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Correlation of information from multiple-view mammograrntesg., MLO and CC views, bilateral
views, or current and prior mammograntsn improve the performance of breast cancer diagnosis

by radiologists or by computer. The nipple is a reliable and stable landmark on mammograms for
the registration of multiple mammograms. However, accurate identification of nipple location on
mammograms is challenging because of the variations in image quality and in the nipple projec-
tions, resulting in some nipples being nearly invisible on the mammograms. In this study, we
developed a computerized method to automatically identify the nipple location on digitized mam-
mograms. First, the breast boundary was obtained using a gradient-based boundary tracking algo-
rithm, and then the gray level profiles along the inside and outside of the boundary were identified.
A geometric convergence analysis was used to limit the nipple search to a region of the breast
boundary. A two-stage nipple detection method was developed to identify the nipple location using
the gray level information around the nipple, the geometric characteristics of nipple shapes, and the
texture features of glandular tissue or ducts which converge toward the nipple. At the first stage, a
rule-based method was designed to identify the nipple location by detecting significant changes of
intensity along the gray level profiles inside and outside the breast boundary and the changes in the
boundary direction. At the second stage, a texture orientation-field analysis was developed to
estimate the nipple location based on the convergence of the texture pattern of glandular tissue or
ducts towards the nipple. The nipple location was finally determined from the detected nipple
candidates by a rule-based confidence analysis. In this study, 377 and 367 randomly selected
digitized mammograms were used for training and testing the nipple detection algorithm, respec-
tively. Two experienced radiologists identified the nipple locations which were used as the gold
standard. In the training data set, 301 nipples were positively identified and were referred to as
visible nipples. Seventy six nipples could not be positively identified and were referred to as
invisible nipples. The radiologists provided their estimation of the nipple locations in the latter
group for comparison with the computer estimates. The computerized method could detect 89.37%
(269/301)0f the visible nipples and 69.74¥63/76) of the invisible nipples within 1 cm of the

gold standard. In the test data set, 298 and 69 of the nipples were classified as visible and invisible,
respectively. 92.28%275/298)of the visible nipples and 53.62%37/69) of the invisible nipples

were identified within 1 cm of the gold standard. The results demonstrate that the nipple locations
on digitized mammograms can be accurately detected if they are visible and can be reasonably
estimated if they are invisible. Automated nipple detection will be an important step towards
multiple image analysis for CAD. @004 American Association of Physicists in Medicine.
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I. INTRODUCTION in previous years, for detecting and interpreting breast le-

sions. The multiple views allow for imaging of most of the
Breast cancer is one of the leading causes for cancer mortgleast tissue and increase the chance of the breast lesion to
ity among womert.The most successful method for the early o jetected. Our previous studies have demonstrated that
detection of breast cancer is screening mammogréBﬂry. computerized multiple view analysis could not only improve
has been demonstrated that an effective computer-aided dts'reast lesion detection with two-view information fusibh,

agnosis(CAD) system can provide a second opinion to thebut also improve malignant and benign lesion characteriza-

radiologists and improve the accuracy of detection and char- . .
o : . S tion by interval change analys?sOur techniques used the
acterization of mammographic abnormalities, which, in turn,

may reduce unnecessary biopsies. In clinical practice, radfJIpIOIe location, the only reI_|abIe Ianqurk on the mammo-
ologists routinely use a cranio-caud&C) and a mediolat- 9ram. as the reference point for two-vie€@C and MLO
eral oblique(MLO) view along with mammograms obtained views) information fusion and regional registration of tem-

2871  Med. Phys. 31 (10), October 2004 0094-2405/2004/31 (10)/2871/12/$22.00 © 2004 Am. Assoc. Phys. Med. 2871



2872 Zhou et al.: Computerized nipple identification on mammograms 2872

poral pairs of mammograms of the same view. However, the
nipple location was manually identified on the mammograms
in these studies.

Automated methods for detection of the nipple location
have been reported by Chandrasekhitendez® and Yin?
In their methods, the breast boundary was extracted and then
the nipple location was identified by searching for the maxi-
mum and minimum of the gradient changes or average in-
tensity in a small region along the breast boundary. However,
without mentioning the use of a training data set or how to
train the detection program, Chandrasekbaral. reported
the performance of their method using a very limited data set
of 24 images with 8 CC views and 16 oblique views. For 23
of the imageg96%), the root-mean-square error of their de-
tection method was reported to be less than 1 cm at an image
resolution of 400um X400 um per pixel. Mendezet al.  tional Review Board(IRB). The mammograms were ac-
tested 156 mammograms that included lateral oblique anduired with GE mammography systems and were digitized
CC views. They reported that the average distance betweesith a LUMISYS 85 laser film scanner with a pixel size of
the detected nipple location and the true position identifiecbO um x50 um and 4096 gray levels. The gray levels are
by two radiologists was 13.5 mm. Mendetr al. also tested linearly proportional to optical densitig€®©.D.) from 0.1 to
Yin's method using the same 156 mammograms and obgreater than 3 O.D. units. The nominal O.D. range of the
tained an average distance of 16.5 mm, while ¥tral.re-  scanner is 0—4. The full resolution mammograms were first
ported an average distance of 10 mm when tested on 8®moothed with a 1816 box filter and subsampled by a
mammograms. Neither Mendet al. nor Yin et al. reported  factor of 16, resulting in 80@m X 800 um images of ap-
whether the nipple was in profile on the images, nor reportegroximately 225< 300 pixels in size.
results for both training and test sets. The 744 mammograms were randomly divided into a

In a random sample of mammograms, many nipples cantraining and a test data set of 377 and 367 mammograms,
not be positively identified, even by experienced mammog+espectively. For each mammogram, the image was first dis-
raphy radiologists. Breast boundary-based methods therefopgayed on a monitor and visually inspected using windowing
cannot accurately locate these nipples. For the cases that thenctions. According to the appearance of the nipple profile
nipple is not readily visible, a radiologist may examine theprojection on the mammograms, the mammograms were
patterns of glandular tissue and ducts to find where they cortlassified into one of two classes: visible nipple class in
verge, and then estimate the nipple location in the convergenthich the nipple profiles were clearly projected on the mam-
area. However, to our knowledge, no study has been reportadogram and positively identifiable, and the invisible nipple
to use texture convergence information for computerizectlass in which the nipple locations could not be positively
nipple detection. identified. 301 of the 377 training images and 298 of the 367

Computerized identification of nipple location on digi- testimages were classified into the visible nipple class, while
tized mammograms is challenging because of the variationthe remaining 76 and 69 images in the training and test data
in image quality and in the nipple projections, especially forsets, respectively, were classified into the invisible nipple
the nipples that are very flat and nearly invisible on the mamelass.
mograms. In this study, we developed an automated tech- In each mammogram, the nipple location was identified
nique for nipple identification on digitized mammogramsby experienced Mammography Quality Standards Act
with the information of nipple intensity changes, nipple geo-(MQSA) radiologists. This location was used as the “gold
metric characteristics, and texture convergence towardtandard” for training the algorithms and evaluating of the
nipple. Automated nipple detection will be the fundamentalcomputer performance. The radiologist visually inspected the
step towards the development of a multiple-image CAD sysimage displayed on a monitor with a graphical user interface

Fic. 1. Estimation of “gold standard” for invisible nipple images.

tem using our image registration techniques. and used the windowing function to enhance the breast
boundary. The radiologist marked the nipple location by us-
Il. MATERIALS AND METHODS ing the cursor. One radiologist estimated the nipple location

for all of the images in the visible nipple class. For the in-
visible nipple class, one radiologist estimated the nipple lo-
A total of 744 mammograms of 182 patients was used ircations twice, another radiologist estimated the nipple loca-
our study. A data set consisting of 377 mammograms of 7Tion only once. The “gold standard” was estimated by
patients was used as training data set for development of theveraging the radiologists’ readings. Since the breast bound-
algorithms and 367 mammograms of 105 patients were usedgty is not a straight line, the averages of thandy coordi-
as the test data set. The mammograms were randomly seates of two points along the breast boundary generally do
lected from the patient files in the Department of Radiologynot fall on the boundary. An average between two readings
at the University of Michigan with approval of the Institu- was thus estimated as the intersection between the breast

A. Database
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Fic. 2. (a) A mammogram from our image database;
(b) the image superimposed with the detected breast
boundary.

boundary and the normal to the midpoint of the line connectcould steer around the breast boundary and was less prone to
ing the two readings, as shown in Fig. 1. When the twodiversion by noise and artifacts. After upward and downward
readings are not too far apart, this method is very close téracking was finished, the tracked edges were smoothed to
that obtained by finding their midpoint along the breastremove noisy fluctuations. A simple linear interpolation was
boundary. However, this method is less prone to error if thaused to connect the edge points so that a continuous breast
breast boundary points are noisy. Using this averagindoundary was found. An example of the tracked breast
method, the average poiR was first estimated from Radi- boundary is shown in Figs. 2(@nd 2(b).

ologist 1's two reading®, andR;, then the “gold standard”

was found as the average of poRt with Radiologist 2's  C. Limiting the nipple search region

readingR,.
g If the breast is properly positioned for imaging, almost all

the nipples will be located along or close to the breast bound-
ary. Our nipple search was performed within a small window
The detection of breast boundary was the first step in ousf 9x 9 pixels along the breast boundary, with the center of
computerized nipple detection algorithm. The breast boundthe search window located at the boundary point.
ary separated the breast from the surrounding background Defining a small search region along the breast boundary
which included the directly exposed area, the patient identiwould reduce the chance that jagged breast borders from
fication information, and lead markers. Computerized analynoise and artifacts would result in false positive nipple iden-
sis was then performed only around the breast region afteffication. We designed a geometric convergence analysis to
boundary detection. The breast boundary was first identifiedstimate a nipple search region where the nipple would most
by a boundary tracking technique. The automated boundanykely be located. In an ideal situation, the nipple was located

tracking technique previously developd'was modified to  close to the boundary, approximately in the middle region of
improve its performance. The breast boundary was identified

by a gradient-based method as follows. The background of
the image was estimated initially by searching for the largest
background peak from the gray level histogram of the image.
A preliminary edge was found by a horizontal line-by-line Fitted
gradient analysis starting from the top to the bottom of the Upper Line
image. The criterion used in detecting the edge points was
the steepness of the gradient along the horizontal direction.
The steeper the gradient, the greater the likelihood that an
edge existed at that corresponding location. The preliminary
edge served as a guide for a more accurate tracking algo-
rithm that was subsequently applied. The tracking of the

B. Breast boundary detection

breast boundary started from approximately the middle of ;:;’;,:{Zﬂt

the breast image and moved upward and downward along the

boundary. The direction to search for a new edge point was T
guided by the previously tracked edge points. The edge lo- boundarT

cation was determined by searching for the maximum gradi-
ent along the gray level profile normal to the tracking direc-

tion-_ Because the boundary _traCking was guided b_y th%e. 3. Defining a limited nipple search region by geometric convergence
preliminary edge and the previously detected edge points, Hnalysis.
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the breast for CC view and in the lower region for MLO OQuter intensity curve:
view. As shown in Fig. 3, in the geometric convergence

analysis, a floating segment containing 20% of boundary no
points was first placed at the middle of the breast boundary. Cq(B,)=—, f(k), k € Ro,B, € Breast Boundary, (2)
The floating segment separated the boundary into an upper Nok=1

and a lower boundary segment. Two lines were then fitted to
the boundary points in the upper and lower segments and th@urvature curve:
goodness-of-fit of the two lines was estimated by the sum of

squares of the deviations between the fitted line and the np
boundary points. The convergence region was finally deter- D(B,) = —=>dk), k e Rp, B, € Breast Boundary, (3)
mined by moving the floating segment along the boundary Mbie=1

until the dg\{lat'londofrthhetflttegttl|r;lels from tthe brfzsihboun?'whereR,, Ro, andRp were pixels within a 55 window of
ary was minimized. 1he two nted ines intersected the antey, . -, ,q profile, the outer profile, and 5 neighborhood
rior region of the breast boundary at two points. The bound'boundary points, respectively. Each window was centered
ary region between these two points was defined as th !

. . Eiterally at the current boundary poii. n,, ng, and np
nipple search region. represented the number of pixels within each windéfk)
andd(k) were the gray level of thkth pixel within the win-

D. Nipple detection dow and the curvature at thgh boundary point, respec-
tively. On the boundary poirB,, the first derivative, or the
gradient, was estimated as the tanggnb the breast bound-
After automated breast boundary detection, the breasiry atB,. The curvature aB, was the derivative of the gra-
boundary was smoothed to reduce small jagged fluctuationglient curve? which represented the direction change of the
From our analysis, we observed that there were sudden angngent at boundary poif,.
distinct gray level changes in pixels close to the nipple for Figure 4 shows the nipple search scheme based on the
most of the mammograms with visible nipples. The directionboundary features. Nipple search was performed taking into
of the breast boundary also had a sudden and distinct changecount three situations in which the nipple exhibited differ-
when a convex nipple shape occurred along the breasint characteristics. First, a nipple shape was projected along
boundary. In order to identify the location where thesethe breast boundary. In the second and third situations, a
changes occurred, we constructed two smoothed intensityipple intensity profile could be identified inside or outside
curves corresponding to the inner and outer intensity profilesf the breast boundary. The details are described below.
and the curvature curve along the boundary, as defined in Within the limited nipple search region, the first step was
Egs.(1)—(3). The curves were plotted against boundary pointo detect if there was a sudden and distinct change in the
B, wherex=1,...,n5,ng represented the total number of boundary direction, which indicated a convex nipple shape
boundary points: outside of the boundary. The convex nipple could be detected
by searching for the sharpest peak on the curvature curve.
The peak featur@g of every peak along the curve was cal-

1. Nipple search along breast boundary

Inner intensity curve:

1D culated as the ratio of the peak height to the peak width. The
C/(By = =D f(K), ke R.,B, e Breast Boundary, (1) sharpest peak was identified as the maximum of the peak
N k=1 featurespgr. If the maximum peak featune; was larger than
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a predefined threshold, then there was a convex nipple shagence of texture pattern of glandular tissues or ducts towards
depicted on the boundary. The nipple location was identifiedhe nipple. The fibroglandular tissues or ducts appeared as
as the peak poinf\.ynvey Of the sharpest peak on the curva- oriented and flowlike textural pattern on the mammograms.
ture curve. The threshold was determined using the trainingVith the assumption that there exists a dominant orientation
data set. at each pixel within a texture pattern, an “orientation image”
If no convex nipple could be foun@.e., no peak feature can be computed from the gray level mammogram using
larger than the threshold), then the nipple search was peleast mean squares estimation based on Rao’s optimal
formed by searching for obvious intensity changes along theolution™ Let gx(u,v) andg,(u,v) represent the gradients at
inner and outer intensity profiles separately. Two peak feapixel (u,v) in the image. The gradient magnitude is com-
tures of the intensity curve were used to detect obvious inputed asG,,=g5(u,v)+g;(u,v), and the gradient orienta-
tensity changes. The first peak featygwas estimated as tion is computed as, ,=arctang,(u,v)/gy(u,v)). Assuming
the ratio of the peak height to the peak width. The secondhat the dominant orientation infx N local neighborhood

peak featurepy was the peak height normalized to the sumcentered at pixefi, j) is (i, ]), the sum-of-squareS can be
of all the curve heights. If botipz and py for a given peak  computed as

were larger than the predefined thresholds, then it was an NN
obvious intensity peak. The thresholds were again deter- ~_ 2 -

. . L . . . = - ¢(1,])), 4
mined using the training data set. The most obvious intensity S EEGU'U coS(8, = $(1.1) “@

change was identified by the maximyp if more than one

obvious intensity peaks were found along the intensity curveVhereSis the sum of the squared gradient magnitudes pro-
If obvious intensity changes were found along both the innefected along a directiorb(i, j) in this neighborhood(i, j) is

and outer intensity curves, the potential nipple locationthe dominant orientation tis the maximum. The maximum
Nintensiy Was identified at the peak point of the intensity peakOf Swith respect tah(i, j) can be found by solving the equa-
with maximumpy, on each curve. If the two maximum in- tion (dS/dé(i,j))=0,

tensity peaks located on the inner and outer intensity curves N N

were very closddefined as within 1 cm in our study), then =~ ———=2>' 2 Gﬁv cos(@,, — #(i,j))sin(6,, — ¢(,j)).
the nipple locatiorN;yensiy Was identified to be the average do(i.j) s ' '

of these two peak points. The average location was taken as (5)

the intercept of the breast boundary with the normal to the _ _ S _
midpoint of the line connecting the two peak points. If theseThus, the dominant orientatiof(i, j) can be estimated as
two peak points were not close, then the nipple location EN EN o

o . . 1 1 2,—q Gup SiN 26y,
Nintensiy Was determined as the maximum peak on the outer (i) = = tar? u
intensity profile because the outer intensity profile generally ’ 2
was less affected by structural noises. The nipple candidate

N N
2y 2y Gh, COS Xy,

Neonvex O Ninensity identified by this rule-based method is 1 2?:12:]:1 20,(U,0)gy(U,v)
referred to as Nipple 1. == tan? N S . (6
Due to the image quality, artifacts, or dense area near the 2 2 Evzl (92(u,0) = g5(u,v))

breast border, the computer may identify a jagged breast

boundary, which would lead to false detection of the nipple. Dense breasts generally exhibit more textural structures
To reduce the false detections, the identified candidate nippléan fatty breasts on the mammograms. However, due to the
location Neonvex OF Nintensity Was subjected to a confidence presence of noise, the estimated local texture orientation may
analysis. If there were several cosinelike peaks of similanot always be correct. A low-pass filter can be used to find
size in the curvature curve or the inner intensity curve, itthe local orientation that varies slowly in the local neighbor-
indicated that the breast boundary was jagged or there wekood. Before performing low-pass filtering, the orientation
dense tissues near the breast boundary, respectively. The cdfage was converted into a continuous vector fittkfined
fidence of the identified nipple was therefore set to low. Theas follows:

qonfldence was also set to low if the candidate nipple loca- 0,(,j) = cose(i,})) 7)

tion Neonvex OF Ninensity Was null because the peak features

were less than the predefined thresholds. In this situation, thend

nipple could not be found by the breast-boundary-based O.(i.1) = sin@a(i i 8
method described above and texture convergence analysis b)) @1 ®
would be used as described next. The low-pass filtering was performed by averaging of

O,(i,j) and ©(i,j) in a local window with a size of &5
pixels, yielding O4(i,j) and ©(i,j), respectively, as the

2. Nipple identification using texture smoothed continuous vector field. The smoothed local orien-
convergence analysis tation at(i,j) can then be computed as

If the confidence of the rule-based nipple detection was 1 0/(i.i)
set to low, a flow field based convergence analysis was ini- Q(j,j) = = tan‘l(—ﬁ%). 9)
tiated to estimate the nipple location based on the conver- 2 0,(i,j)
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Fic. 5. An example of texture orientation field conver-
gence analysis(a) Original image superimposed with
(b) © the detected breast bounda) texture orientation
field, (c) continuous orientation fiel®, (d) cosine com-
ponent of continuous fiel®,, (e) profile of O, identi-
1 : T fied along the breast boundary.

Search area

0 100 200 300 400 500

@ (e)

Figure 5 shows an example of a computed orientatiortation fieldO as shown in Fig. 5(c). Such bright dot indicated
field superimposed on the original mammogram. The nipplex candidate nipple, which we will refer to as Nipple3 in the
location was indicated by the convergence of the estimatetbllowing discussions. Note that, although the rule-based
texture orientation. The following steps were used for themethod could detect convex nipple location by searching for
detection of the convergence of the texture orientation: the maximum curvature of the breast boundary as described
(1) Convert the smoothed orientation image into a continu." Sec. 11D 1, the confldence of the identified nipple might

ous vector field? be set to low because of jagged breast boundary. In such a

case, alternative nipple locations would need to be consid-

Ox(i.j) = cosO(i, ). (10)  ered.
(2) ldentify the points ofO, in the inner profile region and
then average to a 1D profile: 3. Determination of the final nipple location
n After rule-based nipple detection along the boundary pro-
Cox(By) = => O,(K), k € R,B, e Breast Boundary, file, and the convergence analysis using texture orientation
M k=1 field, three candidate nipple locations were obtained, as de-

(11)  scribed above. Nipplel was found by the rule-based method,
) ) o ~ Nipple2 was found by the change in the orientation projec-
wheren, is the number of points within the local win-  tjon O, and Nipple3 was found by the orientation fi€d If
dow represented bR,. In our study, the size dR iS5 the confidence of Nipplel was set to high, the final nipple
X5. For simplicity, the indexk is used to identify @ |ocation was determined by Nipplel. Otherwise, the follow-
point in R,, replacing the indice§ , j). ing rules were used to determine the final nipple location:

(3) Detect the transition point ofo, by searching for the  sityation 1: Both Nipple2 and Nipple3 could be detected

gradient of theC,, indicated the convergence of the ) _ )

texture orientation which led to the location of nipple. A (1) If the distances between the three candidate nipples were
candidate nipple locatio®, (Nipple2)was found if the all smaller than 0.5 cnt6 pixels) then the final nipple
maximum gradient was larger than a predefined thresh-  location was determined by Nipplel.

old T,. The thresholdr, was determined using the train- (2) If the distance between Nipplel and Nipple2 was larger
ing data set. than 0.5cm and the distance between Nipplel and

Nipple3 was smaller than 0.5 cm, then the final nipple
In addition to the maximum gradient location, another location was determined by Nipplel.
indication of a nipple candidate is an approximately circular(3) If the distance between Nipplel and Nipple3 was larger
cluster of pixels with high orientation field strength. Because  than 0.5 cm and the distance between Nipplel and
some of the nipples exhibited a convex shape, there would be Nipple2 was smaller than 0.5 cm, then the final nipple
a bright dot occupying several pixels on the image of orien-  location was determined by Nipplel.
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Fic. 6. Typical examples of tracked breast boundary ratiagrating as 0jb) rating as 1+;c) rating as 1-{d) rating as 2—{e) rating as 2+.

If the distance between Nipple2 and Nipple3 was lesghe program to 744 mammograms. A qualitative performance
than 0.5 cm but the distances from Nipplel to bothevaluation of the tracked boundary was performed. Each of
Nipple2 and Nipple3 were larger than 0.5 cm, then thethe computer tracked breast boundary was rated in three ma-
final nipple location was determined by Nipple3. jor categories and the “true” boundary was judged visually
If the distances between every two of the three candidatey an experienced medical physicist. If the boundary was
nipples were larger than 0.5 cm, it indicated that thevery close to the true boundary it was rated as 0. Borders
confidence of nipple detection using texture conver-with a large section of local deviations were rated as 1- and
gence analysis was low, then the final nipple locationl+, where+ and — indicated if the tracked boundary was
was determined by Nipplel. However, if Nipple3 was outside or inside of the true boundary, respectively. Very
less than 0.5 cm from the breast boundary, it indicatecoorly tracked borders or total failures were rated as 2- or
that Nipple3 had higher confidence because nipple pro2+. Figure 6 shows typical examples of tracked breast
jection had a good convex shape, then Nipple3 was deboundary rating. The boundary shown in Figapis very
termined as the final nipple location. closed to the true boundary and rated as 0. The upper section
of the boundary was tracked outside the true boundary as
Situation 2: only Nipple2 could be detected by textureshown in Fig. 6(b), which was rated as 1+. The lower section

convergence analysis: of the boundary was tracked into the breast region as shown

(€3]

2

If the distance between Nipple2 and Nipplel wasin Fig. 6(c), which was rated as 1-. Figuréd§showed a
smaller than 0.5 cm, then the final nipple location wasVery poorly tracked boundary that was rated as 2-. Figure
determined by Nipplel. 6(e) showed an example of failure in the lower part of the
If the distance between Nipple2 and Nipplel was largefPoundary tracking that tracked along the edge of the x-ray
than 0.5 cm, then the final nipple location was deter-field and was rated as 2+. Of the 744 mammograms, 89.78%
mined by Nipple2 if the maximum gradient of the 1D (668/744)0f the tracked breast boundaries were rated as O,
inner profileCo, of the smoothed continuous orientation 9-81%(73/744)were rated as 1+ or 1-, and 0.67%/744)
field O was larger than another predefined threshild ~Were rated as 2— or 2+. The results showed that the bound-
(T,>T,); otherwise the final nipple location was deter- @ries in most of the mammograms in the Qata set were
mined by Nipplel. The thresholf, was determined us- tracked very well. Although the boundaries which were rated
ing the training data set. as 1- and 1+ had local deviations, they were reasonably
good to be used for nipple identification as discussed in Sec.

Situation 3: only Nipple3 could be detected by texturelV.

convergence analysis:

(1) Similar to Situation 2, if the distance between Nipple3

(2) If the distance between Nipple3 and Nipplel was larger

II.
A.

qu

Me

and Nipplel was smaller than 0.5 cm. then the ﬁnalTABLE |. Performance of the automated nipple detection program. The
nibole location was determined by Ni iel nipple detection accuracy is quantified as the percentage of images in which
Pp y NippleL. the detected nipple location is within 1 cm to the gold standard.

than 0.5 cm then the final nipple location was deter- Number of ~ Rule-based  Rule-based method
mined by Nipple3 if Nipple3 was less than 0.5 cm from images method with texture analysis
the breast boundary; otherwise the final nipple was des i visibie 301 82.39%248/301) 89.37%(269/301)
termined by Nipplel. set
Invisible 76 65.79%50/76)  69.74%(53/76)
Al 377 79.05%(298/377) 85.41%(322/377)
RESULTS

) Test set  Visible 298  89.939268/298) 92.28%(275/298)

Breast boundary tracking
i Invisible 69 47.83%33/69)  53.62%(37/69)
Our breast boundary tracking method was evaluated Al 367 82.029%(301/367) 85.01%(312/367)

antitatively in a previous stud§.ln this study, we applied
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o Fic. 7. Histogram of computer detection eri@uclid-
o 60 ean distance from the detected nipple location to the
'g “gold standardj for the mammograms in the visible
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B. Nipple identification To investigate the usefulness of the texture convergence

Because the diameters of nipples are larger than 1 cm fcﬁnalygis for nipple iQentification, we computed.the' nipple
most patients, we chose the criterion of correct detection t§l€t€Ction results without convergence analysis, in other

be a distance of within 1 cm from the computer detectedVOrds, by relying only on Nipplel location identified by the

nipple location to the gold standard for evaluating the per_rule—based method. This results in a simpler detection sys-

formance of the computerized nipple identification method €M, because none of the conditions in Sec. 11D 3 are ap-
Table | shows the results for computer detected nipple locaPlied. In this situation, 82.39%248/301) of the visible

tion with an error within 1 cm of the gold standard. For the Nipples and 65.79%50/76) of the invisible nipples in the
visible nipple images, the computer identified 89.37%fraining data set, and 89.93%268/298) of the visible
(269/301) of the nipple location within 1 cm(mean Nipples and 47.83%33/69) of the invisible nipples in the
=0.34 cm) of the gold standard for the training set, and test data set could be identified within 1 cm of the gold stan-
92.28% (275/298, mean=0.30 cmof the nipple location dard by using the rule-based nipple identification method.
within 1 cm of the gold standard for the test data set. For thdhe mean errors under these conditions were 0.30 cm,
invisible nipple images, the computer detected 69.7498.23 cm, 0.28 cm, and 0.18 cm, respectively. For all of the
(53/76, mean=0.24 cnof the nipple location within 1 cm images including visible and invisible nipples, 79.05%
of the gold standard for the training data set, and 53.62%298/377) and 82.02%(301/367) of the nipple locations
(37/69, mean=0.21 cnof the nipple locations within 1 cm were identified within 1 cm of the gold standard. The images
of the gold standard for the test set. The overall performancwith errors larger than 1 cm were mainly caused by noise or
achieved by the computer in nipple detection including allartifacts along the breast boundary. Figures 7 and 8 show the
images with visible or invisible nipple was 85.41% histograms of the errors for our computerized nipple detec-
(322/377)and 85.019%(312/367)for the training and test tion program for visible and invisible nipples, respectively.
data set, respectively. Figures 9 and 10 show the cumulative percentage of images
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of which the identified nipple was within a certain distancenipple locations both by the radiologists and by the com-
from the gold standard for visible and invisible nipples, re-puter. This low resolution was chosen in order to increase the
spectively. The computer performances at any detection erraromputational efficiency. To verify that this resolution was

threshold can be obtained from these plots. sufficient for nipple identification, we performed a limited
observer study to evaluate the dependence of the nipple vis-

C. Observer variability for identifying ibility on pixel size. Eight full resolution image&0 um

invisible nipples X 50 um) with invisible nipple (classified at 80Qum

: . : .. X800 um resolutionyand one with a very subtle nipple pro-
For the nipples that could not be positively identified, €. 5le were used. The images were subsampled to /60

the invisible nipples, an estimated location was given by th ; : i
radiologists based on visual assessment. The average of ZZSQO 4m, 400m, 600,m, and 80Qum pixel size. One ex

timated nipple locations of two radiologists was used as thgerlenced MQSA radiologist who provided the gold standard

“gold standard” to reduce the subjective bias between radiglescnbed above was asked to visually inspect the nipple lo-

ologists. For the training set, if Radiologist 1's first reading,Catlon on images of plxgl siz€ from SQﬁn_ down _to
. : 100 wm individually. The windowing and zooming functions
second reading, and the average of these two readings were : : .
. o : .were used in the process of inspection. The observer study
compared to Radiologist 2's reading, the percentage of im-_~. . . T
. - indicated that, if a nipple was not visible in a lower resolu-
ages with an agreement within 1 cm between the two estlt-ion image, for example, 80am., the nipple still could not

mated nipple locations was 84064/76) 79% (60/76), and . g€, ‘ample, » the nipp .

. . o : be identified confidently by the radiologist on higher resolu-

83% (63/76), respectively. If Radiologist 1's two readings tion images uo to 10Gum. This result mav be attributed to
were compared, the percentage of images with an agreemetrrl:?e fact gtJhat tﬁe i egéf t.he niople is er):erall much laraer

within 1 cm was 87%(66/76) However, if Radiologist 1's an 800 m><800|zm The 'Ip'?)'l'tl o?‘ the o Ieu' notg
first reading, second reading, the average of these two rea{ﬁ ited bluth Ilut' ' fthwsl y t thi nllppl s Most
ings, and Radiologist 2's reading were compared to the ay mited by the resolution oTIh€ Image at this pixel size. Mos

eraged “gold standard,” the percentage of images with an?lf theb|n\t/;13|ble _nlpplles thre gausetdbby tr&elr nearlljy flat pli'o-
agreement within 1 cm was 92%70/76) 91% (69/76) > by the noise along the breast boundary, or by masking

93% (71/76), and 99%4(75/76) respectively. For the test set .Of the nipple be_hind qlense tiss.ue due to improper positi.on-
under the same conditions, the percentage of images with an9- The smoqthmg with a qu. f|_|t_er reduc_es the noise which
agreement within 1 cm was 80055/69) 78% (54/69) and may actually improve the visibility of objects that are not
78% (54/69) for the interobserver comparisons, 77% resolution-limited. The visibility of the nipples therefore was
(53/69)for the intracbserver comparison, and 8458/69) not |mprqved by using h-|gher resolut!on IMages.

90% (62/69) 93% (64/69) and 96%(66/69) if the two The mppl_e |dent|f|cat|or_1 method_ in this study assumes
radiologists’ readings were compared to the averaged “golgIalt ?05t mpr;}les are pro]ectec: W'th":j Lcm ofbthe dbreast
standard.” Figure 11 shows the histogram of intracbserve oundary on the mammogram. In our data set, based on ra-

variation in marking the nipple locations by Radiologist 1 for diologist’s_mark_ing of ”iPp'e locations, we rejected 5 mam-
the invisible nipple images in the training and test set. mograms in which the nipple was located far away from the
breast boundary due to skin folds or improperly positioned

breast for imaging. The cases that contained a big breast

IV. DISCUSSION exceeding the film area so that no nipple was projected on

In this study, the resolution of the digitized mammogramsthe mammograms were also rejected. Two experienced radi-
was reduced to 80@m X 800 um for identification of the ologists provided the gold standard by visually identifying
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the nipple location using a computer interface to display andjold standard on the invisible nipple images, which was also
adjust the contrast and brightness of the image. The nippleigher for the training set69.74%)than for the test set
locations were marked by the radiologists at the center of the53.62%). These results demonstrate that there were large
projected nipple image regardless of the size of the nipplegariations in estimating the nipple locations for these diffi-
which may vary from invisible to a diameter of larger than cyit cases even by experienced radiologists.

1cm. This means that the error of the computer detected The nipple detection method in this study depends prima-
nipple location from the gold standard mark would be largerijy on nipple search along the breast boundary. At this stage,
for larger nipples because our computer method identified;ccessful identification of the nipple depends on whether
the nipple _by search.mg along the breast boundary and t e breast boundary is tracked correctly. In the 744 mammo-
detected nipple location was marked at the breast boundarég.rams used in our study, 110 nipples failed to be detected

o e e It Col o e st e e o of e ok s, of w14 56/ 110
PP 9 y g J f the boundary was rated as 1+ or 1-, and 1.8%110)

estimation. From the comparison of inter- and intraobservef
variability as described in the Results, it can be seen tha\f"’f‘s rated as 2+ or 2—. In the 744 mammograms, the bound-
Radiologist 2 had slightly higher agreement with the gold@res were rated as 1+ or 1- in 73 mammograms, 78.1%
standard because most of the estimated nipple locations By 7/ 73) of these nipples could be identified within 1 cm of
Radiologist 2 were located between Radiologist 1's twothe gold standard. For the 5 mammograms with worst bound-
readings. It can also be seen that the agreement between A& tracking(rated as 2+ or 2); 60% (3/5) of the nipples

two radiologists’ readings and the “gold standard” wasstill could be identified within 1 cm of the gold standard.
higher for the training set than that for the test set. This is inVithout using texture convergence analysis, 68 &1/ 73)
agreement with the performance achieved by our computeand 60%(3/5) of these nipples were detected within 1 cm of
program in detecting nipple locations within 1 cm of the the gold standard, respectively. It indicates that the nipple

25
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detection in 7 of the images with boundary rated as 1+ or 1-J2BLE Il. The unpaired t-test result which was used to estimate the statistical
failed at the stage of rule-based detection but was Successﬁjp_ni_ﬁcance of the difference in the algorithm performan_ce_s between the
. training set and the test set. The mean and standard deviation of the detec-
at the stage of texture convergence analysis for the mammeg, accuracy were estimated from the resample training and test data set
grams. However, 2 mammograms with boundary rated agsing the bootstrap method.
2+ or 2— could not be correctly identified either by the rule-
based method or by the texture convergence method. Standard  p-value of
There were large variations in the projected nipple images Mean deviation unpaired ttest
on the mammograms. For the nipples that were projectedvisible nipples  Training set  89.34%  1.87%
outside the breast boundary, the nipple should exhibit higher
gray levels than the background pixels outside the boundary.
For these convex nipples, the tracked breast boundary coulthvisible nipples ~ Training set  69.99%  5.06%
depict a nipple shape. The shape depicted on the boundary Test set 54.09%  6.09%  <0.0001
was unique if no noise, such as fingerprint or artifacts on the
film, affected the boundary tracking. In such cases,searching

for the nipple shape along the boundary could find a reliable,cracyi.e., percentage of the detected nipples within 1 cm
nipple location. However, some of the convex nipples hady ihe gold standardin the test se{92.28%)than in the
very poor signal-to-noise ratio due to s-cattered radiatio“training set(89.37%). On the other hand, for the invisible
These mammograms often also had noisy boundary. Bothipples, the detection accuracy was higher in the training set
factors could lead to false detection and thus large eIrorgs9.74%)than in the test se53.62%). The different trends
from the gold standard. For the situation when the nipple wag, the two nipple groups are most likely caused by sampling
projected inside the breast boundary, the detection was conias such that the visible nipple images in the test set were
plicated by noise. Most of such noise was due to dense tissyg, chance somewhat easier to detect than those in the train-
structures near the breast boundary. Detecting the gray levglg set. To estimate the statistical significance of the differ-
changes along the breast boundary could potentially find thence in the algorithm performances between the training set
true nipple location. However, the false positives were highetnd the test set, the bootstrap method was used to resample
in images of dense breasts with prominent structured noisethe training set 100 times and similarly for the test set. The
For the cases that had low confidence in the detecteghean and the standard deviation of the detection accuracy
nipple location by the rule-based method, the computer pefwere then estimated from the bootstrap samples for the train-
formed a texture convergence analysis based on the textuheg set and for the test set. Using these estimated values, the
orientation of the dense glandular tissues or ducts near thenpaired t-test showed that the differences in the perfor-
nipple region. The texture feature analysis was found to benance of our nipple detection method between the training
useful for improving the accuracy of nipple identification in set and the test set were statistically significignt 0.0001)
this study. With our algorithm, 46.18%439/301)of the vis-  for both the visible and the invisible nipple groups. The es-
ible nipples and 77.63%69/76) of the invisible nipples in timated mean and standard deviation of the detection accu-
the training data set, and 72.73%44/298)of the visible  racy estimated from the resampled training and test sets and
nipples and 89.86%62/69) of the invisible nipples in the the corresponding-values of the unpaired t-test are shown
test data set could not be identified with high confidence byn Table II.
the rule-based method and the texture feature analysis was Although the performance of our nipple detection method
invoked. For these cases that had low confidence in the dés reasonable, further improvement in its accuracy is needed.
tection of nipple location by the rule-based method, 84.899%ne possible method may be first determining whether the
(118/139)of the visible nipples and 64.00988/59) of the  breast contains very dense tissues, especially in the region
invisible nipples in the training data set, and 85.42%posterior to the nipple, and weight the confidence of the tex-
(123/144)0f the visible nipples and 55.00984/62)of the  ture convergence analysis accordingly. We will pursue this
invisible nipples in the test data set could be identified withinand other methods to improve the accuracy in future studies.
1 cm of the gold standard by using the rule-based method in
combination with texture convergence analysis. We applied & CONCLUSION
paired t-test to the detection errors on the subset of images Accurate identification of nipple location on mammo-
for which the texture convergence analysis was used. Thgrams is challenging because of the variations in image qual-
results indicated that the improvement in the accuracy wagy and in the nipple projections, especially for the nipples
statistically significant for the visible nipple images in the that are nearly invisible on the mammograms. In this work,
training set(p<0.002)and the invisible nipple images in the we developed a two-stage computerized nipple identification
test set(p<<0.005) and did not achieve statistical signifi- method to detect or estimate the nipple location. The results
cance for the visible nipple images in the test @t 0.87)  demonstrate that the visible nipples can be accurately de-
and the invisible nipple images in the training §et>0.68).  tected by our computerized image analysis method. The
In our study, the training and test sets were randomlynipple location can be reasonably estimated even if it is in-
selected from patient files. The results showed that, for theisible. Automatic nipple identification will provide the
visible nipples, the algorithm performance achieved a highefoundation for multiple image analysis in CAD.

Test set 92.36% 1.58% <0.0001
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