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Correlation of information from multiple-view mammograms(e.g., MLO and CC views, bilateral
views, or current and prior mammograms) can improve the performance of breast cancer diagnosis
by radiologists or by computer. The nipple is a reliable and stable landmark on mammograms for
the registration of multiple mammograms. However, accurate identification of nipple location on
mammograms is challenging because of the variations in image quality and in the nipple projec-
tions, resulting in some nipples being nearly invisible on the mammograms. In this study, we
developed a computerized method to automatically identify the nipple location on digitized mam-
mograms. First, the breast boundary was obtained using a gradient-based boundary tracking algo-
rithm, and then the gray level profiles along the inside and outside of the boundary were identified.
A geometric convergence analysis was used to limit the nipple search to a region of the breast
boundary. A two-stage nipple detection method was developed to identify the nipple location using
the gray level information around the nipple, the geometric characteristics of nipple shapes, and the
texture features of glandular tissue or ducts which converge toward the nipple. At the first stage, a
rule-based method was designed to identify the nipple location by detecting significant changes of
intensity along the gray level profiles inside and outside the breast boundary and the changes in the
boundary direction. At the second stage, a texture orientation-field analysis was developed to
estimate the nipple location based on the convergence of the texture pattern of glandular tissue or
ducts towards the nipple. The nipple location was finally determined from the detected nipple
candidates by a rule-based confidence analysis. In this study, 377 and 367 randomly selected
digitized mammograms were used for training and testing the nipple detection algorithm, respec-
tively. Two experienced radiologists identified the nipple locations which were used as the gold
standard. In the training data set, 301 nipples were positively identified and were referred to as
visible nipples. Seventy six nipples could not be positively identified and were referred to as
invisible nipples. The radiologists provided their estimation of the nipple locations in the latter
group for comparison with the computer estimates. The computerized method could detect 89.37%
s269/301dof the visible nipples and 69.74%s53/76d of the invisible nipples within 1 cm of the
gold standard. In the test data set, 298 and 69 of the nipples were classified as visible and invisible,
respectively. 92.28%s275/298dof the visible nipples and 53.62%s37/69dof the invisible nipples
were identified within 1 cm of the gold standard. The results demonstrate that the nipple locations
on digitized mammograms can be accurately detected if they are visible and can be reasonably
estimated if they are invisible. Automated nipple detection will be an important step towards
multiple image analysis for CAD. ©2004 American Association of Physicists in Medicine.
[DOI: 10.1118/1.1800713]
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Breast cancer is one of the leading causes for cancer m
ity among women.1 The most successful method for the ea
detection of breast cancer is screening mammography2,3 It
has been demonstrated that an effective computer-aide
agnosis(CAD) system can provide a second opinion to
radiologists and improve the accuracy of detection and c
acterization of mammographic abnormalities, which, in t
may reduce unnecessary biopsies. In clinical practice,
ologists routinely use a cranio-caudal(CC) and a mediolat

eral oblique(MLO) view along with mammograms obtained
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sions. The multiple views allow for imaging of most of
breast tissue and increase the chance of the breast les
be detected. Our previous studies have demonstrated
computerized multiple view analysis could not only impr
breast lesion detection with two-view information fusion4,5

but also improve malignant and benign lesion characte
tion by interval change analysis.6 Our techniques used t
nipple location, the only reliable landmark on the mam
gram, as the reference point for two-view(CC and MLO
views) information fusion and regional registration of te
28710)/2871/12/$22.00 © 2004 Am. Assoc. Phys. Med.
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poral pairs of mammograms of the same view. However
nipple location was manually identified on the mammogr
in these studies.

Automated methods for detection of the nipple loca
have been reported by Chandrasekhar,7 Mendez,8 and Yin.9

In their methods, the breast boundary was extracted and
the nipple location was identified by searching for the m
mum and minimum of the gradient changes or averag
tensity in a small region along the breast boundary. How
without mentioning the use of a training data set or how
train the detection program, Chandrasekharet al. reported
the performance of their method using a very limited data
of 24 images with 8 CC views and 16 oblique views. Fo
of the images(96%), the root-mean-square error of their
tection method was reported to be less than 1 cm at an i
resolution of 400mm3400 mm per pixel. Mendezet al.
tested 156 mammograms that included lateral oblique
CC views. They reported that the average distance bet
the detected nipple location and the true position ident
by two radiologists was 13.5 mm. Mendezet al. also teste
Yin’s method using the same 156 mammograms and
tained an average distance of 16.5 mm, while Yinet al. re-
ported an average distance of 10 mm when tested o
mammograms. Neither Mendezet al. nor Yin et al. reported
whether the nipple was in profile on the images, nor repo
results for both training and test sets.

In a random sample of mammograms, many nipples
not be positively identified, even by experienced mamm
raphy radiologists. Breast boundary-based methods the
cannot accurately locate these nipples. For the cases th
nipple is not readily visible, a radiologist may examine
patterns of glandular tissue and ducts to find where they
verge, and then estimate the nipple location in the conve
area. However, to our knowledge, no study has been rep
to use texture convergence information for computer
nipple detection.

Computerized identification of nipple location on di
tized mammograms is challenging because of the varia
in image quality and in the nipple projections, especially
the nipples that are very flat and nearly invisible on the m
mograms. In this study, we developed an automated
nique for nipple identification on digitized mammogra
with the information of nipple intensity changes, nipple g
metric characteristics, and texture convergence to
nipple. Automated nipple detection will be the fundame
step towards the development of a multiple-image CAD
tem using our image registration techniques.

II. MATERIALS AND METHODS

A. Database

A total of 744 mammograms of 182 patients was use
our study. A data set consisting of 377 mammograms o
patients was used as training data set for development
algorithms and 367 mammograms of 105 patients were
as the test data set. The mammograms were random
lected from the patient files in the Department of Radiol

at the University of Michigan with approval of the Institu-
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tional Review Board(IRB). The mammograms were a
quired with GE mammography systems and were digit
with a LUMISYS 85 laser film scanner with a pixel size
50 mm350 mm and 4096 gray levels. The gray levels
linearly proportional to optical densities(O.D.) from 0.1 to
greater than 3 O.D. units. The nominal O.D. range of
scanner is 0–4. The full resolution mammograms were
smoothed with a 16316 box filter and subsampled by
factor of 16, resulting in 800mm3800 mm images of ap
proximately 2253300 pixels in size.

The 744 mammograms were randomly divided int
training and a test data set of 377 and 367 mammogr
respectively. For each mammogram, the image was firs
played on a monitor and visually inspected using window
functions. According to the appearance of the nipple pr
projection on the mammograms, the mammograms
classified into one of two classes: visible nipple clas
which the nipple profiles were clearly projected on the m
mogram and positively identifiable, and the invisible nip
class in which the nipple locations could not be positiv
identified. 301 of the 377 training images and 298 of the
test images were classified into the visible nipple class, w
the remaining 76 and 69 images in the training and test
sets, respectively, were classified into the invisible ni
class.

In each mammogram, the nipple location was ident
by experienced Mammography Quality Standards
(MQSA) radiologists. This location was used as the “g
standard” for training the algorithms and evaluating of
computer performance. The radiologist visually inspecte
image displayed on a monitor with a graphical user inter
and used the windowing function to enhance the b
boundary. The radiologist marked the nipple location by
ing the cursor. One radiologist estimated the nipple loca
for all of the images in the visible nipple class. For the
visible nipple class, one radiologist estimated the nipple
cations twice, another radiologist estimated the nipple l
tion only once. The “gold standard” was estimated
averaging the radiologists’ readings. Since the breast bo
ary is not a straight line, the averages of thex andy coordi-
nates of two points along the breast boundary general
not fall on the boundary. An average between two read

FIG. 1. Estimation of “gold standard” for invisible nipple images.
was thus estimated as the intersection between the breast
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boundary and the normal to the midpoint of the line conn
ing the two readings, as shown in Fig. 1. When the
readings are not too far apart, this method is very clos
that obtained by finding their midpoint along the bre
boundary. However, this method is less prone to error i
breast boundary points are noisy. Using this avera
method, the average pointR8 was first estimated from Rad
ologist 1’s two readingsR0 andR1, then the “gold standard
was found as the average of pointR8 with Radiologist 2’s
readingR2.

B. Breast boundary detection

The detection of breast boundary was the first step in
computerized nipple detection algorithm. The breast bo
ary separated the breast from the surrounding backgr
which included the directly exposed area, the patient id
fication information, and lead markers. Computerized an
sis was then performed only around the breast region
boundary detection. The breast boundary was first iden
by a boundary tracking technique. The automated boun
tracking technique previously developed10,11was modified to
improve its performance. The breast boundary was iden
by a gradient-based method as follows. The backgroun
the image was estimated initially by searching for the lar
background peak from the gray level histogram of the im
A preliminary edge was found by a horizontal line-by-l
gradient analysis starting from the top to the bottom of
image. The criterion used in detecting the edge points
the steepness of the gradient along the horizontal direc
The steeper the gradient, the greater the likelihood tha
edge existed at that corresponding location. The prelimi
edge served as a guide for a more accurate tracking
rithm that was subsequently applied. The tracking of
breast boundary started from approximately the middl
the breast image and moved upward and downward alon
boundary. The direction to search for a new edge point
guided by the previously tracked edge points. The edg
cation was determined by searching for the maximum g
ent along the gray level profile normal to the tracking di
tion. Because the boundary tracking was guided by

preliminary edge and the previously detected edge points,
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could steer around the breast boundary and was less pr
diversion by noise and artifacts. After upward and downw
tracking was finished, the tracked edges were smooth
remove noisy fluctuations. A simple linear interpolation
used to connect the edge points so that a continuous
boundary was found. An example of the tracked br
boundary is shown in Figs. 2(a)and 2(b).

C. Limiting the nipple search region

If the breast is properly positioned for imaging, almos
the nipples will be located along or close to the breast bo
ary. Our nipple search was performed within a small win
of 939 pixels along the breast boundary, with the cente
the search window located at the boundary point.

Defining a small search region along the breast boun
would reduce the chance that jagged breast borders
noise and artifacts would result in false positive nipple id
tification. We designed a geometric convergence analys
estimate a nipple search region where the nipple would
likely be located. In an ideal situation, the nipple was loc
close to the boundary, approximately in the middle regio

FIG. 2. (a) A mammogram from our image databa
(b) the image superimposed with the detected b
boundary.

FIG. 3. Defining a limited nipple search region by geometric converg

itanalysis.
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the breast for CC view and in the lower region for M
view. As shown in Fig. 3, in the geometric converge
analysis, a floating segment containing 20% of boun
points was first placed at the middle of the breast boun
The floating segment separated the boundary into an u
and a lower boundary segment. Two lines were then fitte
the boundary points in the upper and lower segments an
goodness-of-fit of the two lines was estimated by the su
squares of the deviations between the fitted line and
boundary points. The convergence region was finally d
mined by moving the floating segment along the boun
until the deviation of the fitted lines from the breast bou
ary was minimized. The two fitted lines intersected the a
rior region of the breast boundary at two points. The bou
ary region between these two points was defined as
nipple search region.

D. Nipple detection

1. Nipple search along breast boundary

After automated breast boundary detection, the b
boundary was smoothed to reduce small jagged fluctua
From our analysis, we observed that there were sudde
distinct gray level changes in pixels close to the nipple
most of the mammograms with visible nipples. The direc
of the breast boundary also had a sudden and distinct ch
when a convex nipple shape occurred along the b
boundary. In order to identify the location where th
changes occurred, we constructed two smoothed inte
curves corresponding to the inner and outer intensity pro
and the curvature curve along the boundary, as defin
Eqs.(1)–(3). The curves were plotted against boundary p
Bx, where x=1, . . . ,nB,nB represented the total number
boundary points:

Inner intensity curve:

CIsBxd =
1

nI
o
nI

fskd, k P RI,Bx P Breast Boundary, s1d

k=1
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Outer intensity curve:

COsBxd =
1

nO
o
k=1

nO

fskd, k P RO,Bx P Breast Boundary, s2d

Curvature curve:

DsBxd =
1

nD
o
k=1

nD

dskd, k P RD,Bx P Breast Boundary, s3d

whereRI, RO, andRD were pixels within a 535 window of
the inner profile, the outer profile, and 5 neighborh
boundary points, respectively. Each window was cent
laterally at the current boundary pointBx. nI, nO, and nD

represented the number of pixels within each window.fskd
anddskd were the gray level of thekth pixel within the win-
dow and the curvature at thekth boundary point, respe
tively. On the boundary pointBx, the first derivative, or th
gradient, was estimated as the tangentTx to the breast bound
ary atBx. The curvature atBx was the derivative of the gr
dient curve,12 which represented the direction change of
tangent at boundary pointBx.

Figure 4 shows the nipple search scheme based o
boundary features. Nipple search was performed taking
account three situations in which the nipple exhibited di
ent characteristics. First, a nipple shape was projected
the breast boundary. In the second and third situatio
nipple intensity profile could be identified inside or outs
of the breast boundary. The details are described below

Within the limited nipple search region, the first step
to detect if there was a sudden and distinct change in
boundary direction, which indicated a convex nipple sh
outside of the boundary. The convex nipple could be dete
by searching for the sharpest peak on the curvature c
The peak featurepR of every peak along the curve was c
culated as the ratio of the peak height to the peak width
sharpest peak was identified as the maximum of the

FIG. 4. Schematic of the automated nipple se
method.
featurespR. If the maximum peak featurepR was larger than
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a predefined threshold, then there was a convex nipple
depicted on the boundary. The nipple location was ident
as the peak point,Nconvex, of the sharpest peak on the cur
ture curve. The threshold was determined using the tra
data set.

If no convex nipple could be found(i.e., no peak featur
larger than the threshold), then the nipple search was
formed by searching for obvious intensity changes along
inner and outer intensity profiles separately. Two peak
tures of the intensity curve were used to detect obviou
tensity changes. The first peak featurepR was estimated a
the ratio of the peak height to the peak width. The sec
peak featurepH was the peak height normalized to the s
of all the curve heights. If bothpR and pH for a given pea
were larger than the predefined thresholds, then it wa
obvious intensity peak. The thresholds were again d
mined using the training data set. The most obvious inte
change was identified by the maximumpH if more than one
obvious intensity peaks were found along the intensity cu
If obvious intensity changes were found along both the i
and outer intensity curves, the potential nipple loca
Nintensity was identified at the peak point of the intensity p
with maximumpH on each curve. If the two maximum i
tensity peaks located on the inner and outer intensity cu
were very close(defined as within 1 cm in our study), th
the nipple locationNintensity was identified to be the avera
of these two peak points. The average location was tak
the intercept of the breast boundary with the normal to
midpoint of the line connecting the two peak points. If th
two peak points were not close, then the nipple loca
Nintensity was determined as the maximum peak on the o
intensity profile because the outer intensity profile gene
was less affected by structural noises. The nipple cand
Nconvex or Nintensity identified by this rule-based method
referred to as Nipple 1.

Due to the image quality, artifacts, or dense area nea
breast border, the computer may identify a jagged b
boundary, which would lead to false detection of the nip
To reduce the false detections, the identified candidate n
location Nconvex or Nintensity was subjected to a confiden
analysis. If there were several cosinelike peaks of sim
size in the curvature curve or the inner intensity curve
indicated that the breast boundary was jagged or there
dense tissues near the breast boundary, respectively. Th
fidence of the identified nipple was therefore set to low.
confidence was also set to low if the candidate nipple l
tion Nconvex or Nintensity was null because the peak featu
were less than the predefined thresholds. In this situation
nipple could not be found by the breast-boundary-b
method described above and texture convergence an
would be used as described next.

2. Nipple identification using texture
convergence analysis

If the confidence of the rule-based nipple detection
set to low, a flow field based convergence analysis was

tiated to estimate the nipple location based on the conver

Medical Physics, Vol. 31, No. 10, October 2004
e

r-

-
-

n
-

.

s

s

r

e

e
t

e

e
n-

-

e

is

-

gence of texture pattern of glandular tissues or ducts tow
the nipple. The fibroglandular tissues or ducts appeare
oriented and flowlike textural pattern on the mammogra
With the assumption that there exists a dominant orient
at each pixel within a texture pattern, an “orientation ima
can be computed from the gray level mammogram u
least mean squares estimation based on Rao’s op
solution.13 Let gxsu,vd andgysu,vd represent the gradients
pixel su,vd in the image. The gradient magnitude is co
puted asGu,v=Îgx

2su,vd+gy
2su,vd, and the gradient orient

tion is computed asuu,v=arctansgysu,vd /gxsu,vdd. Assuming
that the dominant orientation in aN3N local neighborhoo
centered at pixelsi , jd is fsi , jd, the sum-of-squaresS can be
computed as

S= o
u=1

N

o
v=1

N

Gu,v
2 cos2suu,v − fsi, jdd, s4d

whereS is the sum of the squared gradient magnitudes
jected along a directionfsi , jd in this neighborhood.fsi , jd is
the dominant orientation ifS is the maximum. The maximu
of Swith respect tofsi , jd can be found by solving the equ
tion sdS/dfsi , jdd=0,

dS

dfsi, jd
= 2o

u=1

N

o
v=1

N

Gu,v
2 cossuu,v − fsi, jddsinsuu,v − fsi, jdd.

s5d

Thus, the dominant orientationfsi , jd can be estimated as

fsi, jd =
1

2
tan−1Sou=1

N ov=1

N
Gu,v

2 sin 2uu,v

ou=1

N ov=1

N
Gu,v

2 cos 2uu,v
D

=
1

2
tan−1S ou=1

N ov=1

N
2gxsu,vdgysu,vd

ou=1

N ov=1

N
sgx

2su,vd − gy
2su,vdd

D . s6d

Dense breasts generally exhibit more textural struc
than fatty breasts on the mammograms. However, due t
presence of noise, the estimated local texture orientation
not always be correct. A low-pass filter can be used to
the local orientation that varies slowly in the local neighb
hood. Before performing low-pass filtering, the orienta
image was converted into a continuous vector field13 defined
as follows:

Qxsi, jd = coss2fsi, jdd s7d

and

Qysi, jd = sins2fsi, jdd. s8d

The low-pass filtering was performed by averaging
Qxsi , jd and Qysi , jd in a local window with a size of 535
pixels, yielding Qx8si , jd and Qy8si , jd, respectively, as th
smoothed continuous vector field. The smoothed local o
tation atsi , jd can then be computed as

Osi, jd =
1

2
tan−1SQy8si, jd

Q8si, jd
D . s9d
- x
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Figure 5 shows an example of a computed orienta
field superimposed on the original mammogram. The ni
location was indicated by the convergence of the estim
texture orientation. The following steps were used for
detection of the convergence of the texture orientation:

(1) Convert the smoothed orientation image into a cont
ous vector field:14

Oxsi, jd = cossOsi, jdd. s10d

(2) Identify the points ofOx in the inner profile region an
then average to a 1D profile:

COxsBxd =
1

nI
o
k=1

nI

Oxskd, k P RI,Bx P Breast Boundary,

s11d

wherenI is the number of points within the local wi
dow represented byRI. In our study, the size ofRI is 5
35. For simplicity, the indexk is used to identify
point in RI, replacing the indicessi , jd.

(3) Detect the transition point ofCOx by searching for th
maximum gradient ofCOx as shown in Fig. 5(e). A larg
gradient of theCOx indicated the convergence of t
texture orientation which led to the location of nipple
candidate nipple locationOx (Nipple2) was found if the
maximum gradient was larger than a predefined thr
old TI. The thresholdTI was determined using the tra
ing data set.

In addition to the maximum gradient location, anot
indication of a nipple candidate is an approximately circ
cluster of pixels with high orientation field strength. Beca
some of the nipples exhibited a convex shape, there wou

a bright dot occupying several pixels on the image of orien-
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d

-

e

tation fieldO as shown in Fig. 5(c). Such bright dot indica
a candidate nipple, which we will refer to as Nipple3 in
following discussions. Note that, although the rule-ba
method could detect convex nipple location by searchin
the maximum curvature of the breast boundary as desc
in Sec. II D 1, the confidence of the identified nipple m
be set to low because of jagged breast boundary. In s
case, alternative nipple locations would need to be co
ered.

3. Determination of the final nipple location

After rule-based nipple detection along the boundary
file, and the convergence analysis using texture orient
field, three candidate nipple locations were obtained, a
scribed above. Nipple1 was found by the rule-based me
Nipple2 was found by the change in the orientation pro
tion Ox, and Nipple3 was found by the orientation fieldO. If
the confidence of Nipple1 was set to high, the final nip
location was determined by Nipple1. Otherwise, the foll
ing rules were used to determine the final nipple locatio

Situation 1: Both Nipple2 and Nipple3 could be dete
by texture convergence analysis:

(1) If the distances between the three candidate nipples
all smaller than 0.5 cms6 pixelsd, then the final nippl
location was determined by Nipple1.

(2) If the distance between Nipple1 and Nipple2 was la
than 0.5 cm and the distance between Nipple1
Nipple3 was smaller than 0.5 cm, then the final nip
location was determined by Nipple1.

(3) If the distance between Nipple1 and Nipple3 was la
than 0.5 cm and the distance between Nipple1
Nipple2 was smaller than 0.5 cm, then the final nip

FIG. 5. An example of texture orientation field conv
gence analysis.(a) Original image superimposed w
the detected breast boundary,(b) texture orientatio
field, (c) continuous orientation fieldO, (d) cosine com
ponent of continuous fieldOx, (e) profile of Ox identi-
fied along the breast boundary.
location was determined by Nipple1.
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(4) If the distance between Nipple2 and Nipple3 was
than 0.5 cm but the distances from Nipple1 to b
Nipple2 and Nipple3 were larger than 0.5 cm, then
final nipple location was determined by Nipple3.

(5) If the distances between every two of the three cand
nipples were larger than 0.5 cm, it indicated that
confidence of nipple detection using texture con
gence analysis was low, then the final nipple loca
was determined by Nipple1. However, if Nipple3 w
less than 0.5 cm from the breast boundary, it indic
that Nipple3 had higher confidence because nipple
jection had a good convex shape, then Nipple3 was
termined as the final nipple location.

Situation 2: only Nipple2 could be detected by tex
convergence analysis:

(1) If the distance between Nipple2 and Nipple1 w
smaller than 0.5 cm, then the final nipple location
determined by Nipple1.

(2) If the distance between Nipple2 and Nipple1 was la
than 0.5 cm, then the final nipple location was de
mined by Nipple2 if the maximum gradient of the
inner profileCOx of the smoothed continuous orientat
field O was larger than another predefined thresholT2

sT2.T1d; otherwise the final nipple location was det
mined by Nipple1. The thresholdT2 was determined u
ing the training data set.

Situation 3: only Nipple3 could be detected by tex
convergence analysis:

(1) Similar to Situation 2, if the distance between Nipp
and Nipple1 was smaller than 0.5 cm, then the fi
nipple location was determined by Nipple1.

(2) If the distance between Nipple3 and Nipple1 was la
than 0.5 cm then the final nipple location was de
mined by Nipple3 if Nipple3 was less than 0.5 cm fr
the breast boundary; otherwise the final nipple was
termined by Nipple1.

III. RESULTS

A. Breast boundary tracking

Our breast boundary tracking method was evalu
15

FIG. 6. Typical examples of tracked breast boundary rating:(a) rating
quantitatively in a previous study.In this study, we applied
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the program to 744 mammograms. A qualitative perform
evaluation of the tracked boundary was performed. Eac
the computer tracked breast boundary was rated in thre
jor categories and the “true” boundary was judged visu
by an experienced medical physicist. If the boundary
very close to the true boundary it was rated as 0. Bor
with a large section of local deviations were rated as 1−
1+, where1 and 2 indicated if the tracked boundary w
outside or inside of the true boundary, respectively. V
poorly tracked borders or total failures were rated as 2
2+. Figure 6 shows typical examples of tracked br
boundary rating. The boundary shown in Fig. 6(a) is very
closed to the true boundary and rated as 0. The upper s
of the boundary was tracked outside the true bounda
shown in Fig. 6(b), which was rated as 1+. The lower sec
of the boundary was tracked into the breast region as s
in Fig. 6(c), which was rated as 1−. Figure 6(d) showed a
very poorly tracked boundary that was rated as 2−. Fi
6(e) showed an example of failure in the lower part of
boundary tracking that tracked along the edge of the x
field and was rated as 2+. Of the 744 mammograms, 89
s668/744dof the tracked breast boundaries were rated
9.81%s73/744dwere rated as 1+ or 1−, and 0.67%s5/744d
were rated as 2− or 2+. The results showed that the bo
aries in most of the mammograms in the data set
tracked very well. Although the boundaries which were r
as 1− and 1+ had local deviations, they were reason
good to be used for nipple identification as discussed in
IV.

TABLE I. Performance of the automated nipple detection program.
nipple detection accuracy is quantified as the percentage of images in
the detected nipple location is within 1 cm to the gold standard.

Number of
images

Rule-based
method

Rule-based metho
with texture analysi

Training
set

Visible 301 82.39%s248/301d 89.37%s269/301d

Invisible 76 65.79%s50/76d 69.74%s53/76d
All 377 79.05%s298/377d 85.41%s322/377d

Test set Visible 298 89.93%s268/298d 92.28%s275/298d

Invisible 69 47.83%s33/69d 53.62%s37/69d
All 367 82.02%s301/367d 85.01%s312/367d

;(b) rating as 1+;(c) rating as 1−;(d) rating as 2−;(e) rating as 2+.
as 0
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B. Nipple identification

Because the diameters of nipples are larger than 1 cm
most patients, we chose the criterion of correct detectio
be a distance of within 1 cm from the computer dete
nipple location to the gold standard for evaluating the
formance of the computerized nipple identification meth
Table I shows the results for computer detected nipple
tion with an error within 1 cm of the gold standard. For
visible nipple images, the computer identified 89.3
s269/301d of the nipple location within 1 cmsmean
=0.34 cmd of the gold standard for the training set, a
92.28% s275/298, mean=0.30 cmdof the nipple location
within 1 cm of the gold standard for the test data set. Fo
invisible nipple images, the computer detected 69.
s53/76, mean=0.24 cmdof the nipple location within 1 cm
of the gold standard for the training data set, and 53.
s37/69, mean=0.21 cmdof the nipple locations within 1 cm
of the gold standard for the test set. The overall perform
achieved by the computer in nipple detection including
images with visible or invisible nipple was 85.41
s322/377dand 85.01%s312/367d for the training and tes
data set, respectively.
Medical Physics, Vol. 31, No. 10, October 2004
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To investigate the usefulness of the texture converg
analysis for nipple identification, we computed the nip
detection results without convergence analysis, in o
words, by relying only on Nipple1 location identified by
rule-based method. This results in a simpler detection
tem, because none of the conditions in Sec. II D 3 are
plied. In this situation, 82.39%s248/301d of the visible
nipples and 65.79%s50/76d of the invisible nipples in th
training data set, and 89.93%s268/298d of the visible
nipples and 47.83%s33/69d of the invisible nipples in th
test data set could be identified within 1 cm of the gold s
dard by using the rule-based nipple identification met
The mean errors under these conditions were 0.30
0.23 cm, 0.28 cm, and 0.18 cm, respectively. For all of
images including visible and invisible nipples, 79.0
s298/377d and 82.02%s301/367d of the nipple location
were identified within 1 cm of the gold standard. The ima
with errors larger than 1 cm were mainly caused by nois
artifacts along the breast boundary. Figures 7 and 8 sho
histograms of the errors for our computerized nipple de
tion program for visible and invisible nipples, respectiv
Figures 9 and 10 show the cumulative percentage of im

FIG. 7. Histogram of computer detection error(Euclid-
ean distance from the detected nipple location to
“gold standard”) for the mammograms in the visib
nipple class.

FIG. 8. Histogram of computer detection error(Euclid-
ean distance from the detected nipple location to
“gold standard”) for the mammograms in the invisib
nipple class.
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of which the identified nipple was within a certain dista
from the gold standard for visible and invisible nipples,
spectively. The computer performances at any detection
threshold can be obtained from these plots.

C. Observer variability for identifying
invisible nipples

For the nipples that could not be positively identified,
the invisible nipples, an estimated location was given by
radiologists based on visual assessment. The average
timated nipple locations of two radiologists was used as
“gold standard” to reduce the subjective bias between
ologists. For the training set, if Radiologist 1’s first read
second reading, and the average of these two readings
compared to Radiologist 2’s reading, the percentage o
ages with an agreement within 1 cm between the two
mated nipple locations was 84%s64/76d, 79% s60/76d, and
83% s63/76d, respectively. If Radiologist 1’s two readin
were compared, the percentage of images with an agree
within 1 cm was 87%s66/76d. However, if Radiologist 1’
first reading, second reading, the average of these two
ings, and Radiologist 2’s reading were compared to the
eraged “gold standard,” the percentage of images wit
agreement within 1 cm was 92%s70/76d, 91% s69/76d,
93% s71/76d, and 99%s75/76d, respectively. For the test s
under the same conditions, the percentage of images w
agreement within 1 cm was 80%s55/69d, 78%s54/69d, and
78% s54/69d for the interobserver comparisons, 7
s53/69d for the intraobserver comparison, and 84%s58/69d,
90% s62/69d, 93% s64/69d, and 96%s66/69d if the two
radiologists’ readings were compared to the averaged “
standard.” Figure 11 shows the histogram of intraobse
variation in marking the nipple locations by Radiologist 1
the invisible nipple images in the training and test set.

IV. DISCUSSION

In this study, the resolution of the digitized mammogra

was reduced to 800mm3800 mm for identification of the
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nipple locations both by the radiologists and by the c
puter. This low resolution was chosen in order to increas
computational efficiency. To verify that this resolution w
sufficient for nipple identification, we performed a limit
observer study to evaluate the dependence of the nippl
ibility on pixel size. Eight full resolution imagess50 mm
350 mmd with invisible nipple (classified at 800mm
3800 mm resolution)and one with a very subtle nipple p
file were used. The images were subsampled to 100mm,
200 mm, 400mm, 600mm, and 800mm pixel size. One ex
perienced MQSA radiologist who provided the gold stan
described above was asked to visually inspect the nipp
cation on images of pixel size from 800mm down to
100 mm individually. The windowing and zooming functio
were used in the process of inspection. The observer
indicated that, if a nipple was not visible in a lower reso
tion image, for example, 800mm, the nipple still could no
be identified confidently by the radiologist on higher res
tion images up to 100mm. This result may be attributed
the fact that the size of the nipple is generally much la
than 800mm3800 mm. The visibility of the nipple is no
limited by the resolution of the image at this pixel size. M
of the invisible nipples were caused by their nearly flat
files, by the noise along the breast boundary, or by mas
of the nipple behind dense tissue due to improper pos
ing. The smoothing with a box filter reduces the noise w
may actually improve the visibility of objects that are
resolution-limited. The visibility of the nipples therefore w
not improved by using higher resolution images.

The nipple identification method in this study assu
that most nipples are projected within 1 cm of the br
boundary on the mammogram. In our data set, based o
diologist’s marking of nipple locations, we rejected 5 ma
mograms in which the nipple was located far away from
breast boundary due to skin folds or improperly positio
breast for imaging. The cases that contained a big b
exceeding the film area so that no nipple was projecte
the mammograms were also rejected. Two experienced

FIG. 9. The cumulative percentage of identified nipp
with a computer detection error(Euclidean distanc
from the detected nipple location to the “gold st
dard”) less than or equal to a certain distance for
visible nipple mammograms.
ologists provided the gold standard by visually identifying
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the nipple location using a computer interface to display
adjust the contrast and brightness of the image. The n
locations were marked by the radiologists at the center o
projected nipple image regardless of the size of the nip
which may vary from invisible to a diameter of larger th
1 cm. This means that the error of the computer dete
nipple location from the gold standard mark would be la
for larger nipples because our computer method iden
the nipple by searching along the breast boundary an
detected nipple location was marked at the breast boun
For the nipples that could not be positively identified,
nipple location was given by radiologists’ subjective vis
estimation. From the comparison of inter- and intraobse
variability as described in the Results, it can be seen
Radiologist 2 had slightly higher agreement with the g
standard because most of the estimated nipple locatio
Radiologist 2 were located between Radiologist 1’s
readings. It can also be seen that the agreement betwe
two radiologists’ readings and the “gold standard” w
higher for the training set than that for the test set. This
agreement with the performance achieved by our com
program in detecting nipple locations within 1 cm of
Medical Physics, Vol. 31, No. 10, October 2004
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gold standard on the invisible nipple images, which was
higher for the training set(69.74%) than for the test s
(53.62%). These results demonstrate that there were
variations in estimating the nipple locations for these d
cult cases even by experienced radiologists.

The nipple detection method in this study depends pr
rily on nipple search along the breast boundary. At this s
successful identification of the nipple depends on whe
the breast boundary is tracked correctly. In the 744 mam
grams used in our study, 110 nipples failed to be dete
within 1 cm of the gold standard, of which 14.5%s16/110d
of the boundary was rated as 1+ or 1−, and 1.8%s2/110d
was rated as 2+ or 2−. In the 744 mammograms, the bo
aries were rated as 1+ or 1− in 73 mammograms, 78
s57/73d of these nipples could be identified within 1 cm
the gold standard. For the 5 mammograms with worst bo
ary tracking(rated as 2+ or 2−), 60% s3/5d of the nipples
still could be identified within 1 cm of the gold standa
Without using texture convergence analysis, 68.5%s50/73d
and 60%s3/5d of these nipples were detected within 1 cm
the gold standard, respectively. It indicates that the n

FIG. 10. The cumulative percentage of identifi
nipples with a computer detection error(Euclidean dis
tance from the detected nipple location to the “g
standard”)less than or equal to a certain distance for
invisible nipple mammograms.

FIG. 11. Histogram of the intraobserver variations
marking the nipple locations by Radiologist 1 for
invisible nipple class.
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detection in 7 of the images with boundary rated as 1+ o
failed at the stage of rule-based detection but was succe
at the stage of texture convergence analysis for the mam
grams. However, 2 mammograms with boundary rate
2+ or 2− could not be correctly identified either by the ru
based method or by the texture convergence method.

There were large variations in the projected nipple ima
on the mammograms. For the nipples that were proje
outside the breast boundary, the nipple should exhibit hi
gray levels than the background pixels outside the boun
For these convex nipples, the tracked breast boundary
depict a nipple shape. The shape depicted on the bou
was unique if no noise, such as fingerprint or artifacts on
film, affected the boundary tracking. In such cases,sear
for the nipple shape along the boundary could find a reli
nipple location. However, some of the convex nipples
very poor signal-to-noise ratio due to scattered radia
These mammograms often also had noisy boundary.
factors could lead to false detection and thus large e
from the gold standard. For the situation when the nipple
projected inside the breast boundary, the detection was
plicated by noise. Most of such noise was due to dense t
structures near the breast boundary. Detecting the gray
changes along the breast boundary could potentially fin
true nipple location. However, the false positives were hi
in images of dense breasts with prominent structured n

For the cases that had low confidence in the dete
nipple location by the rule-based method, the computer
formed a texture convergence analysis based on the te
orientation of the dense glandular tissues or ducts nea
nipple region. The texture feature analysis was found t
useful for improving the accuracy of nipple identification
this study. With our algorithm, 46.18%s139/301dof the vis-
ible nipples and 77.63%s59/76d of the invisible nipples in
the training data set, and 72.73%s144/298dof the visible
nipples and 89.86%s62/69d of the invisible nipples in th
test data set could not be identified with high confidenc
the rule-based method and the texture feature analysis
invoked. For these cases that had low confidence in th
tection of nipple location by the rule-based method, 84.
s118/139dof the visible nipples and 64.00%s38/59d of the
invisible nipples in the training data set, and 85.4
s123/144dof the visible nipples and 55.00%s34/62d of the
invisible nipples in the test data set could be identified wi
1 cm of the gold standard by using the rule-based meth
combination with texture convergence analysis. We appl
paired t-test to the detection errors on the subset of im
for which the texture convergence analysis was used.
results indicated that the improvement in the accuracy
statistically significant for the visible nipple images in
training setsp,0.002dand the invisible nipple images in t
test setsp,0.005d, and did not achieve statistical sign
cance for the visible nipple images in the test setsp.0.87d
and the invisible nipple images in the training setsp.0.68d.

In our study, the training and test sets were rando
selected from patient files. The results showed that, fo

visible nipples, the algorithm performance achieved a highe
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accuracy(i.e., percentage of the detected nipples within 1
of the gold standard)in the test set(92.28%) than in the
training set(89.37%). On the other hand, for the invisi
nipples, the detection accuracy was higher in the trainin
(69.74%)than in the test set(53.62%). The different trend
in the two nipple groups are most likely caused by samp
bias such that the visible nipple images in the test set
by chance somewhat easier to detect than those in the
ing set. To estimate the statistical significance of the di
ence in the algorithm performances between the trainin
and the test set, the bootstrap method was used to res
the training set 100 times and similarly for the test set.
mean and the standard deviation of the detection acc
were then estimated from the bootstrap samples for the
ing set and for the test set. Using these estimated value
unpaired t-test showed that the differences in the pe
mance of our nipple detection method between the tra
set and the test set were statistically significantsp,0.0001d
for both the visible and the invisible nipple groups. The
timated mean and standard deviation of the detection
racy estimated from the resampled training and test set
the correspondingp-values of the unpaired t-test are sho
in Table II.

Although the performance of our nipple detection met
is reasonable, further improvement in its accuracy is nee
One possible method may be first determining whethe
breast contains very dense tissues, especially in the r
posterior to the nipple, and weight the confidence of the
ture convergence analysis accordingly. We will pursue
and other methods to improve the accuracy in future stu

V. CONCLUSION

Accurate identification of nipple location on mamm
grams is challenging because of the variations in image
ity and in the nipple projections, especially for the nipp
that are nearly invisible on the mammograms. In this w
we developed a two-stage computerized nipple identific
method to detect or estimate the nipple location. The re
demonstrate that the visible nipples can be accuratel
tected by our computerized image analysis method.
nipple location can be reasonably estimated even if it i
visible. Automatic nipple identification will provide th

TABLE II. The unpaired t-test result which was used to estimate the stat
significance of the difference in the algorithm performances betwee
training set and the test set. The mean and standard deviation of the
tion accuracy were estimated from the resample training and test da
using the bootstrap method.

Mean
Standard
deviation

p-value of
unpaired t-test

Visible nipples Training set 89.34% 1.87%

Test set 92.36% 1.58% ,0.0001

Invisible nipples Training set 69.99% 5.06%
Test set 54.09% 6.09% ,0.0001
rfoundation for multiple image analysis in CAD.
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