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Counting smooth solutions to the equation A + B = C

J. C. Lagarias and K. Soundararajan

Abstract

This paper studies integer solutions to the abc equation A + B = C in which none of A, B, C has
a large prime factor. We set H(A, B, C) = max(|A|, |B|, |C|), and consider primitive solutions
(g.c.d.(A, B, C) = 1) having no prime factor p larger than (log H(A, B, C))κ, for a given finite
κ. On the assumption that the generalized Riemann hypothesis holds, we show that, for any
κ > 8, there are infinitely many such primitive solutions having no prime factor larger than
(log H(A, B, C))κ. We obtain in this range an asymptotic formula for the number of such suitably
weighted primitive solutions.

1. Introduction

A recurring topic of investigation in number theory is the relation between additive and
multiplicative structures of integers. A celebrated example is the abc-conjecture of Masser
and Oesterlé [25]; cf. [4, Chapter 12]. In its weak form, the abc-conjecture asserts that there
is a constant κ1 > 0 such that, for any ε > 0, there are only finitely many solutions to the
equation A + B = C with ABC �= 0, g.c.d.(A,B,C) = 1 and such that

max(|A|, |B|, |C|) �

⎛
⎝ ∏

p|ABC

p

⎞
⎠

κ1−ε

.

One may construct examples to show that κ1, if it exists, cannot be smaller than 1 (see Stewart
and Tijdeman [26]), and the strong form of the abc-conjecture postulates that in fact κ1 = 1
is permissible. In this paper, we study a different statistic related to the prime factorization
of ABC. In place of the radical

∏
p|ABC p, we study the smoothness maxp|ABC p. In [24], we

formulated the following conjecture, which we term the xyz conjecture.

Conjecture 1.1 (xyz conjecture (weak form)). There exists a constant κ0 > 0 such that
the following hold.

(a) For each ε > 0 there are only finitely many solutions (X,Y,Z) to the equation X + Y =
Z with g.c.d.(X,Y,Z) = 1 and

max
p|XY Z

p < (log max(|X|, |Y |, |Z|))κ0−ε. (1.1)

(b) For each ε > 0 there are infinitely many solutions (X,Y,Z) to the equation X + Y = Z
with g.c.d.(X,Y,Z) = 1 and

max
p|XY Z

p < (log max(|X|, |Y |, |Z|))κ0+ε. (1.2)
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We shall call a solution A + B = C primitive if g.c.d.(A,B,C) = 1. The restriction to
primitive solutions in the abc and xyz conjectures is needed to exclude examples like a + a = 2a,
where a is a high perfect power, or a is very smooth.

For any primitive solution (X,Y,Z) to X + Y = Z we define its smoothness exponent
κ0(X,Y,Z) by

κ0(X,Y,Z) :=
log maxp|XY Z p

log log max(|X|, |Y |, |Z|) . (1.3)

Our interest then is in the xyz-smoothness exponent κ0 which is defined as the lim inf of
κ0(X,Y,Z) as max(|X|, |Y |, |Z|) → ∞. A priori we have 0 � κ0 � +∞, and the weak form of
the xyz-conjecture asserts that it is positive and finite. We next give a heuristic for the weak
xyz conjecture which also suggests a plausible value for κ0.

Conjecture 1.2 (xyz conjecture (strong form)). The xyz-smoothness exponent κ0

equals 3
2 .

A natural number n is said to be y-smooth if all its prime factors lie below y. Throughout
we shall let S(y) denote the set of y-smooth numbers, and Ψ(x, y) shall count the number of
positive integers below x lying in S(y).

Consider all the triples (X,Y,−Z) drawn from the interval [1,H] but restricted to having all
prime factors smaller than (log H)κ. We wish to find solutions to X + Y − Z = 0. There are
Ψ(H, (log H)κ)3 such triples, each having a sum X + Y − Z that falls in the interval [−H, 2H].
If these sums were randomly distributed, then the chance that the value 0 is hit might be
expected to be approximately proportional to

P (H,κ) :=
Ψ(H, (log H)κ)3

H
. (1.4)

It is known that (see (4.5)), for fixed κ > 1, one has

Ψ(x, (log x)κ) = x1−1/κ+o(1), (1.5)

as x → ∞. Thus, for κ > 1 the number of such triples (X,Y,Z) is at most Ψ(H, (log H)κ)3 =
H3(1−1/κ+o(1)), and if κ < 3

2 , this is less than H1−ε, so that P (H,κ) = H−ε. This leads us to
believe that κ0 � 3

2 .
We derive a matching heuristic lower bound for the number of relatively prime triples. Take

X to be a number composed of exactly K := [log H/(κ log log H)] distinct primes all below
(log H)κ. Using Stirling’s formula, there are

((
π((log H)κ)

K

))
= H1−1/κ+o(1) such values of X all

lying below H. Given X, choose Y to be a number composed of exactly K distinct primes below
(log H)κ, but avoiding the primes dividing X. There are

((
π((log H)κ)−K

K

))
= H1−1/κ+o(1) such

values of Y . Finally, choose Z to be a number composed of exactly K distinct primes below
(log H)κ avoiding the primes dividing X and Y . There are

((
π((log H)κ)−2K

K

))
= H1−1/κ+o(1)

such values of Z. We conclude therefore that there are at least H3−3/κ+o(1) such triples, and
hence we expect that κ0 � 3

2 .
In [24, Theorem 1.1], we observed that lower bounds for the xyz-smoothness exponent follow

from the abc-conjecture.

Proposition 1.3. The weak form of the abc-conjecture implies that the xyz-smoothness
exponent satisfies κ0 � κ1. In particular, the strong form of the abc-conjecture implies
that κ0 � 1.
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It is interesting to note that even the strong form of the abc-conjecture is insufficient to
imply the conjectured lower bound κ0 � 3

2 above on the xyz-exponent.
This paper studies the upper bound part of the xyz-conjecture. Assuming the truth of

the generalized Riemann hypothesis (GRH), which states that all non-trivial zeros of the
Riemann zeta function and Dirichlet L-functions lie on the critical line Re(s) = 1

2 , we shall
show that κ0 � 8.

Theorem 1.4. Assume the truth of the GRH. Then, for each ε > 0, there are infinitely
many primitive solutions (X,Y,Z) to X + Y = Z such that all the primes dividing XY Z are
smaller than (log max(|X|, |Y |, |Z|))8+ε. In other words, κ0 � 8.

This result is an immediate consequence of the following stronger result, which gives a lower
bound for the number of primitive solutions in this range.

Theorem 1.5 (Counting primitive smooth solutions). Assume the truth of the GRH. Then,
for each fixed κ > 8, the number of primitive integer solutions N∗(H,κ) to X + Y = Z with
0 � X,Y,Z � H and such that the largest prime factor of XY Z is less than (log H)κ satisfies

N∗(H,κ) � S∞

(
1 − 1

κ

)
S∗

f

(
1 − 1

κ
, (log H)κ

)
Ψ(H, (log H)κ)3

H
(1 + o(1)), (1.6)

as H → ∞. Here the ‘archimedean singular series’ (more properly, ‘singular integral’) S∞(c)
is defined, for c > 1

3 , by

S∞(c) := c3

∫1

0

∫1−t1

0

(t1t2(t1 + t2))c−1 dt1 dt2, (1.7)

and the ‘primitive non-archimedean singular series’ S∗
f (c, y) is defined by

S∗
f (c, y) :=

∏
p�y

(
1 +

p − 1
p(p3c−1 − 1)

(
p − pc

p − 1

)3
)(

1 − 1
p3c−1

)∏
p>y

(
1 − 1

(p − 1)2

)
. (1.8)

We expect that the lower bound given by the right-hand side of (1.6) should give an
asymptotic formula for N∗(H,κ) in this range of κ, and that proving this should be accessible
by elaboration of the methods of this paper. The estimate (1.6) is in accordance with the
heuristic (1.4) which would have predicted a main term of Ψ(H, (log H)κ)3/H. In the range
κ > 8, we see that the main term in (1.6) differs from the heuristic only by the factor
S∞(1 − 1/κ)S∗

f (1 − 1/κ, (log H)κ). An argument below shows this factor is bounded away
from 0 and ∞ and, for fixed κ, it approaches a constant (depending on κ) as H → ∞. As
κ → ∞, this constant factor approaches 1

2 , and the main term 1
2Ψ(H, (log H)κ)3/H is the

expected number of solutions to X + Y = Z when X, Y and Z are drawn from a random
subset of [1,H] with cardinality Ψ(H, (log H)κ). Thus, our heuristic is very accurate in the
range κ → ∞.

The ‘main term’ on the right-hand side of (1.6) is well defined in the range κ > 3
2 where the

heuristic above is expected to apply. Here κ > 3
2 corresponds to c > 1

3 , and the ‘archimedean
singular integral’ (1.7) defines an analytic function on the half-plane Re(c) > 1

3 which diverges
at c = 1

3 , while the ‘non-archimedean singular series’ S∗
f (c, y) is well defined for all c > 0. The

archimedean singular series is uniformly bounded on any half-plane Re(c) > 1
3 + ε. For the non-

archimedean singular series, we find that its limiting behavior as y = (log H)κ → ∞ changes
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at the threshold value κ = 2, corresponding to c = 1
2 ; namely, one has

lim
H→∞

S∗
f

(
1 − 1

κ
, (log H)κ

)
=

⎧⎨
⎩ S∗

f

(
1 − 1

κ

)
for κ > 2,

0 for 0 < κ � 2,
(1.9)

where, for c > 1
2 , we set

S∗
f (c) :=

∏
p

(
1 +

1
p3c−1

(
p − 1

p

(
p − pc

p − 1

)3

− 1

))
. (1.10)

(This follows from (1.8).) The Euler product (1.10) converges absolutely and defines an analytic
function S∗

f (c) on the half-plane Re(c) > 1
2 ; this function is uniformly bounded on any half-

plane Re(c) > 1
2 + ε, Furthermore, for values corresponding to the 2 � κ < ∞ (that is, 1

2 < c <
1) the ‘non-archimedean singular series’ Sf (c, y) remains bounded away from 0. We conclude
that, for 2 < κ < ∞, the ‘main term’ estimate for N∗(H,κ) agrees with the prediction of
the heuristic argument given earlier. In the region 1 < κ � 2, although (1.10) gives S∗

f (1 −
1/κ, (log H)κ) → 0 as H → ∞, one can show

S∗
f

(
1 − 1

κ
, (log H)κ

)
� exp(−(log H)2−κ). (1.11)

This bound implies that S∗
f (1 − 1/κ, (log H)κ) � H−ε for any ε > 0. A consequence is that, for

3
2 < κ � 2, the ‘main term’ on the right-hand side of (1.7) is still of the same order H2−3/κ+o(1)

as the heuristic predicts. Thus, it could still be the case that this ‘main term’ gives a correct
order of magnitude estimate for N∗(H,κ) even in this range.

Next we compare the number N∗(H,κ) of primitive smooth solutions with the total number
N(H,κ) of smooth solutions below H. Now N(H,κ) already has a contribution coming from
smooth multiples of the solution (X,Y,Z) = (1, 1, 2) that gives

N(H,κ) � Ψ(1
2H, (log H)κ) � H1−1/κ+o(1), as H → ∞. (1.12)

For 1 � κ < 2 this lower bound exceeds the heuristic estimate H2−3/α+o(1) for N∗(H,κ) by a
positive power of H. It follows that the heuristic given for primitive smooth solutions should
not apply to smooth solutions N(H,κ) for 1 < κ < 2, and, furthermore, this indicates that on
this range the density of primitive smooth solutions in the set of all smooth solutions below H
will approach zero as H → ∞.

We may consider, for more general κ, the limiting behavior as H → ∞ of the relative density
of primitive smooth solutions. Here we conjecture that there is a threshold value at κ = 3 where
this behavior changes qualitatively.

Conjecture 1.6 (Relative density of primitive solutions). There holds

lim
H→∞

N∗(H,κ)
N(H,κ)

=

⎧⎨
⎩

1
ζ(2 − 3/κ)

for 3 < κ < ∞,

0 for 1 < κ � 3.
(1.13)

As evidence in favor of this conjecture, Theorem 2.3 shows, assuming the GRH, that a
weighted version of this conjecture holds for κ > 8. Further evidence is the fact that, for each
κ > 3, the ratios of the conjectured ‘main terms’ in the asymptotic formulas for these quantities
have the limiting value 1/ζ(2 − 3/κ) as H → ∞, a result implied by (2.9). Lastly, the discussion
above gives support for its truth on the range 1 < κ � 2.

We take this opportunity to correct misprints in our article [24], where in the statements of
Conjecture 3.1 and Theorem 4.3 one should change ζ(2 − 3/κ) to 1/ζ(2 − 3/κ).

In § 2, we describe the main technical results from which the theorems above are derived.
Our main estimate (Theorem 2.1) gives an asymptotic formula with error term which counts
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weighted (primitive and imprimitive) integer solutions to the xyz-equation in the range κ > 8.
This result will be established using the Hardy–Littlewood method [27] combined with the
Hildebrand–Tenenbaum saddle-point method [19, 21, 22] for estimating the size of Ψ(x, y).
We then derive a weighted count of primitive solutions (Theorem 2.2) using inclusion–exclusion.
Theorem 1.5 is deduced from Theorem 2.2. It would be interesting to see whether our main
results could be made unconditional. At the moment, the best known unconditional results
are due to Balog and Sarközy [2, 3] who showed (in a closely related problem), for any large
N , there are solutions to X + Y + Z = N with the largest prime factor of XY Z being smaller
than exp(3

√
log N log log N).

Our problem may also be viewed as a special case of the S-unit equation. Given a finite set
of primes S, one can consider relatively prime solutions to the S-unit equation X + Y = Z
where all prime factors of XY Z are in the set S. In 1988, Erdős, Stewart and Tijdeman [12]
showed the existence of collections of primes S with |S| = s such that the S-unit equation
X + Y = Z has ‘exponentially many’ solutions, namely, at least exp((4 − ε)s1/2(log s)−1/2)
solutions for s � s0(ε) sufficiently large. Recently, Konyagin and the second named author [23]
improved this construction, to show that there exist S such that the S-unit equation has at
least exp(s2−√

2−ε) solutions. In the other direction, Evertse [13, Theorem 1] has shown that
the number of solutions to the S-unit equation is at most 3 × 72s+3.

In the constructions above, the sets of primes S were tailored to have large numbers of
solutions. However, the simplest set of such primes to consider is the initial segment of primes
S = P(y) := {p : p prime, p � y}. Erdős, Stewart and Tijdeman conjectured [12, p. 49] that
a similar property should hold in this case, asserting that, for s = |S| and each ε > 0, there
should be at least exp(s2/3−ε) S-unit solutions to X + Y = Z and at most exp(s2/3+ε) such
solutions for all s > s0(ε). Their conjecture was motivated by a heuristic similar to the one
given above for the strong xyz-conjecture.

As an easy consequence of Theorem 1.5 we deduce, conditional on the GRH, a weak form of
this conjecture at the end of § 2.

Theorem 1.7. Assume the truth of the GRH. Let S denote the first s primes, and let
N(S) count the number of primitive solutions (X,Y,Z) to the S-unit equation X + Y = Z.
Then, for each ε > 0, we have N(S) �ε exp(s1/8−ε).

The approach in this paper will apply to other linear additive problems involving smooth
numbers. For instance, one can treat smooth solutions of homogeneous linear ternary Dio-
phantine equations aX + bY + cZ = 0 with arbitrary integer coefficients (a, b, c). One may also
impose congruence side conditions on the prime factors allowed, for example, smooth solutions
with all prime factors p ≡ 1 (mod 4). In this situation, there may occur local congruence
obstructions to existence of solutions, and naturally the singular series must be modified to take
such features into account. It would also be of interest to extend the xyz-conjecture to solutions
of X + Y = Z in algebraic number fields, or to algebraic function fields over finite fields. Finally,
it would be interesting to see if analogs of Waring’s problem using very smooth numbers could
be established. This has been treated by Harcos [15], who obtained unconditional results for
Waring’s problem in the smoothness range corresponding to the results of Balog and Sarközy
mentioned earlier.

2. Counting smooth solutions: main technical results

Let x and y be large. Our aim is to count solutions to X + Y = Z with X, Y and Z being
pairwise coprime y-smooth integers lying below x. We shall simplify the problem by first
counting all solutions, primitive and imprimitive, to X + Y = Z with X, Y and Z being
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y-smooth integers up to x. We shall also find it convenient to replace the sharp cut-off of
being less than x by counting solutions with suitable weights approximating the sharp cut-off.
Once this is achieved, a sieve argument will enable us to recover primitive solutions from all
solutions.

More formally, let Φ(x) ∈ C∞
c (R+) be a smooth, compactly supported, real-valued function

on the positive real axis. We shall develop first an asymptotic formula for

N(x, y; Φ) :=
∑

X,Y,Z∈S(y)
X+Y =Z

Φ
(

X

x

)
Φ
(

Y

x

)
Φ
(

Z

x

)
, (2.1)

which counts weighted primitive and imprimitive solutions.

Theorem 2.1 (Weighted smooth integer solutions count). Assume the truth of the GRH.
Let Φ be a fixed smooth, compactly supported, real-valued function in C∞

c (R+). Let x and
y be large, with (log x)8+δ � y � exp((log x)1/2−δ) for some δ > 0. Define κ by the relation
y = (log x)κ. Then we have

N(x, y; Φ) = S∞

(
1 − 1

κ
,Φ
)

Sf

(
1 − 1

κ
, y

)
Ψ(x, y)3

x
+ Oδ

(
Ψ(x, y)3

x

log log y

log y

)
. (2.2)

Here the ‘archimedean singular series’ S∞(c,Φ) is given by

S∞(c,Φ) := c3

∫∞

0

∫∞

0

Φ(t1)Φ(t2)Φ(t1 + t2)(t1t2(t1 + t2))c−1 dt1 dt2, (2.3)

and the ‘non-archimedean singular series’ Sf is defined by

Sf (c, y) =
∏
p�y

(
1 +

p − 1
p(p3c−1 − 1)

(
p − pc

p − 1

)3
)∏

p>y

(
1 − 1

(p − 1)2

)
. (2.4)

In our proof it is convenient to restrict Φ to be compactly supported away from 0. This
restriction prevents us from obtaining an asymptotic formula for the number of non-negative
solutions to X + Y = Z with Z � x and XY Z being y-smooth, which corresponds to choosing
Φ to be the characteristic function χ[0,1] of the interval [0, 1]. We do expect that the asymptotic
formula given in Theorem 2.1 will continue to hold in this case. In any event this result suffices
to obtain a lower bound for this number of solutions by choosing a smooth function Φ compactly
supported inside R

+, which minorizes the characteristic function of [0, 1].
The compact support of Φ(x) guarantees that the ‘weighted archimedean singular series’

S∞(c,Φ) is defined for all real c. In contrast the ‘non-archimedean singular series’ Sf (c, y) is
given by an Euler product that converges to an analytic function for Re(c) > 1

3 and diverges
at c = 1

3 ; here individual terms in this Euler product diverge at c = 1
3 . We observe also that

Sf (c, y) has a phase change in its behavior as y → ∞ at the threshold value c = 2
3 corresponding

to κ = 3; namely, we have

lim
y→∞Sf

(
1 − 1

κ
, y

)
=

⎧⎨
⎩ Sf

(
1 − 1

κ

)
for κ > 3,

+∞ for 0 < κ � 3,
(2.5)

where, for c > 2
3 , we define

Sf (c) :=
∏
p

(
1 +

p − 1
p(p3c−1 − 1)

(
p − pc

p − 1

)3
)

. (2.6)

The Euler product (2.6) converges absolutely to an analytic function of c on the half-plane
Re(c) > 2

3 , and diverges at c = 2
3 . Outside this half-plane, on the range 1

2 < c � 2
3 , although
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one has Sf (1 − 1/κ, y) → ∞ as y → ∞, one can show that

Sf

(
1 − 1

κ
, y

)
	 exp(y3/κ−1).

A consequence is that, for 2 < κ � 3, one has Sf (1 − 1/κ, (log H)κ) 	 Hε for any positive ε,
which suggests that the heuristic argument (1.4) may continue to apply to N(H,κ) on this
range.

Using a sieve argument together with Theorem 2.1, we shall treat the weighted count of
primitive solutions:

N∗(x, y; Φ) :=
∑

X,Y,Z∈S(y)
X+Y =Z, g.c.d.(X,Y,Z)=1

Φ
(

X

x

)
Φ
(

Y

x

)
Φ
(

Z

x

)
. (2.7)

Theorem 2.2 (Weighted primitive integer solutions count). Assume the truth of the GRH.
Let Φ be a fixed smooth, compactly supported, real-valued function in C∞

c (R+). Let x and y
be large with (log x)8+δ � y � exp((log x)1/2−δ). Define κ by the relation y = (log x)κ. Then
we have

N∗(x, y; Φ) = S∞

(
1 − 1

κ
,Φ
)

S∗
f

(
1 − 1

κ
, y

)
Ψ(x, y)3

x
+ O

(
Ψ(x, y)3

x(log y)1/4

)
,

where the primitive non-archimedean singular series S∗
f (c, y) was defined in (1.8).

Theorems 2.1 and 2.2 together imply that, for non-negative functions Φ, a smoothed analog
of Conjecture 1.6 holds for κ > 8.

Theorem 2.3 (Relative density of weighted primitive smooth solutions). Assume the truth
of the GRH. Then, for any non-negative function Φ(x) ∈ C∞

c (R>0) not identically zero, there
holds

lim
x→∞

N∗(x, (log x)κ; Φ)
N(x, (log x)κ; Φ)

=
1

ζ(2 − 3/κ)
, for κ > 8. (2.8)

Concerning smaller values of κ, we expect that the asymptotic formulae given in Theorems 2.1
and 2.2 continue to hold in the range κ > 3 (so that c = 1 − 1/κ > 2/3). If so, then in this range
both N(x, y; Φ) and N∗(x, y; Φ) would be of comparable size, with both being of size about
Ψ(x, y)3/x, conforming to the heuristic (1.4). If 1

2 < c � 2
3 , then S∗

f (c, y) is of constant size,
but Sf (c, y) diverges as y → ∞. Thus, for the corresponding range 2 < κ � 3, we might still
hope that the asymptotic formulae of Theorems 2.1 and 2.2 are true, but note that in this
range there are significantly fewer primitive solutions compared to imprimitive ones.

The upper bound y � exp((log x)1/2−δ) imposed in proving Theorems 2.1 and 2.2 facilitates
some of our calculations, but it should be possible to remove this condition entirely and obtain
similar results. We have not done so, since our interest is in small values of y, and, moreover,
in larger ranges of y one would expect an unconditional treatment by different means.

Before proceeding to discuss the proofs of our main results stated above, we show how the
theorems stated in Section 1, as well as Theorem 2.3, follow from these weighted versions.

Proof of Theorem 1.5. Given any ε > 0, we may construct a smooth function Φε such that
Φε is smooth and supported on [ε, 1 − ε], always lies between 0 and 1, and equals 1 on the
interval [2ε, 1 − 2ε]. Then N∗(H,κ) � N∗(H, (log H)κ; Φε), and we may use Theorem 2.2 to
evaluate the latter quantity. Since S∞(c,Φε) → S∞(c) as ε → 0, we deduce Theorem 1.5.
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Theorem 1.4 follows immediately from Theorem 1.5.

Proof of Theorem 1.7. Let S denote the first s primes, and choose H = exp(s1/8−ε) and y =
ps. Then (log H)8+ε = (s1/8−ε)8+ε < s < y, so that N(S) � N∗(H, py) � N∗(H, (log H)8+ε).
Assuming the GRH, Theorem 1.5 gives, for sufficiently large H, N(S) � CεH

2−3/(8+ε) � H,
as asserted.

Proof of Theorem 2.3. This result is based on the identity of Euler products

S∗
f (c) :=

∏
p

((
1 +

p − 1
p(p3c−1 − 1)

(
p − pc

p − 1

)3
)(

1 − 1
p3c−1

))
=

1
ζ(3c − 1)

Sf (c), (2.9)

which follows taking y → ∞ in (1.8). This identity shows that Sf (c) has a meromorphic
continuation to the half-plane Re(c) > 1

2 , with its only singularity on this region being a simple
pole at c = 2

3 having residue 1
3S∗

f ( 2
3 ). In particular, for real c = 1 − 1/κ > 2/3 + ε we have

Sf (c, y) = Sf (c)
(

1 + Oε

(
1
y

))
,

and, for real c > 1
2 + ε, we have

S∗
f (c, y) = S∗

f (c)
(

1 + Oε

(
1
y

))
.

Substituting these estimates in the main terms of Theorems 2.1 and 2.2 yields, for κ > 8 + δ,
the estimate

N∗(x, (log x)κ; Φ) =
1

ζ(2 − 3/κ)
N(x, (log x)κ; Φ)

(
1 + Oδ

(
1

(log log x)1/4

))
. (2.10)

The positivity hypothesis on Φ implies that N(x, (log x)κ; Φ) > 0, so we may divide both sides
of (2.10) by it to obtain the ratio estimate (2.8).

We shall use the Hardy–Littlewood circle method to evaluate N(x, y; Φ). To this end, we
introduce the weighted exponential sum

E(x, y;α) :=
∑

n∈S(y)

e(nα)Φ
(n

x

)
, (2.11)

where throughout we use e(x) := e2πix. Then we have

N(x, y; Φ) =
∫1

0

E(x, y;α)2E(x, y;−α) dα, (2.12)

because in multiplying out the exponential sums in the integral, only terms (n1, n2, n3) with
n1 + n2 − n3 = 0 contribute. The crux of the problem then is to understand the weighted
exponential sum E(x, y;α).

To do this, we show how to express the term e(nα)Φ(n/x) in terms of sums over multiplicative
Dirichlet characters to a certain modulus and integrals of nit over t in a certain range. This
is carried out precisely in § 3, but the idea is implicit in the original ‘Partitio Numerorum’
papers of Hardy and Littlewood [16, 17], where they dealt with the ternary Goldbach problem
assuming a weaker form of the GRH. We hope that the explicit form that we give may be
useful in other contexts.

The decomposition of e(nα)Φ(n/x) in terms of multiplicative characters converts the problem
of understanding E(x, y;α) to one of understanding

∑
n∈S(y) χ(n)n−itΦ(n/x) for suitable

Dirichlet characters χ and suitable real numbers t. We establish, on the GRH, that such
sums are small unless χ happens to be the principal character, and |t| is small. The key step
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in achieving this is to bound partial Euler products L(s, χ; y) =
∏

p�y(1 − χ(p)/ps)−1 on the
GRH. The bounds for these partial Euler products that we establish are analogous to the
Lindelöf bounds for Dirichlet L-functions, and the (familiar) argument is described in § 5. In
this fashion, we are able to understand conditionally the weighted exponential sum E(x, y;α),
and in § 6 we establish the following theorem.

Theorem 2.4. Assume the truth of the GRH. Let δ > 0 be any fixed real number. Let x
and y be large with (log x)2+δ � y � exp((log x)1/2−δ), and let κ be defined by y = (log x)κ.
Let α ∈ [0, 1] be a real number with α = a/q + γ where q � √

x, (a, q) = 1 and |γ| � 1/(q
√

x).

(1) If |γ| � xδ−1, then we have, for any fixed ε > 0,

E(x, y;α) 	 x3/4+ε.

(2) If |γ| � xδ−1, then we have, writing q = q0q1 with q0 ∈ S(y) and all prime factors of q1

being bigger than y, and writing c0 = 1 − 1/κ, for any fixed ε > 0,

E(x, y;α) =
μ(q1)
φ(q1)

1
qc0
0

∏
p|q0

(
1 − pc0 − 1

p − 1

)(
c0

∫∞

0

Φ(w)e(γxw)wc0−1 dw

)
Ψ(x, y) + Oε(x3/4+ε)

+ Oε

(
Ψ(x, y)q−c0+ε

0 q−1+ε
1

(1 + |γ|x)2
(log log y)

log y

)
.

The proof supposes y � (log x)2+δ, but the result only gives a non-trivial estimate for
somewhat larger y because, for κ � 4, one has the trivial estimate

|E(x, y;α)| 	 Ψ(x, y) 	 x3/4+ε.

Note that by Dirichlet’s theorem on Diophantine approximation one can always find q � √
x,

and (a, q) = 1 with |α − a/q| � 1/(q
√

x). Theorem 2.4 then shows that E(x, y;α) is small unless
q is small and |γ| is small. In other words, Theorem 2.4 can be used to estimate E(x, y;α) on
the minor arcs where α is not near a rational number with small denominator, and it also
furnishes an asymptotic formula for our exponential sum when α lies on a major arc. We shall
define the major and minor arcs more precisely in § 7, where we use the results leading to
Theorem 2.4 to complete the proof of Theorem 2.1.

We should point out that the exponential sum
∑

n�x,n∈S(y) e(nα) has been studied
unconditionally by several authors; see de la Bretéche [5, 6], de la Bretéche and Tenenbaum
[8–10] and de la Bretéche and Granville [7]. Our work gives better estimates, and holds in
wider ranges of y, but on the other hand it relies on the truth of the GRH.

In the range of interest to us, namely y being a power of log x, it is a delicate problem even
to count the number of y-smooth integers up to x. One important ingredient in our work is
the saddle-point method developed by Hildebrand and Tenenbaum [21], which provides an
asymptotic formula for Ψ(x, y) in such ranges. In § 4, we survey briefly results on Ψ(x, y) and
extract the key results from the Hildebrand–Tenenbaum approach that we require.

Finally, in § 8 we give a sieve argument that allows us to pass from all the solutions counted
in Theorem 2.1 to only the primitive solutions counted in Theorem 2.2.

3. Multiplicative character decomposition

In this section, we show how to express e(nα)Φ(n/x) for α ∈ [0, 1] in terms of sums over
multiplicative Dirichlet characters to a certain modulus and integrals of nit over t in a certain
range. To achieve this, we write α = a/q + γ with (a, q) = 1, and then our decomposition will
involve Dirichlet characters (mod q) and functions nit where t is roughly of size 1 + |γ|x. When
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α = a/q is a rational number, this is the familiar technique of expressing additive characters
in terms of multiplicative characters, and our decomposition may be viewed as an extension of
that method.

Let us first recall the decomposition of the additive character e(an/q) in terms of multiplica-
tive characters. For a Dirichlet character χ (mod q), not necessarily primitive, recall that the
Gauss sum is defined by τ(χ) =

∑
b (mod q) χ(b)e(b/q).

Lemma 3.1. Let a/q be a rational number with (a, q) = 1.

(1) Let n be an integer, and suppose that (n, q) = d. Then, with n = md, we have

e

(
an

q

)
= e

(
ma

q/d

)
=

1
φ(q/d)

∑
χ (mod q/d)

τ(χ̄)χ(ma). (3.1)

(2) One has
1

φ(q/d)2
∑

χ (mod q/d)

|τ(χ)|2 = 1. (3.2)

Proof. Both relations follow readily from the definition of the Gauss sum and the
orthogonality relations for the Dirichlet characters (mod q/d).

Lemma 3.2 (Gauss sum estimate). If χ (mod q) is primitive, then |τ(χ)| =
√

q. If χ is
induced by the primitive character χ′ (mod q′), then

τ(χ) = μ

(
q

q′

)
χ′
(

q

q′

)
τ(χ′), (3.3)

where μ(n) is the Möbius function, and so in this case |τ(χ)| �
√

q′ � √
q.

Proof. The proof is standard; see, for example, [14, Lemma 4.1].

Now we turn to e(nγ)Φ(n/x) which we would like to express as an integral involving the
multiplicative functions nit. To do this, we define

Φ̌(s, λ) :=
∫∞

0

Φ(w)e(λw)ws−1 dw. (3.4)

Since Φ has compact support inside (0,∞), the integral above makes sense for all complex
numbers λ and s, but we shall only be interested in the case λ real. Note that e(λw) has the
structure of an additive character while ws has the structure of a multiplicative character so
that the transform Φ̌(s, λ) plays a role analogous to the Gauss sum.

We begin by showing that Φ̌(s, λ) is small unless 1 + |λ| and 1 + |s| are of roughly the
same size.

Lemma 3.3. Let Φ be a smooth function, compactly supported in (0,∞). Let λ be real
and suppose Re(s) � 1

4 . Then, for any non-negative integer k, we have

|Φ̌(s, λ)| 	k,Φ min

((
1 + |λ|
|s|

)k

,

(
1 + |s|
|λ|

)k
)

. (3.5)

Proof. We integrate by parts k times, and can do this in two ways either using the pair of
functions Φ(w)e(λw) and ws−1, or using the pair of functions Φ(w)ws−1 and e(λw). Integrating
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by parts k times using the first pair, we obtain

Φ̌(s, λ) = (−1)k

∫∞

0

dk

dwk
(Φ(w)e(λw))

ws+k−1

s(s + 1) . . . (s + k − 1)
dw.

Since

dk

dwk
(Φ(w)e(λw)) =

k∑
j=0

(
k

j

)
Φ(j)(w)(2πiλ)k−je(λw) 	 2k

k∑
j=0

|Φ(j)(w)|(2π|λ|)k−j ,

we conclude that

Φ̌(s, λ) 	k
1

|s|k
k∑

j=0

|λ|k−j

∫∞

0

|Φ(j)(w)ws+k−1 dw| 	k,Φ

(
1 + |λ|
|s|

)k

.

On the other hand, integrating by parts using the second pair, we obtain

Φ̌(s, λ) = (−1)k

∫∞

0

dk

dwk
(Φ(w)ws−1)

e(λw)
(2πiλ)k

dw.

Since

dk

dwk
(Φ(w)ws−1) =

k∑
j=0

(
k

j

)
Φ(j)(w)(s − 1) · (s − 2) . . . (s − (k − j))ws−1−(k−j)

	k

k∑
j=0

|Φ(j)(w)||s|k−j |w|s−1−(k−j),

we conclude that

Φ̌(s, λ) 	k
1

|λ|k
k∑

j=0

|s|k−j

∫∞

0

|Φ(j)(w)ws−1−(k−j) dw| 	k,Φ

(
1 + |s|
|λ|

)k

.

Now we prove an analog of Lemma 3.1 for e(nγ)Φ(n/x).

Lemma 3.4. Let Φ be a smooth function compactly supported in (0,∞).

(1) For n ∈ Z, we have, for any positive c = Re(s),

e(nγ)Φ
(n

x

)
=

1
2πi

∫ c+i∞

c−i∞
Φ̌(s, γx)

(x

n

)s

ds. (3.6)

(2) Furthermore,

1
2π

∫∞

−∞
|Φ̌(c + it, γx)|2 dt =

∫∞

−∞
|Φ(eu)e(γxeu)ecu|2 du. (3.7)

Proof. From the definition of Φ̌ and the Mellin inversion, we obtain, for w > 0,

e(λw)Φ(w) =
1

2πi

∫ c+i∞

c−i∞
Φ̌(s, λ)w−s ds.

We obtain (3.6) on taking w = n/x, and λ = γx.
Take s = c + it in the definition of Φ̌, and change variables w = eu. Thus,

Φ̌(c + it, λ) =
∫∞

0

Φ(w)e(λw)wc+it dw

w
=

∫∞

−∞
Φ(eu)e(λeu)ecu+itu du,
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and we recognize that Φ̌(c + it, λ), viewed as a function of t with c and λ fixed, is the Fourier
transform of Φ(eu)e(λeu)ecu. Now Plancherel’s theorem gives

1
2π

∫∞

−∞
|Φ̌(c + it, λ)|2ct =

∫∞

−∞
|Φ(eu)e(λeu)ecu|2 du.

which, with λ = γx, yields (3.7).

Using the method of stationary phase, we can show that |Φ̌(c + it, λ)| 	 (1 + |λ|)−1/2 and
this bound is an analog of the bound |τ(χ)| � √

q for Gauss sums. In our applications an L1

version of this bound is sufficient, and we next derive such a bound from the L2 estimate above.

Lemma 3.5. Let λ be real and suppose that c � 1
4 . For any δ � 0 and any ε > 0, we have∫∞

−∞
|Φ̌(c + it, λ)|(1 + |t|)δ dt 	Φ,c,ε (1 + |λ|)1/2+δ+ε. (3.8)

Proof. Let ε > 0 be given. Consider first the range when |t| > (1 + |λ|)1+ε. Using
Lemma 3.3, we find that, for any integer k � 2,

∫
|t|>(1+|λ|)1+ε

|Φ̌(c + it, λ)|(1 + |t|)δ dt 	k,Φ

∫
|t|>(1+|λ|)1+ε

(
1 + |λ|
1 + |t|

)k

(1 + |t|)δ dt

	k,Φ (1 + |λ|)k−(k−δ+1)(1+ε).

Choosing k suitably large, this contribution is 	Φ,ε 1.
Now consider the range |t| � (1 + |λ|)1+ε. Note that∫

|t|�(1+|λ|)1+ε

|Φ̌(c + it, λ)|(1 + |t|)δ dt 	 (1 + |λ|)δ(1+ε)

∫
|t|�(1+λ)1+ε

|Φ̌(c + it, λ)| dt,

and using Cauchy–Schwarz, we see that
∫
|t|�(1+λ)1+ε

|Φ̌(c + it, λ)| dt �
(∫

|t|�(1+|λ|)1+ε

1 dt

)1/2(∫
|t|�(1+|λ|)1+ε

|Φ̌(c + it, λ)|2 dt

)1/2

� (1 + |λ|)1/2+(1/2)ε

(∫∞

−∞
|Φ̌(c + it, λ)|2 dt

)1/2

	Φ,c (1 + |λ|)1/2+(1/2)ε,

upon using the Plancherel formula from Lemma 3.4(2). The lemma follows.

Combining the formulas (3.1) and (3.6) for α = a/q + γ, for n � 1 with (n, q) = d, we obtain

e(nα)Φ
(n

x

)
=

⎛
⎝ 1

φ(q/d)

∑
χ (mod (q/d))

τ(χ̄)χ
(na

d

)⎞⎠( 1
2πi

∫∞

−∞
Φ̌(s, γx)

(x

n

)s

dx

)
. (3.9)

Lemmas 3.1 and 3.4 exhibit parallels between the Dirichlet characters χ(n) (mod q) (the
q-aspect) and the continuous family of characters χt(n) = nit (the t-aspect). Part (1) of each
lemma expresses the (weighted) additive character in terms of multiplicative characters. Gauss
sums appear explicitly in Lemma 3.1, while in Lemma 3.4 the function Φ̌(c + it, λ) plays a
role analogous to a Gauss sum, as it is a weighted convolution of an additive quasicharacter
specified by the parameter λ against a multiplicative quasicharacter by χc+it(n) = nc+it. The
weight function Φ(x) limits the range sampled, and Lemma 3.3 gives bounds on the size of this
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function. Part (2) of each lemma expresses an L2-orthogonality relation. These orthogonality
relations imply that the change of basis to multiplicative characters loses essentially nothing in
the L2-sense. However, in our application, the L1-norm is more relevant, and there is a loss in
moving from additive to multiplicative characters. This is quantified in the square root losses
in the both q and t aspects paralleled in the ‘Gauss sum’ type estimates in Lemmas 3.2 and 3.5,
respectively.

Remark. In Theorem 2.1, we would like to substitute the sharp cut-off weight function
Φ(x) = χ[0,1](x), but it is neither compactly supported nor continuous on R>0, and we only
obtain a lower bound (2.2) rather than the expected asymptotic formula. Here we note in
passing that the transform Φ̌(s, λ) given in (3.4) is an interesting special function; namely, for
Re(λ) < 0, we have

Φ̌(s, λ) =
∫1

0

eλxxs−1 dx = (−λ)−sγ(s,−λ), (3.10)

where γ(s, z) =
∫z

0
e−uus−1 du is the incomplete gamma function. The incomplete gamma

function is related to Kummer’s confluent hypergeometric function

M(a, b, z) := 1F1(a, b; z) = 1 +
a

b

z

1!
+

a(a + 1)
b(b + 1)

z2

2!
+

a(a + 1)(a + 2)
b(b + 1)(b + 2)

z3

3!
+ . . . ,

by special function formulas (see [1, Chapter 13]) which yield

s(−λ)−sγ(s,−λ) = M(s, s + 1, λ) = eλM(1, s + 1, λ). (3.11)

The last equality is a special case of Kummer’s transformation M(a, b, z) = ezM(b − a, b, z).
The known analytic properties of the function M(a, b, z) (in three complex variables) give
an analytic continuation of (1/Γ(s))Φ̌(s, λ) to an entire function of two complex variables. It
follows that Φ̌(s, λ) has no singularities in the λ-variable, but for generic λ it has simple poles
in the s-variable at the non-positive integers.

4. A brief survey of results on Ψ(x, y)

In this section, we collect together several results on estimates for Ψ(x, y). A comprehensive
survey of this topic is given by Hildebrand and Tenenbaum [22], and we give here a very brief
description of the salient points.

When y is not too small in relation to x, then on writing y = x1/u, we have that Ψ(x, y) ∼
xρ(u) where ρ is the Dickman function which is defined by ρ(u) = 1 for 0 � u � 1, and for
u � 1 is defined by the differential-difference equation uρ′(u) = −ρ(u − 1). The most precise
version of this result is due to Hildebrand [20], who showed that, for all large x and y �
exp((log log x)5/3+ε), we have

Ψ(x, y) = xρ(u)
(

1 + Oε

(
u log(u + 1)

log x

))
. (4.1)

Here, we are particularly interested in the range when y is a power of log x. This is the
relevant range for our main results, but it lies outside the range covered by Hildebrand’s (4.1).
Indeed in this range, the behavior of Ψ(x, y) is known to be sensitive to the fine distribution
of primes and location of the zeros of ζ(s). In 1984, Hildebrand [18] showed that the Riemann
hypothesis is equivalent to the assertion that, for each ε > 0 and 1 � u � y1/2−ε, there is a
uniform estimate

Ψ(x, y) = xρ(u) exp(Oε(yε)). (4.2)
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Moreover, assuming the Riemann hypothesis, he showed that, for each ε > 0 and 1 � u �
y1/2−ε, the stronger uniform estimate

Ψ(x, y) = xρ(u) exp
(

Oε

(
log(u + 1)

log y

))
(4.3)

holds. On choosing y = (log x)α for α > 2, this latter estimate yields

Ψ(x, (log x)α) � xρ(u), (4.4)

which provides only an order of magnitude estimate for the size of Ψ(x, y). Furthermore, if the
Riemann hypothesis is false, then Ψ(x, y) must sometimes exhibit large oscillations away from
the value xρ(u) for some (x, y) in these ranges. In 1986, Hildebrand [19] obtained further results
indicating that when y < (log x)2−ε, one should not expect any smooth asymptotic formula for
Ψ(x, y) in terms of the y-variable to hold.

Since we assume the GRH in this paper, we may access these conditional results of
Hildebrand. However, a less explicit asymptotic formula for Ψ(x, y) developed by Hildebrand
and Tenenbaum [21] is more useful for us. Before discussing the results from their saddle-
point method, we note a useful, and uniform, elementary asymptotic for log Ψ(x, y); see [22,
Theorem 1.4]. Uniformly for all x � y � 2 there holds

log Ψ(x, y) =
(

log x

log y
log
(

1 +
y

log x

)
+

y

log y
log
(

1 +
log x

y

))(
1 + O

(
1

log y
+

1
log log x

))
.

If y = (log x)α, with α � 1, then it follows that

Ψ(x, y) = x1−1/α exp
(

O

(
log x

log log x

))
. (4.5)

We define

ζ(s; y) :=
∑

n∈S(y)

n−s =
∏
p�y

(
1 − 1

ps

)−1

,

and by Perron’s formula we may write, for any c > 0,

Ψ(x, y) =
1

2πi

∫ c+i∞

c−i∞
ζ(s; y)xs ds

s
. (4.6)

The method of Hildebrand and Tenenbaum makes a careful choice for the line of integration
(c). Precisely, they choose c such that the quantity xσζ(σ; y) is minimized over all 0 < σ � ∞.
With a little calculus, this quantity is minimized when c = c(x, y) is the unique solution to

− φ1(c; y) := − d

dc
log ζ(c; y) =

∑
p�y

log p

pc − 1
= log x, (4.7)

where φj(c; y) denotes the jth derivative with respect to s of log ζ(s; y). The quantity
(Hildebrand and Tenenbaum denote this quantity α(x, y) and abbreviate it to α) c(x, y) is
a saddle point for the function xsζ(s; y) in the sense that |xsζ(s; y)| is minimized over real
values of s ∈ (0,∞), but is maximized over values s = c + it for t ∈ R. With this choice for the
line of integration, Hildebrand and Tenenbaum found that the integral in (4.6) is dominated
by the portion of the integral near the real axis, and were able to evaluate this contribution.
We now quote their result; see [21, Theorem 1].

Theorem 4.1 (Hildebrand–Tenenbaum). We have, uniformly for x � y � 2,

Ψ(x, y) =
xcζ(c; y)

c
√

2πφ2(c, y)

(
1 + O

(
1
u

+
log y

y

))
, (4.8)

in which c = c(x, y), and y = x1/u.
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The following result [21, Theorem 2] concerns the size of c(x, y) and of the denominator in
(4.8), involving

φ2(c; y) =
d2

dc2
log ζ(c; y) =

∑
p�y

pc(log p)2

(pc − 1)2
.

Theorem 4.2 (Hildebrand–Tenenbaum). We have, uniformly for x � y � 2,

c(x, y) =
log(1 + y/log x)

log y

(
1 + O

(
log log(1 + y)

log y

))
(4.9)

and

φ2(c(x, y), y) =
(

1 +
log x

y

)
log x · log y

(
1 + O

(
1

log(1 + u)
+

1
log y

))
. (4.10)

An immediate consequence of (4.9) is that, for fixed δ > 0, and y = (log x)κ with κ � 1 + δ,
we have

c(x, y) = 1 − 1
κ

+ Oδ

(
log log y

log y

)
. (4.11)

While the asymptotic in Theorem 4.1 may be a little difficult to parse, it provides an
elegant and useful means of obtaining the ‘local behavior’ of Ψ(x, y), given as follows; see
[21, Theorem 3].

Theorem 4.3 (Hildebrand–Tenenbaum). We have, uniformly for x � y � 2 and 1 � k � y,

Ψ(kx, y) = Ψ(x, y)kc(x,y)

(
1 + O

(
log y

log x
+

log y

y

))
. (4.12)

This result can be used to show that the behavior of Ψ(x, y) with y = (log x)κ changes
qualitatively at κ = 1, having a ‘phase transition’ there. As x → ∞, Theorem 4.3 implies that,
when κ � 1, one has

Ψ(kx, y) = (1 + o(1))Ψ(x, y),

whereas, for κ > 1, one has

Ψ(kx, y) = (k1−1/κ + o(1))Ψ(x, y).

For later use, we state three estimates of Hildebrand and Tenenbaum (restricted to the range
y � log x) as lemmas.

Lemma 4.4 (Hildebrand and Tenenbaum). Let x and y be large with y � log x, and let
s = c + iτ with c = c(x, y) and real τ . Uniformly in the region 1/ log y � |τ | � y, we have∣∣∣∣ζ(s; y)

ζ(c; y)

∣∣∣∣	 exp
(
−c0

uτ2

(1 − c)2 + τ2

)
. (4.13)

Proof. This is a special case of Hildebrand and Tenenbaum [21, Lemma 8].
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Lemma 4.5 (Hildebrand and Tenenbaum). Let 0 < β < 1 be fixed. Then, uniformly for
x � y � 2,

Ψ(x, y) =
1

2πi

∫ c+i/log y

c−i/log y

ζ(s; y)
xs

s
ds

+ Oβ

(
xcζ(c, y)

(
exp(−(log y)3/2−β) + exp

(
−c6

u

(log 2u)2

)))
, (4.14)

with c = c(x, y), and c6 > 0 an absolute constant.

Proof. The proof is [21, Lemma 10].

Lemma 4.6 (Hildebrand and Tenenbaum). If x and y are large, and y � log x,

1
2πi

∫ c+i/log y

c−i/log y

ζ(s; y)
xs

s
ds =

xcζ(c; y)
c
√

2πφ2(c; y)

(
1 + O

(
1
u

))
, (4.15)

with c = c(x, y). Moreover, the same estimate holds for

1
2π

∫ c+i(i/log y)

c−i/log y

∣∣∣∣ζ(s; y)
xs

s

∣∣∣∣ |ds| =
xcζ(c; y)

c
√

2πφ2(c; y)

(
1 + O

(
1
u

))
. (4.16)

Proof. The proof is [21, Lemma 11] restricted to the range y � log x.

The agreement in the size of the integral (4.15) with the absolute value estimate (4.16) is a
key feature of the integral being at the saddle point. We remark that Lemmas 4.5 and 4.6 are
major ingredients used by Hildebrand and Tenenbaum in proving Theorem 4.1.

5. Bounds for partial L-functions on GRH

It is well known that the GRH implies the generalized Lindelöf hypothesis: If χ (mod q) is a
primitive character and s is a complex number with Re(s) � 1

2 , then, for any ε > 0, we have
|L(s, χ)| 	ε (q|s|)ε. Our aim in this section is to establish a corresponding conditional estimate
for the partial Euler products

L(s, χ; y) :=
∏
p�y

(1 − χ(p)p−s)−1.

Proposition 5.1. Assume the truth of the GRH. Let χ (mod q) be a primitive Dirichlet
character. For any ε > 0, and s a complex number with Re(s) = σ � 1

2 + ε, we have

|L(s, χ; y)| 	ε (q|s|)ε. (5.1)

For the trivial character we have, with σ = Re(s) � 1
2 + ε,

|ζ(s; y)| 	ε exp
(

y1−σ

(1 + |t|) log y

)
|s|ε. (5.2)

We shall prove Proposition 5.1 by developing conditional estimates for
∑

n�u Λ(n)χ(n)n−it.
These estimates follow from standard ‘explicit formula’ arguments connecting such prime sums
with zeros of the corresponding L-function, and we shall be brief in sketching their proofs.

Lemma 5.2. Let χ (mod q) be a primitive Dirichlet character, and t be a real number. Let
ρ = β + iγ denote a typical zero of the Dirichlet L-function L(s, χ). Let δ(χ) = 1 if q = 1 and
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χ is the principal character, and δ(χ) = 0 otherwise. Then, for u � 2 and any parameter T � 2,
we have ∑

n�u

Λ(n)χ(n)n−it = δ(χ)
u1−it

1 − it
−

∑
0<β<1
|γ−t|�T

uρ−it

ρ − it

+ O

⎛
⎝(1 +

u

T

)
(log(qu(T + |t|)))2 +

∑
|ρ|�1

1
|ρ|

⎞
⎠ .

Proof. This unconditional result may be derived by following the method given in [11,
Chapters 17 and 19]. We start with Perron’s formula

1
2πi

∫1+1/ log u+i∞

1+1/ log u−i∞
−L′

L
(w + it, χ)

uw

w
dw =

∑
n�u

Λ(n)χ(n)n−it + O(log u). (5.3)

Now, for each T � 2, we may find T1 and T2 with |T1 + T | � 1 and |T2 − T | � 1 such
that |L′/L(c + iTj + it)| 	 (log(q(T + |t|)))2 for all −1/2 � c � 1 + 1/ log x. We truncate
the integral in (5.3) to the line segment [1 + 1/ log u + iT1, 1 + 1/ log u + iT2] and incur
an error of O(u(log u)2/T ). We now shift the line of integration to Re(w) = − 1

2 , using a
rectangular contour. In view of our choice for the heights T1 and T2, the horizontal sides
contribute O(u(log(q(T + |t|))2/T )). The vertical side of the box with Re(w) = − 1

2 contributes
O((log qu(T + |t|))2/√u), upon using the functional equation to estimate L′/L on this line. The
net contribution of the error terms discussed so far is

	
( u

T
+ 1
)

(log(qu(T + |t|)))2.
Lastly, it remains to discuss the residues of the poles encountered while shifting our contour.

If q = 1 and χ is the principal character, then there is a pole at w = 1 − it which leaves the
residue u1−it/(1 − it). If ρ is a zero of L(s, χ) with 0 < β < 1 and T1 � γ − t � T2, then there
is a pole at w = ρ − it in our contour shift. The contribution of these poles is

−
∑

0<β<1
T1<γ−t�T2

uρ−it

ρ − it
= −

∑
0<β<1
|γ−t|�T

uρ−it

ρ − it
+ O

( u

T
log(q(T + |t|))

)
,

since the conditions T1 < γ − t < T2 and |γ − t| � T are different for at most 	 log(q(T + |t|))
zeros. Finally, there is a pole at w = 0 and, if χ(−1) = 1, q > 1 and −t ∈ [T1, T2], a pole at
w = −it. The residues at these poles may be treated as in [11, Chapter 19] and they contribute
an amount 	 log(qu(T + |t|)) +

∑
|ρ|�1 1/|ρ|. This sum over |ρ| � 1 is to account for the case

where there is a Siegel zero very near 1 (and hence a corresponding zero very near 0).
Assembling these observations together, we obtain the lemma.

Lemma 5.3. Assume the truth of the GRH. If χ (mod q) is a primitive Dirichlet character
with q > 1, then for u � 1 and all real t we have∑

n�u

Λ(n)χ(n)n−it 	 √
u(log u) log(qu(|t| + 2)). (5.4)

In the case of the principal character (and so q = 1), we have, for u � 1 and all real t,

∑
n�u

Λ(n)n−it =
u1−it

1 − it
+ O(

√
u(log u) log(u(|t| + 2))). (5.5)
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Proof. We apply Lemma 5.2 choosing T = u2. We shall use the GRH to bound the sums
over zeros appearing there, and recall that there are 	 (log(q(2 + |z|))) zeros of L(s, χ) in
|γ − z| � 1. Thus, we obtain that

∑
n�u

Λ(n)χ(n)n−it = δ(χ)
u1−it

1 − it
+ O

⎛
⎝ ∑

|γ−t|�T

√
u

1 + |t − γ| + (log(qu(2 + |t|)))2
⎞
⎠

= δ(χ)
u1−it

1 − it
+ O

(√
u(log(qu(2 + |t|))) log u + (log(qu(2 + |t|)))2) .

If log(qu(2 + |t|)) � √
u, then the second error term above may be absorbed into the first, and

our lemma follows. If log(qu(2 + |t|)) � √
u, then the stated estimates are weaker than the

trivial bound
∑

n�u Λ(n)χ(n)n−it 	 u, and so our lemma holds in this case also.

Proof of Proposition 5.1. From the definition of L(s, χ; y) we have that

|L(s, χ; y)| = exp (Re(log L(s, χ; y))) 	 exp

⎛
⎝Re

∑
n�y

Λ(n)χ(n)n−it

nσ log n

⎞
⎠ .

If (log(q(2 + |t|)))2 � y, then, using the prime number theorem, we have that

∑
n�y

Λ(n)χ(n)n−it

nσ log n
	

∑
n�(log(q(2+|t|)))2

Λ(n)√
n log n

	 log(q(2 + |t|))
log log(q(2 + |t|)) , (5.6)

and the bounds of the lemma hold.
Suppose now that y � (log(q(2 + |t|)))2. We use the estimate (5.6) above for the terms n �

(log(q(2 + |t|)))2, and use partial summation and Lemma 5.3 for larger values of n. Thus, we
find that

∑
n�y

Λ(n)χ(n)n−it

nσ log n
= O

(
log(q(2 + |t|))

log log(q(2 + |t|))
)

+
∫y

(log q(2+|t|))2
1

zσ log z
d

⎛
⎝∑

n�z

Λ(n)n−itχ(n)

⎞
⎠ .

Suppose first that q > 1. Integrating by parts, and using (5.4), we see that the integral above is

	 (log(q(2 + |t|)))2−2σ +
∫y

(log(q(2+|t|)))2
√

z(log(qz(2 + |t|)))
(

σ

zσ+1
+

1
zσ+1 log z

)
dz

	 σ

σ − 1/2
(log(q(2 + |t|)))2−2σ.

If σ � 1
2 + ε, then the above estimates readily imply (5.1).

The case when q = 1 is similar, but we appeal to (5.5) instead of (5.4). This leads to
including an extra main term in our sum above of size y1−σ+it/((1 − it) log y), and thus we
obtain (5.2).

6. The weighted exponential sum E(x, y;α)

Our aim in this section is to understand the weighted sum E(x, y;α) =
∑

n∈S(y) e(nα)Φ(n/x).
We shall use the decomposition into multiplicative characters developed in § 3 together with
the GRH bounds for partial L-functions developed in § 5. Here Φ is treated as fixed, and all
constants in O-symbols depend on it.



788 J. C. LAGARIAS AND K. SOUNDARARAJAN

Proposition 6.1. Assume the truth of the GRH. Let α be a real number in [0, 1] and
write α = a/q + γ with (a, q) = 1, q � √

x and |γ| � 1/(q
√

x). Then

E(x, y;α) = M(x, y; q, γ) + O(x3/4+ε), (6.1)

where the ‘local main term’ M(x, y; q, γ) is defined by

M(x, y; q, γ) =
∑

n∈S(y)

μ(q/(q, n))
φ(q/(q, n))

e(nγ)Φ
(n

x

)
. (6.2)

Proof. We begin by remarking that Dirichlet’s theorem on Diophantine approximation
guarantees the existence of decompositions α = a/q + γ with (a, q) = 1, q � √

x and |γ| �
1/(q

√
x). Writing n ∈ S(y) as dm, where d = (n, q), we see that

E(x, y;α) =
∑
d|q

d∈S(y)

∑
m∈S(y)

(m,q/d)=1

e

(
am

q/d

)
e(mdγ)Φ

(
md

x

)
.

Now using Lemma 3.1, we find that

E(x, y;α) =
∑
d|q

d∈S(y)

1
φ(q/d)

∑
χ (mod q/d)

χ(a)τ(χ̄)
∑

m∈S(y)
(m,q/d)=1

e(mdγ)χ(m)Φ
(

md

x

)
. (6.3)

Consider first the contribution of the principal character (mod q/d). The Gauss sum for
the principal character (mod q/d) equals μ(q/d), and hence the contribution of the principal
characters to (6.3) is∑

d|q
d∈S(y)

μ(q/d)
φ(q/d)

∑
m∈S(y)

(m,q/d)=1

e(mdγ)Φ
(

md

x

)
=

∑
n∈S(y)

μ(q/(q, n))
φ(q/(q, n))

e(nγ)Φ
(n

x

)
= M(x, y; q, γ).

This is the main term isolated in our proposition, and we must show that the contribution of
the non-principal characters to (6.3) is O(x3/4+ε).

We shall establish, using Proposition 5.1, that if χ is not the principal character (mod q/d),
then

√
q√
d

∣∣∣∣∣∣
∑

m∈S(y)

e(mdγ)χ(m)Φ
(

md

x

)∣∣∣∣∣∣	 x3/4+ε. (6.4)

Assuming this for the present, since |τ(χ)| �
√

q/d for all characters χ (mod q/d) by
Lemma 3.2, we see that the contribution of the non-principal characters to (6.3) is bounded by

	
∑
d|q

d∈S(y)

1
φ(q/d)

∑
χ (mod q/d)

χ�=χ0

x3/4+ε 	 x3/4+εd(q) 	 x3/4+ε.

Thus, to complete the proof of our proposition, we need only establish (6.4). Using
Lemma 3.4, we see that, for any c > 0,∑

m∈S(y)

e(mdγ)χ(m)Φ
(

md

x

)
=

∑
m∈S(y)

1
2πi

∫ c+i∞

c−i∞
Φ̌(s, γx)

( x

dm

)s

ds

=
1

2πi

∫ c+i∞

c−i∞
L(s, χ; y)Φ̌(s, γx)

(x

d

)s

ds,

where the interchange of the sum and integral is justified by the absolute convergence
of L(s, χ; y) for any Re(s) > 0. We now take c = 1

2 + ε and invoke the GRH bound from
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Proposition 5.1, which gives L(s, χ; y) 	 (q|s|)ε. Note that Proposition 5.1 applies to primitive
characters χ, but we may extend it easily to imprimitive characters as follows. Suppose
that χ is induced from a primitive character χ̃ (mod q̃); then we have |L(s, χ; y)| �
|L(s, χ̃; y)|∏p|(q/q̃)(1 + 1/

√
p) 	 (q|s|)ε upon using the bound of Proposition 5.1 for L(s, χ̃; y).

It follows that∣∣∣∣∣∣
∑

m∈S(y)

e(mdγ)χ(m)Φ
(

md

x

)∣∣∣∣∣∣	
(x

d

)1/2+ε

qε

∫∞

−∞

∣∣∣∣Φ̌
(

1
2

+ ε + it, γx

)∣∣∣∣ (1 + |t|)ε dt.

Using Lemma 3.5, we conclude that

√
q√
d

∣∣∣∣∣∣
∑

m∈S(y)

e(mdγ)χ(m)Φ
(

md

x

)∣∣∣∣∣∣	
(

1
d

)1+ε

x1/2+εq1/2+ε(1 + |γ|x)1/2+ε 	 x3/4+ε,

since q � √
x and q|γx| � √

x. This establishes (6.4) and hence our proposition.

We now consider the ‘local main terms’ M(x, y; q, γ), and start with a simple reduction.

Lemma 6.2. Given a positive integer q, write q = q0q1, in which q0 ∈ S(y) and q1 is
divisible only by primes larger than y. Let M(x, y; q, γ) be as in Proposition 6.1. Then

M(x, y; q, γ) =
μ(q1)
φ(q1)

M(x, y; q0, γ). (6.5)

Proof. This is immediate from the definition (6.2).

It remains to treat the case q0 ∈ S(y), and here we use the saddle-point method of Hildebrand
and Tenenbaum discussed in § 4 to obtain an understanding of this main term. In the following
result, the lower bound y � (log x)2+δ is imposed only as a necessary condition for non-triviality
of the estimate.

Proposition 6.3. Assume the truth of the GRH. Let x and y be large, and assume that
(log x)2+δ � y � exp((log x)1/2−δ). Let c = c(x, y) denote the Hildebrand–Tenenbaum saddle-
point value given in § 4. Suppose q0 ∈ S(y) with q0 <

√
x, let γ be real with |γ| � 1/(q0

√
x),

and let M(x, y; q0, γ) be as in Proposition 6.1. Then we have the following conditions.

(1) If |γ| � xδ−1, then, for any fixed ε > 0,

|M(x, y; q0, γ)| 	 x3/4+εq
−3/4+ε
0 .

(2) If |γ| � xδ−1, we have, for any fixed ε > 0,

M(x, y; q0, γ) =
1
qc
0

∏
p|q0

(
1 − pc − 1

p − 1

)
(cΦ̌(c, γx))Ψ(x, y) + Oε(x3/4+εq

−3/4+ε
0 )

+ Oε

(
Ψ(x, y)q−c+ε

0

(log y)(1 + |γ|x)2

)
.

Proof. Using Lemma 3.4, we see that, for any σ > 0, we have

M(x, y; q0, γ) =
1

2πi

∫σ+i∞

σ−i∞

∑
n∈S(y)

μ(q0/(q0, n))
φ(q0/(q0, n))

1
ns

Φ̌(s, γx)xs ds.
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We now may write ∑
n∈S(y)

μ(q0/(q0, n))
φ(q0/(q0, n))

1
ns

= ζ(s; y)H(s; q0),

where H(s; q0) is a Dirichlet series involving only integers with prime factors dividing q0. For
each prime p|q0 let νp(q0) denote the exact power of p dividing q0, so that νp(q0) � 1. Then

H(s; q0) =
∏
p|q0

(
1 − 1

ps

)⎛⎝ ∞∑
k=νp(q0)−1

μ(pνp(q0)/(pνp(q0), pk))
φ(pνp(q0)/(pνp(q0), pk))

1
pks

⎞
⎠

=
∏
p|q0

(
1 − 1

ps

)(
− 1

(p − 1)
1

p(νp(q0)−1)s
+

1
pνp(q0)s

(
1 − 1

ps

)−1
)

=
1
qs
0

∏
p|q0

(
1 − ps − 1

p − 1

)
. (6.6)

We may now write our integral formula as

M(x, y; q0, γ) =
1

2πi

∫σ+i∞

σ−i∞
ζ(s; y)H(s; q0)Φ̌(s, γx)xs ds. (6.7)

We deform the integral above, replacing it by an integral over a piecewise linear contour
consisting of (i) a line segment c1 + it with t going from −y to y, (ii) a horizontal line segment
going from c1 + iy to 1

2 + ε + iy and another going from 1
2 + ε − iy to c1 − iy and (iii) a vertical

line segment going from 1
2 + ε + iy to 1

2 + ε + i∞ and another going from 1
2 + ε − i∞ to 1

2 +
ε − iy. The shift of contour is permitted because the integrand is holomorphic and bounded in
vertical strips 0 < σ1 < Re(s) < σ2 and is rapidly decreasing as |Im(s)| → ∞ using the bound
of Lemma 3.3. The proofs of (1) and (2) will choose different values of c1. In the calculations
below, it will be useful to keep in mind that, for all s with 1

2 � Re(s) � 1, we have

|H(s; q0)| � d(q0)q
−Re(s)
0 	 q

−Re(s)+ε
0 .

We consider first the vertical line segments given in case (iii) above, which do not depend on
the choice of c1. Using Proposition 5.1 (which assumes the GRH), we see that the contribution
of these segments to M(x, y; q0, γ) is

	 q
−1/2+ε
0 x1/2+ε

∫∞

−∞
(1 + |t|)ε

∣∣∣∣Φ̌
(

1
2

+ ε + it, γx

)∣∣∣∣ dt 	 q
−1/2+ε
0 x1/2+ε(1 + |γx|)1/2+ε

	 q
−3/4+ε
0 x3/4+ε, (6.8)

upon using Lemma 3.5 and that |γ|x � √
x/q0. To handle the remaining integrals, we

distinguish two cases depending on whether |γ| � xδ−1 or not.
(1) First we treat the case when |γ| � xδ−1. In this case, we choose c1 = 1 + ε. Taking k

suitably large in Lemma 3.3 (depending on δ), we find that Φ̌(s, γx) 	 x−1 for all s on the
portions of the contour given in (i) and (ii) above. Consider the contribution to the integral of
the horizontal line segments in (ii). Proposition 5.1 gives that

|ζ(s; y)| 	ε exp
(

y1−σ

(1 + y) log y

)
|s|ε 	ε |s|ε 	 yε, (6.9)

and so this contribution is

	 yεx−1

∫ c1

1/2+ε

xσq−σ+ε
0 dσ 	 xε.
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Next consider the vertical line segment given in (i). Here we bound |ζ(s; y)| by ζ(c1, y) 	ε 1,
so this segment contributes

	 xc1q−c+ε
0 x−1ζ(c1; y)y 	ε xε.

Combining these estimates with (6.8), we conclude that, when |γ| � xδ−1, we have
M(x, y; q0, γ) 	 x3/4+εq

−3/4+ε
0 , as claimed.

(2) Now we turn to the case when |γ| � xδ−1. In this case, we choose c1 = c to be the
Hildebrand–Tenenbaum saddle-point value. We use Lemma 3.3 with k = 2, which gives that
Φ̌(s, γ) 	 |s|2/(1 + |γ|x)2. Now consider the contribution to the integral of the horizontal line
segments described in (ii). As in (6.9), Proposition 5.1 gives that |ζ(s; y)| 	 |s|ε 	 yε, and so
the contribution of these line segments to the integral giving M(x, y; q0, γ) is

	 yε y2

(1 + |γ|x)2

∫ c

1/2+ε

xσq−σ+ε
0 dσ 	 y2+ε

(1 + |γ|x)2
q−c+ε
0 xc.

Note that, using (4.6),

log ζ(c; y) �
∑
p�y

p−c � 1
2 log y

∑
p�y

log p

pc − 1
=

log x

2 log y
,

and so the contribution of the horizontal line segments is, using Theorems 4.1 and 4.2

	 y2+ε

(1 + |γ|x)2
q−c+ε
0 xcζ(c; y) exp

(
− log x

2 log y

)
	 q−c+ε

0 Ψ(x, y)
y2+ε log x

(1 + |γ|x)2
exp

(
− log x

2 log y

)
.

(Here we used the bound
√

2πφ2(c, y) 	 log x from Theorem 4.2 and y > (log x)1+ε.) Since
y � exp((log x)1/2−δ), this yields the bound

	 q−c+ε
0 Ψ(x, y)

(log y)3(1 + |γ|x)2
, (6.10)

with plenty to spare.
Finally, we consider the contribution of the vertical line segment given in (i). We split this

integral into the regions |t| � 1/ log y and 1/ log y � |t| � y. We first treat the saddle-point
region |t| � 1/ log y lying near the real axis, which contributes to the main term of the formula
in (2). Certainly c + it = c + O(|t|), and we may check easily that, for |t| � 1

|H(c + it; q0) − H(c; q0)| 	 |t|q−c+ε
0 .

It is clear that

Φ̌(c + it, γx) − Φ̌(c, γx) =
∫∞

0

Φ(w)e(γxw)(wc−1+it − wc−1)dw 	 |t|,

and integrating by parts twice, we also have

Φ̌(c + it, γx) − Φ̌(c, γx) =
∫∞

0

d2

dw2

(
Φ(w)wc−1(wit − 1)

) e(γxw)
(2πixγ)2

dw 	 |t|
(|γ|x)2

.

We conclude that |Φ̌(c + it, γx) − Φ̌(c, γx)| 	 |t|/(1 + |γ|x)2. Putting these observations
together, we see that, for |t| � 1/ log y,

|(c + it)Φ̌(c + it, γx)H(c + it; q0) − cΦ̌(c, γx)H(c; q0)| 	 q−c+ε
0

(log y)(1 + |γ|x)2
.
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Hence, the contribution of the region |t| � 1/ log y to M(x, y; q0, y) is

1
2πi

∫ c+i/ log y

c−i/ log y

ζ(s; y)
xs

s

(
cH(c; q0)Φ̌(c, γx) + Oε

(
q−c+ε
0

(log y)(1 + |γ|x)2

))
ds

= cH(c; q0)Φ̌(c, γx)Ψ(x, y) + Oε

(
q−c+ε
0

(log y)(1 + |γ|x)2
Ψ(x, y)

)
, (6.11)

upon using Lemma 4.5 to produce the main term and the absolute value integral in Lemma 4.6
to bound the error term.

Next consider the remaining region 1/ log y � |t| � y in segment (i). Bounding the absolute
value of the integrand, and using Lemma 4.4 and that (1 − c) 	 (log log x)/ log y (see (4.9)),
this contribution is

	 xcq−c+ε
0

y3

(1 + |γ|x)2
max

1/ log y�|t|�y
|ζ(c + it; y)|

	 q−c+ε
0

y3

(1 + |γ|x)2
xcζ(c; y) exp

(
−C

log x

(log y)(log log x)2

)
,

for some positive constant C. Appealing now to Theorems 4.1 and 4.2, and using y �
exp((log x)1/2−δ), we deduce that the above is bounded by

	 q−c+ε
0 Ψ(x, y)

y3 log x

(1 + |γ|x)2
exp

(
−C

log x

(log y)(log log x)2

)
� q−c+ε

0 Ψ(x, y)
(log y)3(1 + |γ|x)2

.

Combining this bound with (6.6)–(6.8), (6.10), (6.11), we obtain the estimate of the proposition
in the case when |γ| � xδ−1.

Proof of Theorem 2.4. We use Proposition 6.1 and Lemma 5.1, writing q = q0q1 to obtain

E(x, y;α) =
μ(q1)
φ(q1)

M(x, y; q0, γ) + O(x3/4+ε). (6.12)

Now Proposition 6.3(1) applied to M(x, y, q0, γ) gives the bound of part (1). Next we note that
the Hildebrand–Tenenbaum saddle point c = c(x, y) satisfies c = 1 − 1/κ + O(log log y/ log y)
(see (4.11)), and so, for c0 = 1 − 1/κ, we have

1
qc
0

∏
p|q0

(
1 − pc − 1

p − 1

)
(cΦ̌(c, γx)) =

1
qc0
0

∏
p|q0

(
1 − pc0 − 1

p − 1

)
(c0Φ̌(c0, γx))

+ Oε

(
q−c0+ε
0

(1 + |γ|x)2
log log y

log y

)
.

Now part (2) follows upon using this formula in the expression for M(x, y, q0, γ) in
Proposition 6.3(2), substituting the result into (6.12), noting that φ(q1) � (q1)−1+ε.

7. Counting weighted smooth solutions: Proof of Theorem 2.1

We initially suppose that (log x)2+δ � y � exp((log x)1/2−δ), and we shall raise the lower bound
on y as the proof progresses. We employ the Hardy–Littlewood circle method to evaluate

N(x, y; Φ) =
∫1

0

E(x, y;α)2E(x, y;−α) dα.

Let a fixed small number δ > 0 be given, which we use as a parameter in defining major and
minor arcs. Given a rational number a/q with (a, q) = 1 and q � x1/4, we define the major
arc centered at a/q to be the set of all points α ∈ [0, 1] with |α − a/q| � xδ−1. Note that any
α ∈ [0, 1] lies on at most one major arc. We shall find it convenient to group the major arcs
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[0, xδ−1] and [1 − xδ−1, 1] together, and on T = R/Z we may identify them with [−xδ−1, xδ−1].
The union of the major arcs is denoted by M and the minor arcs m are defined to be the
complement of the major arcs [0, 1]\M.

Suppose that α lies on a minor arc. By Dirichlet’s theorem on Diophantine approximation, we
may write α = a/q + γ where q � √

x, (a, q) = 1 and |γ| � 1/(q
√

x). Since α ∈ m, we must have
that either q > x1/4, or that |γ| � xδ−1. If the latter case holds, then, using Propositions 6.1
and 6.3, we find that E(x, y;α) 	 x3/4+ε. In the former case, Proposition 6.3 with (6.5) gives
that

M(x, y; q, γ) 	 Ψ(x, y)q−c+ε
0 q−1+ε

1 	 x3/4+ε.

Then, by Proposition 6.1, we have E(x, y;α) 	 x3/4+ε. Thus, E(x, y;α) 	 x3/4+ε when α lies
on a minor arc. Therefore,

∫
m

E(x, y;α)2E(x, y;−α) dα 	 x3/4+ε

∫
m

|E(x, y;α)|2 dα 	 x3/4+ε

∫1

0

|E(x, y;α)|2dα.

By Parseval, we have
∫1

0

|E(x, y;α)|2 dα =
∑

n∈S(y)

∣∣∣Φ(n

x

) ∣∣∣2 	 E(x, y; 0) 	 Ψ(x, y),

where the last inequality follows from Theorem 2.4, or alternatively from an application of
Theorem 4.3. From this we obtain the minor arc bound∫

m

E(x, y;α)2E(x, y;−α) dα 	 x3/4+εΨ(x, y). (7.1)

It remains now to evaluate the major arc contribution. If z = z1 + O(z2), then it follows
that |z|2z = |z1|2z1 + O(|z2||z|2). Therefore, if α lies on the major arc centered at a/q,
Proposition 6.1 gives that, with α = a/q + γ as before,

E(x, y;α)2E(x, y;−α) = |E(x, y;α)|2E(x, y;α)

= |M(x, y; q, γ)|2M(x, y; q, γ) + Oε(x3/4+ε|E(x, y;α)|2).
Thus, the major arc contribution is

∑
q�x1/4

q−1∑
a=0

(a,q)=1

∫xδ−1

−xδ−1
|M(x, y; q, γ)|2M(x, y; q, γ) dγ + Oε

(
x3/4+ε

∫1

0

|E(x, y;α)|2dα

)
,

which we may simplify to

∑
q�x1/4

φ(q)
∫xδ−1

−xδ−1
|M(x, y; q, γ)|2M(x, y; q, γ)dγ + Oε(x3/4+εΨ(x, y)). (7.2)

Using the decomposition q = q0q1 of Lemma 6.2 and the estimate of Proposition 6.3(2), we
find that |M(x, y; q, γ)|2M(x, y; q, γ) equals

μ(q1)
φ(q1)3

1
q3c
0

∏
p|q0

(
1 − pc − 1

p − 1

)3

c3|Φ̌(c, γx)|2Φ̌(c, γx)Ψ(x, y)3

+ Oε

⎛
⎝ 1

φ(q1)3

3∑
j=1

(
x3/4+εq

−3/4+ε
0 +

Ψ(x, y)q−c+ε
0

(log y)(1 + |γ|x)2

)j (
1
qc
0

Ψ(x, y)Φ̌(c, γx)
)3−j

⎞
⎠ .
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Since
∑3

j=1 AjB3−j 	 A3 + AB2, and since |Φ̌(c, γx)| = O(1) (using Lemma 3.3), we may
simplify the error term above to

	 1
φ(q1)3

(
x9/4+3εq

−9/4+3ε
0 + x3/4+εq

−2c−3/4+ε
0 Ψ(x, y)2 +

Ψ(x, y)3q−3c+ε
0

(log y)(1 + |γ|x)2

)
.

To upper bound the contribution of this error term to (7.2), we note that

∫xδ−1

−xδ−1

dγ

(1 + |γx|)2 	 1
x

,

and then we obtain

	
∑

q�x1/4

φ(q)
φ(q1)3

(
x5/4+δ+εq

−9/4+ε
0 + x−1/4+δ+εq

−2c−3/4+ε
0 Ψ(x, y)2 +

Ψ(x, y)3q−3c+ε
0

x log y

)
.

(7.3)
We now raise the lower bound to y � (log x)4+8δ. We then have Ψ(x, y) � x3/4+(3/2)δ, and

in addition the Hildebrand–Tenenbaum saddle point c > 3
4 by (4.11). We deduce, for y in this

range, that the error term contribution (7.3) above is

	 Ψ(x, y)3

x log y
.

We conclude that, for y � (log x)4+8δ, the contribution of the major arcs is

Ψ(x, y)3
∑

q�x1/4

μ(q1)
φ(q1)2

φ(q0)
q3c
0

∏
p|q0

(
1 − pc − 1

p − 1

)3 ∫xδ−1

−xδ−1
c3|Φ̌(c, γx)|2Φ̌(c, γx) dγ

+ Oε

(
x3/4+εΨ(x, y) +

Ψ(x, y)3

x log y

)
.

Using Lemma 3.3 with k = 2, and the Plancherel formula, we obtain that

∫xδ−1

−xδ−1
c3|Φ̌(c, γx)|2Φ̌(c, γx) dγ =

c3

x

∫xδ

−xδ

|Φ̌(c, ξ)|2Φ̌(c, ξ) dξ

=
c3

x

(∫∞

−∞
|Φ̌(c, ξ)|2Φ̌(c, ξ)dξ + O

(∫
|ξ|>xδ

1
1 + ξ2

dξ

))

=
c3

x

(∫∞

0

∫∞

0

Φ(t1)Φ(t2)Φ(t1 + t2)(t1t2(t1 + t2))c−1 dt1 dt2

+ O(x−δ)
)

=
S∞(c,Φ)

x
+ O(x−1−δ).

For y � (log x)4+8δ, using c � 3
4 , we see that

∑
q�x1/4

μ(q1)
φ(q1)2

φ(q0)
q3c
0

∏
p|q0

(
1 − pc − 1

p − 1

)3

=
∞∑

q=1

μ(q1)
φ(q1)2

φ(q0)
q3c
0

∏
p|q0

(
1 − pc − 1

p − 1

)3

+ O

⎛
⎝ ∑

q>x1/4

1
q3c−1−ε

⎞
⎠
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=

⎛
⎝ ∑

q0∈S(y)

φ(q0)
q3c
0

∏
p|q0

(
1 − pc − 1

p − 1

)3
⎞
⎠
⎛
⎜⎝ ∑

q1
p|q1⇒p>y

μ(q1)
φ(q1)2

⎞
⎟⎠+ O(x−1/16)

=
∏
p�y

(
1 +

p − 1
p(p3c−1 − 1)

(
p − pc

p − 1

)3
)∏

p>y

(
1 − 1

(p − 1)2

)
+ O(x−1/16)

= Sf (c, y) + O(x−1/16).

Putting these remarks together, we conclude that, for y � (log x)4+8δ, the contribution of the
major arcs is

S∞(c,Φ)Sf (c, y)
Ψ(x, y)3

x
+ Oε

(
x3/4+εΨ(x, y) +

Ψ(x, y)3

x log y

)
.

We combine this result with the minor arcs estimate (7.1) to conclude that

N(x, y; Φ) = S∞(c,Φ)Sf (c, y)
Ψ(x, y)3

x
+ Oε

(
x3/4+εΨ(x, y) +

Ψ(x, y)3

x log y

)
. (7.4)

To obtain an asymptotic formula, we now impose the lower bound y � (log x)8+δ . Thus,
κ � 8 + δ, so that Ψ(x, y) = x1−1/κ+o(1) > x7/8+ε. Now, by (4.11), we know that c = 1 − 1/κ +
O(log log y/ log y). Both Sf (c, y) and S∞(c,Φ) are of constant size, and, moreover, we have

Sf (c, y) = S

(
1 − 1

κ
, y

)
+ O

(
log log y

log y

)

and

S∞(c,Φ) = S∞

(
1 − 1

κ
,Φ
)

+ O

(
log log y

log y

)
.

We use these observations in (7.4), and note also that the lower bound on Ψ(x, y) above implies
that the error term x3/4+εΨ(x, y) is subordinate to the error term Ψ(x, y)3/(x log y), so that
(7.4) is an asymptotic formula. This proves Theorem 2.1.

8. Counting weighted primitive smooth solutions: Proof of Theorem 2.2

We suppose (log x)8+δ � y � exp
(
(log x)1/2−δ

)
. Let z = 1

2 log y, and put Pz =
∏

p�z p. By the
prime number theorem, we know that Pz = ez+o(z) � y. We assert that∣∣∣∣∣∣N∗(x, y; Φ) −

∑
d|Pz

μ(d)N
(x

d
, y; Φ

)∣∣∣∣∣∣ �
∑

z<p�y

N

(
x

p
, y; |Φ|

)
. (8.1)

To establish (8.1), it suffices to observe that its left-hand side counts weighted solutions to
X + Y = Z with XY Z ∈ S(y) and such that the g.c.d. (X,Y,Z) is an integer greater than 1
and divisible only by primes larger than z. The proof will derive the desired asymptotic formula
for the inclusion–exclusion sum

∑
d|Pz

μ(d)N (x/d, y; Φ) on the left-hand side of (8.1) and will
complete the argument by showing that the right-hand side of (8.1) is small compared to this
asymptotic estimate.

To handle the terms arising in (8.1), we first consider N(x/k, y; Φ) and N(x/k, y; |Φ|) where
1 � k � y. In our range for x and y, the exponent κ = κ(x, y) := log y/ log log x satisfies∣∣∣∣ 1

κ(x, y)
− 1

κ(x/k, y)

∣∣∣∣ � log log x − log log(x/y)
log y

	 1
log x

,
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and therefore

S∞

(
1 − log log(x/k)

log y
,Φ
)

Sf

(
1 − log log(x/k)

log y
, y

)

= S∞

(
1 − log log x

log y
,Φ
)

Sf

(
1 − log log x

log y
, y

)
+ O

(
1

log x

)
.

Furthermore, by Theorem 4.3 we have that

Ψ
(x

k
, y
)

= k−c(x/k,y)Ψ(x, y)
(

1 + O

(
log y

log x

))
,

where c(x/k, y) is the Hildebrand–Tenenbaum saddle point. Using Theorem 2.1, we conclude
that

N
(x

k
, y; Φ

)
= S∞

(
1 − log log x

log y
,Φ
)

Sf

(
1 − log log x

log y
, y

)
Ψ(x, y)3

x
k1−3c(x/k,y)

+ O

(
k1−3c(x/k,y) Ψ(x, y)3 log log y

x log y

)
. (8.2)

Similarly, we obtain the upper bound

N
(x

k
, y; |Φ|

)
	 k1−3c(x/k,y) Ψ(x, y)3

x
. (8.3)

We first bound the right-hand side of (8.1). We find, using (8.3), that it is bounded by

	 Ψ(x, y)3

x

∑
z<p�y

p1−3c(x/p,y).

Since, by (4.11), we have

c(x/p, y) = 1 − 1/κ(x/p, y) + O(log log y/ log y) = 1 − 1/κ + O(log log y/ log y) > 3/4,

the above is bounded by

	 Ψ(x, y)3

x

∑
z<p�y

p−5/4 	 Ψ(x, y)3

xz1/4
.

Now, using (8.2), we treat the sum on the left-hand side in (8.1), and find that

∑
d|Pz

μ(d)N
(x

d
, y; Φ

)
= S∞

(
1 − 1

κ
,Φ
)

Sf

(
1 − 1

κ
, y

)
Ψ(x, y)3

x

⎛
⎝∑

d|Pz

μ(d)d1−3c(x/d,y)

⎞
⎠

+ O

⎛
⎝Ψ(x, y)3 log log y

x log y

⎛
⎝∑

d|Pz

d1−3c(x/d,y)

⎞
⎠
⎞
⎠ .

Since c(x/d, y) > 3
4 , as noted above, the remainder term here is O(Ψ(x, y)3 log log y/(x log y)).

Nextm we treat the sum appearing in this last estimate, and again we use that c(x/d, y) =
1 − 1/κ + O(log log y/ log y). We obtain

∑
d|Pz

μ(d)d1−3c(x/d,y) =
∑
d�z

μ(d)d3/κ−2

(
1 + O

(
log d log log y

log y

))
+ O

(∑
d>z

d3/κ−2+o(1)

)

=
∏
p�z

(
1 − 1

p2−3/κ

)
+ O

(
log log y

log y

)
+ O(z−1+3/κ+o(1))

=
∏
p�y

(
1 − 1

p2−3/κ

)
+ O((log y)−1/2).
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We now define

S∗
f (c, y) := Sf (c, y)

∏
p�y

(
1 − 1

p3c−1

)

=
∏
p�y

(
1 +

1
p3c−1

(
p − 1

p

(
p − pc

p − 1

)3

− 1

))∏
p>y

(
1 − 1

(p − 1)2

)
. (8.4)

Using this definition, substitution of the above estimates in (8.1) gives

N∗(x, y; Φ) = S∞

(
1 − 1

κ
,Φ
)

S∗
f

(
1 − 1

κ
, y

)
Ψ(x, y)3

x
+ O

(
Ψ(x, y)3

x(log y)1/4

)
.

This proves Theorem 2.2.
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