other semi-edge that
remains unspliced in Px) and the other components are p atoms of degree 1. Splice
these atoms to the semi-edges of the component of v0, and it is clear that a tree is
obtained. Henceforth, we assume that m(l) < p. Splice the vertices of degree 1 to vQ;
the resulting semi-graph Px is like Po except that, in place of v0 and the vertices of
degree 1, it has a component Cx with p unspliced semi-edges. Partition the other
vertices (of which there are p, all of degree ^ 2) into tt0 sets An of p vertices each.
Obtain P2 from Px by splicing one semi-edge from each vertex in A x to a semi-edge of
Cj, using up all the latter semi-edges. Since each vertex in Ax has degree at least 2, it
contributes an unspliced semi-edge to P2. Thus, the nontrivial component C2 of P2,
like Cl 5 has p unspliced semi-edges. Next, form P3 by splicing one semi-edge from
each vertex in A2 to a semi-edge of C2, using up all of the latter. Continue in this
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manner until all the An have been incorporated into Cn. The final result is connected
(because each Cn is) and is acyclic (because at no stage could a cycle be completed),
so it is a tree, as required.

Now suppose m(p) = 0. By assumption 4(c), p must be singular. Let p be the least
upper bound (hence also the sum) of a set {qt \i€l} of infinite cardinals q{ < p
indexed by a set / of cardinality less than p. Since p = supd by assumption, Po has a
vertex v0 of degree at least |/| and, for each i e / , a vertex w,- =£ v0 of degree at least q{.
Splice one semi-edge from each wt to a semi-edge from v0, forming a component Co

with p unspliced semi-edges. Now proceed as in the case m{p) > 0, but use Co in
place of the vertex v0. The construction again produces a tree, as required.

3(c) => 3(b). Let m satisfy 3(c), and let m' be like m except that m'(p) = m{p) + 1 .
Then m' satisfies 4(c), so it is the multiplicity function of a tree G'. As m'(p) ^ 1, G'
has a vertex v0 of degree p, and the other vertices have degrees as given by m.
Remove v0 and its p incident semi-edges from G'. The result is a semi-graph
consisting of p trees each with one unspliced semi-edge (where u0 used to be
attached). Since p is infinite, the set of these semi-edges can be partitioned into p
pairs. Splice the two semi-edges in each pair to obtain a forest with multiplicity
function m. This completes the proof of both theorems.

We note that in [2], Halin proves a more general result than (a) implies (c) in our
Theorems 3 and 4.

Remark. Theorem 3 holds without the assumption A6, for if A6 fails, that is, if
A4 and A5 hold, then 3(c) is trivially true while 3(a) and 3(b) are given by Theorem
1. Theorem 4, on the other hand, does not generalize in this way, since, when A6 fails,
4(c) is false but 4(a) and 4(b) sometimes hold.

Our theorems imply that in contrast to the situation for finite graphs, the absence
of cycles imposes no additional condition on the degree sequences (or multiplicity
functions) of infinite graphs. It should be possible to use the methods of this paper to
investigate other properties of infinite graphs, such as n-connectedness or
unicyclicity, to determine what conditions they impose on the degree sequence. (That
these two properties do impose additional conditions is clear; consider the degree
sequence (2,2,2,...).) Other problems for further investigation include the
characterization of degree sequences realized by a unique (up to isomorphism) graph
and, more generally, an infinite analog to the well-developed theory of finite degree
sequences.
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