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1. Introduction
We continue our study of diophantine approximation by prime numbers.
The problem that we study in this paper arises naturally from the subject
matter of [13], but our approach will differ from that of either [13] or
[14]. However, before passing to a description of the contents of this
paper we make some remarks concerning [14]. Let XX,X2,...,\ be s
non-zero real numbers, not all of the same sign and not all in rational
ratio. Let t] be any real number. As in [14] we define 2{k) to be the least
s for which there is a positive real number a such that the inequality

(1.1)

has infinitely many solutions in prime numbers p^ The number D(k) is
the corresponding value for s if we insist only that the variables are
natural numbers. The major interest in the results of [14] lies in the
bounds for the number of variables rather than that on the right of
(1.1) we have a power of the maximum value of the variables. For this
reason bounds are given only when k ^ 4 and k ^ 5 respectively, that
is, only when the bounds for the number of variables are better than those
known previously even when there is only a fixed e on the right of (1.1).

By combining the methods of [13] and [14] with Theorem 4 of Hua [7]
we can easily show that @i{2) ^ 5 and ^(3) ^ 9. As far as D is concerned,
when k = 2 a great deal is known and we have nothing new to add. When
k = 4 the method of [14] will give D(4) ^ 14, and when k = 3 the method
can be combined with that of Davenport and Roth [4] to give D(3) ^ 8.
In each of these, of course, the bound for the number of variables is not
new. What is new is that the right of (1.1) contains a power of the
maximum of the variables.

In this paper we are concerned with the following question, posed by
Halberstam in conversation. Suppose that X1/X2 is negative and
irrational. Then can one use sieve methods to show that there exists a
positive integer k such that the numbers of the form X±p + X2Pk, with p a
Proc. London Math. Soc. (3) 33 (1976) 177-192

5388.3.33 M



178 R. C. VAUGHAN

prime number and Pk a natural number having at most k prime factors,
are dense on the real line ? We answer this question in the affirmative and
show that 4 is a permissible value for k.

We use results of Richert [10] and a new idea of Chen, who has recently
shown [1] (for a shorter proof see Ross [11]) that every large even integer
is of the form p + P2. We also require two analogues of the Bombieri-
Vinogradov mean value theorem (see Chapter 24 of Davenport [2]) and
these form the bulk of our work. Here the exponent £ which appears in
the Bombieri-Vinogradov theorem has to be replaced by J and is the
cause of our being unable to do better than k = 4. I t has been found that
the most satisfactory approach is to adapt the arguments of [15].

Our main theorem is as follows.

THEOREM. There is a positive number r such that if Ao, A^ and A2 are real
numbers with Aj/Ag < 0 and X-J\ irrational, then there are infinitely many
prime numbers p for which there exists a square free natural number P4,
having at most four prime factors, such that

p-r. (1.2)

It clearly suffices to prove the theorem with

A2 = - l , A1>0, (1.3)

which we assume henceforward.

2. Notation and assumed results
Throughout p is a prime number, a, g, k, m, n, q, r are natural numbers,

j , b, h are integers, t, a, A, a are real numbers, u, v, x, y, T, X, rj, f are real
numbers greater than or equal to 1, z is a real number with

0 < z < min(A1,1/AJ,

8 is a real number satisfying 0 < 8 ^ J, and £ is a sufficiently small positive
real number in terms of 8. Implied constants in the 0 and < notations
depend at most on 8, e, Ao, and Xv We write ||a|| = min ja — n\ and if
a + £ is not an integer we use [[a]] to denote the integer nearest to a. We
further define JSf = logy, and given an arbitrary function / , B(a,f) is
used to denote the formal expression

S S
oinr J-T

Here 2 * denotes summation over all the primitive characters modulo nr.
We reserve d, <p, oi, A, and D. for respectively the divisor function, Euler's
function, the number of different prime divisors, von Mangoldt's function,
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and the total number of prime divisors. As usual ijj(x) = 2niSa;A(?i),
7T(X) = S ^ ^ l , a n d L(s>x)> where 5 = o + it, denotes the Dirichlet L-
function formed from the character x- The letters stf, Si, Jl', and Jf
denote sets of integers and | j / 1 is the cardinality of $2'. We further use
$2r to denote {h: h e s#, r \ h}.

For our proof of (1.2) we require the following results from multiplicative
number theory.

LEMMA 2.1. Suppose that T ^ 2. Then

(2.1)

and

Z(p{n)log9nT. (2.2)

Proof. Theorem 10.1 of Montgomery [8] states that

?(n)Tlog*nT.
X J~

The inequality

« X J~T

can be shown in the same way as Corollary 10.2 of Montgomery [8]. The
lemma now follows by partial summation.

LEMMA 2.2. Let T ^ 2 and

where the summation is over any set of positive integers m for which
Sm I cm I2 m exists. Then

B(0,U*) ^^icJ^m + rjhlogT).
m

Proof. By Theorem 1 of Davenport and Halberstam [3], with the xi the
set of points a/nr with 1 ̂  a ^ nr, (a,nr) = 1, and n ^ r), we have

nr
S S

a=l

M+N

S c
m=M+l

M+N
|c) S |

m=M+l(a,nr)=l

We then complete the proof of the lemma by using the method of
Theorem 3 of Gallagher [6] combined with (5) of Gallagher [5], and
performing a partial integration.
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LEMMA 2.3. Suppose that

0 < a < 1, (2.3)

1< ecu ^ 4, (2.4)

0 < A < 1, (2.5)

2 3w ( n )

nags0
— xn~x

6e.fi/,,
< a/log2z, (2.6)

P(v)=Hp, (2.7)
P<v

and

W(J*,U,\)= S' / l -

(2.8)

î Aere 2 ' means that those b which have a repeated prime factor are not
counted in the summation. Then

rV<* t-udtlog 3 " 1 i ^ I T )
(2.9)

This,| apart from a few trivial modifications, is a special case of
Theorem 1 of Richert [10].

LEMMA 2.4. Suppose that (2.3) and (2.6) hold. Then

IT

8(sf, *>) = 2 1 ̂  - r - - (1 + 0((logz)-i/")).
(6,P(x°))=l

This follows from Theorem B of Richert [10].

LEMMA 2.5 (P61ya-Vinogradov). Let x be a non-principal character
modulo n. Then

X x(m) ^ n1/2logn.

For a proof of this see, for instance, p. 146 of Prachar [9].

LEMMA 2.6. Let f(s) = S"=1«nw~s (a > 1) where an <^ Iog2w. Then for
every natural number N and every d > 1,

i*-£j>aJ**«m^1*'))-
(2.10)

This is a special case of Lemma 3.12 of Titchmarsh [12].
f Note added in proof. Proofs of Lemmas 2.3 and 2.4 can be found in the recent

book of Halberstam and Richert [6a].



DIOPHANTINE APPROXIMATION, I I I 181

3. An analogue of the Bombieri-Vinogradov theorem
Let

0 {P+\I- p < y> H
x = Z7r(y), (3.2)r l ^ l (y)

and
tjj(v,r,h,m) = S A(TO). (3.3)

tasm(modr)

In (3.1), if HAQ + AJ^J]] = [[Ao + A^all with Pi^P2> then the elements
IAO + A ^ J are considered as distinct. In order to sieve the set 3) we
require information concerning Rr, which is provided by the following
theorem.

THEOREM 3.1. Suppose that 0 < S ^ £ and \\-a/q\ <: q~2 with
(a,q) = landq> go(

8>*oA)- Let V = q2/a+S)- Then

S \Rr\<yx-m- (3.4)

The proof of (3.4) rests on the following lemma.

LEMMA 3.1. Let

U i y h (3.5)

T(r) = max | T(M, V, r, A) |, (3.6)
e maximum is taken over all h,u,v with (h,r) = 1, u ^ #(2 + |A0|),

v ^ y respectively. Then

2 T(wig) ^ 2/i-<2*/7). (3.7)
' 6

We defer the proof of this lemma until the next section and proceed
with the deduction of (3.4) from (3.7).

Wri te \ = (b + 60)/q and \ = a/q + 61q-2 where | 0 J , \QX\ ^ 1, and
suppose that p ^ y. Then

Now write b + ap =j + hq with — \q < j ^ \q. Then

Thus — \z ^ XQ + \xp — h ^ ^3 if and only if

- &q ^j + 0o + eiP/<l < i ^ - (3-8)
Consider the inequality

\j\ < ^ . (3.9)
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Clearly all but 0{y/q) = Ofa1*8) possible values ofj which satisfy (3.8) also
satisfy (3.9) and vice versa. Moreover, if — \z ^ \+\p — h ^ \z, we
must have h = [[Ao + Xtp]\ and in this case r | JA0 + AipJ if and only if r \ h,
that is, if and only if b + ap = j (modgr). If j is exceptional then h either
is [[AQ + A ^ ] ] or differs from HAo + Aj.̂ ]] by 1. In the latter case,
r | [[Ao + \p]\ implies that either b + ap =j + q (mod qr) or b + ap =j — q
{mod qr). Thus, by (3.1),

1̂ 1 =

Therefore, by (3.2),

\Rr\4yd(a)&q-'+ S i - S

Let

Then
S 1= S S i
/ (modgr) =A (mod Qr)

/ PV.PXQg
\bg~l+j\^zql2g aplg=j (modgr/jr)

Hence, by (3.10) and (3.11),

(m,a/n)=l

It is easily verified that

(3.10)

(3.11)

(3.12)

and we recall that Ao = (b + 00)/q, so that 161 ^ ^(1 +1 Ao |). Hence

2J I - " r l
,,1/4-8

yd(a a) m a x -SI '

(3.13)
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where we have used the inequality

183

max T,cnlogn

The theorem now follows from (3.13) and (3.7).

4. Proof of Lemma 3.1
Suppose that {h,mq) = 1, mq^g^y, u ̂ q(2 + \\\), and v ̂  y.

Consider the expression T(^, v, mq, h) given by (3.5). We use the inequality

(v)- £ A(n)
in,mq)<=>l

to replace ifj(v) by 2n$1>,<n,wig)=i-A-(?i). We then write the resulting
expression in terms of characters modulo mq. Next we replace each
character x modulo mq by the primitive character x* that induces it,
making use of the inequality

and Lemma 2.5. Furthermore, we note that

d(mq) max Sx*(»)
TWSft

Hence, by (3.6),

. d(m)

Thus

2 max

S ^-1 E* max

where
r\Q

Sifo) = 2 E* max

By Holder's inequality,

where

and
= 2

^3= S

max

(4.1)

(4.2)

(4.3)

(4.4)

(4.5)
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Let
T = y100, (4.6)

B=\+&-\ (4.7)
and

•M0 = £ + maxra. (4.8)

Then, by Lemma 2.6,

1 rd+iT1 rd+iT us
= 2"? L(s,x)^

^ ATTlJo-iT S

We note that L(s, x) is regular for a > 0, and

Thus
1 rl/2+iT

Hence, by Holder's inequality and (2.1),

4

max ~

«, <.>,l/2

, \F-L'G- LFG |4/3

, l + \F|

(4.9)

Therefore, by (4.4),
Ea^gV-SPS. (4.10)

We next treat S3. Let

and

A{n)x(n)n-a (4.12)
,1/8

Then, by Lemma 2.6, for a non-principal character x> we have

rO-HT IJJ \ v s

Mt{v,x) = (T + F)(LQ-l)(8,x)^-d8
Je-iT \Jj / s

r 1/2+^ vs
+ (F-L'G-LFG)(s,x) — ds + O(l). (4.14)

J 1/2-iT s

Hence, by (4.5) and Holder's inequality, applied several times,
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Thus, by Lemmas 2.1 and 2.2,

Hence, by (4.3) and (4.10),
S^T?) ^ 2/l+y/2gl

Therefore, by (4.2),

This implies Lemma 3.1.

5. Another analogue of the Bombieri-Vinogradov theorem
Let

y 1 = X0 + X1y> (5.1)

jr = [ {^'\

v \1/a

Pipj ' 1

= {n: n <

B*

, <v <( Vl
3 " \P1P2P

VAW + XjnW £ %

,h)= S I
hn=j (mod fc)

L = A^~ 2 | ^T 1.

= \^*\-x1r-1.

\l/2

s.IAo + A^

^2^32>4/ '

(5-2)

, (5.3)

(5.4)

(5.5)

(5.6)

and

Further write

THEOEEM 5.1. Suppose that 0 < 8 ^ ^ cmri! 2/1/16-fi/3 < X < ?/1/6.
on the hypothesis of Theorem 3.1,

S J^N^4- (5-7)
i / * 6

Our procedure is similar to that of §§ 3 and 4, but is sufficiently different
because of the nature of £)* for it to be necessary to give the details. As
in § 3 the proof depends on a lemma.

LEMMA 5.1. Let

@(u,r,h) =
(m,r)=l

and
®(r) = max | Q(u, r, h) |, (5.9)
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where the maximum is taken over all u,h with u ^ q(2 + \XQ\) and (h,r) = 1.
Then

®(ma) 4 2/1-2 /̂7. (5.10)

To deduce the theorem from the lemma we argue as follows. By (5.2)
and (5.3),

\®?\= S

S
n e ./PMI<n-Ao)/AiNs/2Ai

l K A J / A l

Write - \ / \ = {b + 62)/a with |02| < 1 and note that

with 103| ^ 1. Thus by repeating the argument of § 3 we have

*1= S
b'|

Let

Then,

By (5.

li

by (5.11),

4),

S 0
JM,ar/g)>l

This is easily seen to be

E

'9/

9 =

<̂  E
p\ar/g

(q,r).

\b/(gp)-

i\+o

E
h

.^Ittf-r/a) 1
p?n^(modor/flf)

S l.
SAiffjj (g/a)msA(modar/ai))

(5.H)

(5.12)

Hence, by (5.13),

9 J 9
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Thus, by (5.6), (5.5), and (3.12),

iA,ar/g)-i \ vV^SV ?{ar/g)J

187

. (5.14)

We note that {za/2\) + \ b | < q + {a/\) | Ao | ^ q{2 + | Ao |). Theorem 5.1
now follows from (5.14) and Lemma 5.1.

6. The proof of Lemma 5.1
By (5.2),

S K S S KyXX-\
p\r /

X

Hence, by (5.8) and (5.4),

(^rth) = -rr S IS

where §(x) = Tinejrx(n)' Thus, by the analogue of (4.1), and (5.9),

0(raa) -

where

Hence, if |

Y,@(ma)

max

(6.1)

r\a

yl-8 + yeq-l S m a x

y-i 2* max
XmodnrW<9(2+IA0l)

where

Let

Then, by (6.3), (4.4), and Holder's inequality,

Let

*// = {m: m =

and
tx = {m: m

(6.3)

(6.4)

(6.5)

(6.6)

(6.7)

(6.8)



188 R. C. VAUGHAN

Then, by (6.1) and (5.2),

, (6.9)Ux
where

(6-10)
i

(mp,k)=l

Let
= S x(™)™-8> (6.H)

(m,ft)=l

S x ( ^ " s («r > 1), (6.12)

(cr > 1), (6.13)

#i(*>x) = S X ( ^ - 8
S (6-14)

pJtk

and
Ha(«,x)= L , X ( ^ - 8 . (6.15)

llzpKk

Further, let
(6.16)

Then for a non-principal character x to a modulus not exceeding y, we
have, by Lemma 2.6, (4.6), (4.7), and (6.10),

Je-iT s Jl/2-iT s
l/2-iT

Hence, by Holder's inequality,

+ 1.
» J J ' * •* - » * / I 1 1 1 * 1

-T
Thus, by Holder's inequality,

Therefore, by Lemma 2.2, (6.6), (6.7), (6.11), (6.12), and (6.14),

S S*l
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Similarly

S 2
modnr

4 y*i*SF-i*(B{Bt D2
2))2/3(J3(0,

Hence, by (6.4) and (6.9),

2 5 <̂  2/4/3+e + ^6/

Therefore, by (4.10) and (6.5),

Thus, by (6.2),

Lemma 5.1 now follows easily.

7. The proof of the main theorem
Let

8 = 10-5, (7.1)

r = £8, (7.2)

« = l - 8 , (7-3)

i), («,<?) = !, (7-4)

(7.5)

(7.6)

(7.7)

tS), (7.8)
and

A = 1/(6-% —S). (7.9)
Let

F= HI (^~ x«,£<xJ
{l~{u{l0gv)/l°gx)^)i (7-10)

(&,P(a;«'4))=l ~$b

where the " indicates that the summation is restricted to those elements of
S> which do not have repeated prime factors. By (3.1), \S)r\ 4 1+y/r.
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Hence, by Lemma 2.3 and Theorem 3.1,

^ a l o g *

(7.11)
By (7.8) and (7.9), 0 < A - £ < 68. Hence

A(l + 8)log4-A(l + S)log(l + 8)-ASlog(3/S)

< (^ + 6S)(log4 + Slog4 —138) < log2 + 48.

Hence, by (7.11) and (7.3),

8 log | -328 x
1 — 48 logo;'

Thus, by (7.1),
V > 3-243<K/logz. (7.12)

Consider the definition of F, (7.10). The weight in the sum satisfies

"logz/" T v log*/"
P\b

Hence, by (3.1), (7.5), (7.7), (7.9), and (7.1),

P\b

Thus the weight is negative if Q(b) > 5 and is at most A if £l(b) = 5. More-
over, every element of 2) for which there is a positive contribution to V
has no prime factor less than a^/4, and is squarefree. I t therefore suffices
to show that the contribution to V from those elements of 3) having
exactly five prime factors is at most 3-041a;/log#. By (3.1), (5.2), and
(5.3) it is thus enough to show that

1/4-'5) < 3-041a;/loga;. (7.13)

By Lemma 2.4, Theorem 5.1, and (7.3),

Hence, by (7.9), (7.8), (5.5), (5.2), (5.1) and (7.6),

1/4-'5) < (4+100S)a;1/loga;. (7.14)
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We now proceed to estimate xv By (5.2), (5.1), and the prime number
theorem,

/s dux rd/i/wi)1/4 du2 f(J/i/«i«a>1/3 du3

(7.15)

where
r1/5 ^ r ( 1 - v i ) / 4 ^ 2

~ Ji/ie «i J«x v 2

(7.16)
The substitution \ — v1—...— Vj_x = VJUJ gives

- _ r16 dut r«i-i dw2

~ J5 Wi -1 J4 W 2 - l

= p s ^ r«i <fo2

J4 ^ J4 V2 - I

J4 V3-2

U3-

7 TT7 £^ w -log —
J4 (w-l)(u-2) Ju v & v

( « - ! ) ( , - 2)

We compute an upper bound for / as follows. Let

Then

S

In the following table, J(j) denotes a number such that J(j) ^ J(j).

3 JU) 3 J(3) 3
4 0-70 8 0-24 12 0-03
5 0-79 9 0-15 13 001
6 0-57 10 0-09 14 0-01
7 0-38 11 005



192 DIOPHANTINE APPROXIMATION, I I I

(This table was computed with the use of a table of five-figure natural
logarithms. I t was then checked on an HP65.) Hence, by (7.17), 4 / ^ 3-02.
Therefore, by (7.15), (5.5), (7.14), and (7.7), we have (7.13).

REFERENCES
1. JING-ETJN CHEN, 'On the representation of a larger even integer as the sum of a

prime and the product of at most two primes', Sci. Sinica 16 (1973) 157-76.
2. H. DAVENPORT, Multiplicative number theory (Markham, Chicago, 1967).
3. and H. HALBERSTAM, 'The values of a trigonometrical polynomial at well

spaced points', Mathematika 13 (1966) 91-96.
4. and K. F. ROTH, 'The solubility of certain diophantine inequalities', ibid.

2 (1955) 81-96.
5. P. X. GALLAGHER, 'The large sieve', ibid. 14 (1967) 14-20.
6a. H. HALBERSTAM and H.-E. RICHERT, Sieve methods (Academic Press, London,

1974).
6. 'A large sieve density estimate near a = V, Invent. Math. 11 (1970) 329-39.
7. L. K. HTTA, Additive theory of prime numbers, Amer. Math. Soc. Transl. 13

(Providence, R.I., 1965).
8. H. L. MONTGOMERY, Topics in multiplicative number theory, Lecture Notes in

Mathematics 227 (Springer-Verlag, Berlin, 1973).
9. K. PRACHAR, Primzahlverteilung (Springer-Verlag, Berlin, 1957).

10. H.-E. RICHERT, 'Selberg's sieve with weights', Mathematika 16 (1969) 1-22.
11. P. M. Ross, 'On Chen's theorem that each large even number has the form px +p2

or P1+P2P3', J- London Math. Soc, (2) 10 (1975) 500-6.
12. E. C. TITCHMARSH, The theory of the Biemann zeta-function (Clarendon Press,

Oxford, 1951).
13. R. C. VAUGHAN, 'Diophantine approximation by prime numbers, I', Proc.

London Math. Soc. (3) 28 (1974) 373-84.
14. 'Diophantine approximation by prime numbers, II', ibid. (3) 28 (1974)

385-401.
15. 'Mean value theorems in prime number theory', J. London Math. Soc.

(2) 10 (1975) 153-62.

Department of Mathematics
Imperial College

London 8 .W J

and

The University of Michigan
Ann Arbor, Michigan 48104


