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Degenerations of toric varieties over valuation rings

Tyler Foster and Dhruv Ranganathan

Abstract

We develop a theory of multistage degenerations of toric varieties over finite rank valuation rings,
extending the Mumford–Gubler theory in rank 1. Such degenerations are constructed from fan-
like structures over totally ordered abelian groups of finite rank. Our main theorem describes
the geometry of successive special fibers in the degeneration in terms of the polyhedral geometry
of a system of recession complexes associated to the fan.

1. Introduction

In [13, 15], Mumford describes how a rational polyhedral complex in a vector space gives rise
to a degeneration of a toric variety over a discrete valuation ring. In [9], Gubler extends this
theory to degenerations of toric varieties over arbitrary rank-1 valuation rings, and Gubler
and Soto [10] use these results to classify toric schemes over rank-1 valuation rings. These
degenerations are a crucial ingredient in tropical geometry and have, for instance, been applied
to study the enumerative geometry of toric varieties [16]. Recently, Payne and the first author
have used Gubler models to give a new description of the Huber analytification of a variety,
as an inverse limit of adic tropicalizations [6] (see the forthcoming paper of Foster and Payne
detailing these results).

The purpose of this article is to extend the theory of toric degenerations of toric varieties
to valuation rings that have rank greater than 1. Such multistage degenerations will play an
important role in the theory of Hahn analytifications and higher-rank tropicalizations being
developed by the authors, as recently introduced in [7].

1.1. Rank-1 degenerations of toric varieties

LetK be a field complete with respect to a non-trivial non-Archimedean valuation v : K× → R.
Let R and K̃ denote the valuation ring and residue field, respectively. The central construction
of Gubler’s theory associates to each complete Γ-admissible fan Σ in NR × R�0 (see [9, Sections
6 and 7]) an R-scheme Y (Σ). One of the central results of [9] describes the geometry of Y (Σ)
in terms of that of Σ.

Theorem 1.1 (Gubler [9]). For each complete Γ-admissible fan Σ in NR × R�0, the
R-scheme Y (Σ) is flat and proper over R, and satisfies the following conditions.

(i) The reduced special fiber Y (Σ)red
K̃

is a collection of proper toric K̃-varieties glued
equivariantly along torus-invariant strata.

(ii) The irreducible components of Y (Σ)red
K̃

are in natural bijection with the vertices of the
Γ-rational polyhedral complex Σ ∩ (NR × {1}) inside NR × {1} ∼= NR. The reduced irreducible
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component associated to a vertex is equivariantly isomorphic to the toric variety associated to
the star of the vertex.

(iii) The generic fiber Y (Σ)K is naturally isomorphic to the proper toric K-variety
associated to the fan Σ ∩ (NR × {0}) inside NR × {0} ∼= NR.

If K is algebraically closed, then the special fiber is reduced.

The central result of the present article is an extension of this theorem to degenerations of
toric varieties over arbitrary finite rank valuation rings, as we now explain.

1.2. Brief reminder on finite rank valuation rings

In order to state our main result, we briefly review the basic structure of finite rank valuation
rings. For each non-negative integer k, let R(k) denote the totally ordered abelian group given by
Rk with its lexicographic order. Let K be a field equipped with a valuation v : K× → R(k) and
let R denote the valuation ringR := {0} ∪ {a ∈ K× : v(a) � 0}. The value group Γ := v(K×) in
R(k) inherits the structure of a totally ordered abelian group from the ambient total ordering
on R(k). Recall that n = rank Γ is the length of the maximal tower convex subgroups in Γ
(Subsection 2.1)

{0} = Δ0 ⊂ Δ1 ⊂ · · · ⊂ Δn = Γ. (1)

Each convex subgroup Δi ⊂ Γ determines a prime ideal pi := {a ∈ K : ∀δ ∈ Δi, v(a) > δ} in
R. Each Δi also determines a new valuation vi : K× v−→ Γ � Γ/Δi, and the corresponding
valuation rings Ri := {a ∈ K : vi(a) � 0} form an ascending tower

R = R0 ⊂ R1 ⊂ · · · ⊂ Rn = K.

For each 1 � i � n, the ideal pi in R is, in fact, the unique maximal ideal inside Ri. The ith
intermediate residue field of K is the quotient

K̃i := Ri/pi.

In particular, K̃n
∼= K. For further details concerning valued fields of higher rank, see [5].

1.3. Gubler models over finite rank valuation rings

The decreasing, length-1 tower R�0 ⊃ {0} plays a central role in Gubler’s theory of integral
models. As we explain in Subsection 2.2, our choice of order-preserving embedding Γ ↪→ R(k)

determines a decreasing, length n = rank Γ tower of definable subsets in R(k):

E = E0 ⊃ E1 ⊃ · · · ⊃ En. (2)

This tower (2) generalizes the length-1 tower R�0 ⊃ {0}.
Fix a Z-latticeM . In Section 3, we introduce complete Γ-admissible fans Σ inside the product

HomZ(M,Rk)×E , and we use the tower (2) to produce a collection of recession complexes
reci(Σ) ⊂ HomZ(M,Rk) associated to Σ for each 0 � i � n. In Section 4, we describe how to
construct an R-scheme Y (Σ) from Σ, and our main result, which we prove throughout Section 4,
is the following theorem.

Main Theorem. For each complete Γ-admissible fan Σ inside HomZ(M,R(k)) × E , the
R-scheme Y (Σ) is flat and proper over R, and satisfies the following properties.

(i) For each 0 � i � n, the reduced intermediate fiber Y (Σ)red
K̃i

∼= (Y (Σ) ⊗R Ri)redK̃i
is a

collection of toric K̃i-varieties glued equivariantly along their torus-invariant strata.
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(ii) The irreducible components of Y (Σ)red
K̃i

are in natural bijection with the vertices

of reci(Σ). The reduced irreducible component corresponding to a vertex is equivariantly
isomorphic to the toric variety of the star of that vertex.

(iii) The generic fiber Y (Σ)K is the toric K-variety associated to recn(Σ).

If K is algebraically closed, then every intermediate fiber is reduced.

Remark 1.2. The primary accomplishment of the present paper is to provide a polyhedral
framework for Γ-admissible fans and their recession complexes in the context of higher rank
toric degenerations. Once the machinery is in place, the proof of the Main Theorem is similar
to the proof of Theorem 1.1.

One important source of higher rank toric degenerations is higher-rank tropicalizations.
Let K be a valued field as above, with valuation K× � Γ ↪→ R(k). Let X be a subvariety of a
torus T over K. In [7], building on work of Aroca [1], Banerjee [4] and Nisse–Sottile [17], we
define and study the Hahn tropicalization trop(X) of X, which is a subset of HomZ(M,R(k)).
The set trop(X) admits the structure of a polyhedral complex over R(k), as defined in
Subsection 3.1. Using the constructions in the present paper, one can employ the Hahn
tropicalization of X to produce an equivariant compactification of T to a toric variety, along
with a multistage degeneration of this toric variety, such that the compactification of X in the
degeneration intersects components in intermediate special fibers properly. The rank-0 version
of this was first studied by Tevelev [20] and the rank-1 version was studied by Luxton–Qu [14]
and Gubler [9].

1.4. Sumihiro’s Theorem in higher rank

We conclude with a brief discussion of how one might refine the results of this paper. In the
theory of normal toric varieties over fields, one has, in addition to a construction of varieties
from fans, a classification that all toric varieties arise by this construction; see, for instance, [8].
Working in Mumford’s setting of degenerations over discrete valuation rings, one can use
the fan that toric varieties are canonically defined over Z to obtain a similar classification
result [13]. Over more general rank-1 valuation rings, the result was only recently proved by
Gubler and Soto [10], building on earlier work of Gubler [9]. It would be interesting to have
such a classification result over higher rank as well, to complete the picture.

The classification theorem is proved by first proving a combinatorial classification for affine
toric varieties and then using Sumihiro’s theorem to pass to the general case. The latter states
that any point in a normal toric variety is contained in an invariant affine open. The techniques
of Gubler and Soto rely on an approximation technique that eventually allows one to reduce to
the Noetherian case, and this strategy does not seem immediately applicable in higher rank.
Indeed, even a valuation ring whose value group is Z(k) is not Noetherian. We leave Sumihiro’s
theorem and the corresponding classification result as avenues for future investigation.

2. Structure of value groups

2.1. Hahn embeddings

Fix a totally ordered abelian group Γ.
For any γ ∈ Γ, either γ or −γ is greater than 0. Let |γ| denote the larger of the two elements

γ and −γ. An element γ′ ∈ Γ is infinitely larger than γ if m|γ| < γ′ for every positive integer
m. Elements γ and γ′ are Archimedean equivalent if neither γ nor γ′ is infinitely larger than
the other, and this defines an equivalence relation on Γ.

A subgroup Δ of Γ is called convex if, for each element δ ∈ Δ, any element γ ∈ Γ
satisfying 0 � γ � δ belongs to Δ. Each convex subgroup is uniquely expressible as a union of
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Archimedean equivalence classes. The collection of non-trivial convex subgroups of Γ is totally
ordered by containment, and the rank of Γ is the order type of the set of non-empty convex
subgroups Γ. By a seminal theorem of Hahn [11], every finite rank totally ordered abelian
group admits an order-preserving embedding

Γ � � �� R(k) (3)

for some integer k � 0, where R(k) denotes the additive group Rk equipped with its
lexicographic order. We refer to (3) as a Hahn embedding.

For each j � k, there is a unique order-preserving inclusion R(j) ↪→ R(k) whose image is a
convex subgroup of R(k), namely the inclusion taking (r1, . . . , rj) �→ (0, . . . , 0, r1, . . . , rj). The
steps in the resulting tower

{0} ↪→ R ↪→ R(2) ↪→ · · · ↪→ R(k) (4)

are in bijection with the convex subgroups of R(k), and rank R(k) = k.

Lemma 2.1. Fix a Hahn embedding (3) and let Δ be a convex subgroup of Γ. Then there
exists a 0 � j � k such that Δ = R(j) ∩ Γ, where R(j) ⊂ R(k) is identified with the subgroup
whose non-zero entries lie in the last j coordinates.

Proof. Write Δ as a disjoint union Δ = [0] � [γ1] � · · · � [γj ] of Archimedean equivalence
classes in Γ such that 0 < γ1 < · · · < γi. Then Δ is the union of all elements γ ∈ Γ not infinitely
larger than γi. Similarly, the union of all elements not infinitely larger than γi inside R(k) is a
convex subgroup R(j) ↪→ R(k). For each γ ∈ Γ, the relation ‘γ is not infinitely larger than γi’
holds in Γ if and only if it holds in R(k). Hence R(j) ∩ Γ = Δ.

2.2. Flags of endomorphisms inside R(k)

Fix a Hahn embedding (3) and let (1) denote the maximal tower of convex subgroups in Γ.
Coordinatewise multiplication by any vector r = (r1, . . . , rk) ∈ Rk defines a homomorphism of
abelian groups

ϕr : R(k) −→ R(k) taking (s1, . . . , sk) �→ (r1s1, . . . , rksk).

Yet not all vectors r in Rk define an order-preserving homomorphism ϕr. We define

E := {r ∈ Rk : ϕr is order-preserving}
= {r = (r1, . . . , rk) ∈ Rk : r1 � 0 and ∀0 � i < k, ri = 0 ⇒ ri+1 � 0}, (5)

and we equip E with the subspace topology it inherits from the lexicographic order topology
on Rk, that is, with its subspace topology in R(k). The E-action on R(k) restricts to a pairing

Γ × E −→ R(k),

(γ, r) �−→ ϕr(γ).
(6)

Composition ϕr ◦ ϕs gives E the structure of a commutative monoid, written multiplicatively,
and pointwise addition extends this to the structure of a commutative semiring with
multiplicative identity (1, . . . , 1) and additive identity (0, . . . , 0).

By Lemma 2.1, there is a strictly increasing sequence of integers 0 = j0 < · · · < jn � k such
that R(ji) is the convex hull of Δi inside R(k), and such that Δi = Γ ∩ R(ji). Define

Ei := E ∩ R(k−ji) inside R(k),

and note that the Ei fit into a strictly decreasing tower (2). The second description of E
appearing in (5) shows that each Ei is a definable subset of R(k) (see [7, Subsection 2.5] for a
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discussion of definablility). Note also that, for i � 1, the set Ei depends on Γ and its embedding
Γ ↪→ R(k), whereas E0 = E regardless of our choice of Γ and its Hahn embedding.

The semiring structure on E restricts to a semiring structure (without unit) on each Ei,
and Ei acts on R(k) by order-preserving endomorphisms that map R(k) into the convex
subgroup R(k−ji) ⊂ R(k). Henceforth, we denote elements of Ei with Greek letters ϕ, ψ, etc.,
undecorated by their corresponding elements r ∈ Rk. We let εi ∈ Ei denote the order-preserving
endomorphism εi : R(k) → R(k) given by

εi(r1, . . . , rk−ji
, . . . , rk) = (r1, . . . , rk−ji

, 0, . . . , 0). (7)

The next lemma follows easily from Lemma 2.1.

Lemma 2.2. For each 0 � i � k, there exists a unique order-preserving, injective homo-
morphism Γ/Δi ↪→ R(k) that makes the following diagram commute:

Γ R(k)

Γ/Δi R(k)

� � ��

����
� � ��

εi

��
(8)

3. Polyhedral geometry over Hahn embeddings

3.1. Γ-Rational polyhedra over R(k)

Fix a totally ordered abelian group Γ with Hahn embedding Γ ↪→ R(k) and let M be a lattice
with dual N := HomZ(M,Z). We can form the free abelian group

N ⊗Z Rk ∼= HomZ(M,Rk).

Identifying Rk with the group underlying R(k), the group N ⊗Z Rk inherits a left Ek-action.
Let NR(k) denote N ⊗Z Rk equipped with this left Ek-action. Observe that the tower (4) of
convex subgroups of R(k) induces a tower of abelian subgroups

{0} ↪→ NR ↪→ NR(2) ↪→ · · · ↪→ NR(k) ,

with the property that, for each 0 � j � k, the subsemiring Ej maps NR(k) into the subgroup
NR(j) ⊂ NR(k) . Furthermore, one has a canonical pairing

〈−,−〉 : M ×NR(k) −→ R(k). (9)

A Γ-rational hyperplane, respectively Γ-rational halfspace, is any subset of NR(k) of the form

H0 = {v ∈ NR(k) : 〈u, v〉 = γ},
respectively H�0 = {v ∈ NR(k) : 〈u, v〉 � γ},

for a fixed u ∈M and γ ∈ Γ. We sometimes write H0
(u,γ) and H�0

(u,γ) when we want to make
the pair (u, γ) explicit. When γ = 0, we refer to H0 and H�0 as a halfspace and hyperplane
through the origin. A Γ-rational polyhedron in NR(k) is any subset P ⊂ NR(k) that arises as the
intersection of finitely many Γ-admissible halfspaces in NR(k) . If P is a Γ-rational polyhedron
in NR(k) of the form P = H�0

1 ∩ · · · ∩H�0
m , then a (non-empty) face of P is the intersection

obtained upon replacing any subset of the halfspacesH�0
� with their corresponding hyperplanes

H0
� . Every face of P is itself a Γ-rational polyhedron in NR(k) .
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A Γ-rational polyhedral complex P in NR(k) is any finite collection of Γ-rational polyhedra
in NR(k) satisfying the following two conditions.

(i) For each P ∈ P, every face of P is in P.
(ii) For any P1, P2 ∈ P, the intersection P1 ∩ P2 is a Γ-rational polyhedron in P.

If P is a Γ-rational polyhedron in NR(k) , then a flag of faces in P is any tower of strict
inclusions of (non-empty) faces P0 � P1 � · · · � Pm = P . We refer to the non-negative integer
m as the rank of the flag. The dimension of P is the maximum rank of a flag of faces in P . A
zero-dimensional face of P is called a vertex. A one-dimensional face is called an edge.

Remark 3.1 (Largest linear subspaces and pointed quotients). If we work over the
trivial Hahn embedding {0} ↪→ R(k), then our combinatorial geometry becomes that of {0}-
rational polyhedra and their complexes. A linear subspace of NR(k) is any finite intersection
of {0}-rational hyperplanes in NR(k) . Because each {0}-rational hyperplane takes its complete
determination from the vector u ∈M to which it is dual, each linear subspace V ⊂ NR(k) is of
the form

V = {v ∈ NR(k) : 〈u, v〉 = 0 for all u ∈ V ⊥}

for a unique Z-linear subspace V ⊥ ⊂M . Clearly, V is a subgroup of the abelian group NR(k) .
Define NR(k)/V to be the quotient of NR(k) by V in the category of abelian groups. If we let
VZ denote the Z-linear dual of V ⊥ inside N , then there is a canonical isomorphism of abelian
groups

NR(k)/V ∼= (N/VZ)R(k) . (10)

If P is a Γ-rational polyhedron in NR(k) , then Γ-translates of P will contain varying linear
subspaces. Because the faces of P are ordered by inclusion, with a unique maximal face, there
exists a unique largest linear subspace contained in at least one of these translates. We say
that P is pointed if its largest linear subspace is V = {0}. If V is the largest linear subspace
of P , then the image of P in NR(k)/V is a pointed Γ-rational polyhedron.

Remark 3.2 (Fans). A cone in NR(k) is a pointed {0}-rational polyhedron σ ⊂ NR(k) . A
fan in NR(k) is any {0}-rational polyhedral complex consisting entirely of cones. A fan Σ in
NR(k) can be completely recovered from the collection {Sσ}σ∈Σ of dual semigroups

Sσ := {u ∈M : 〈u, v〉 � 0 for all v ∈ σ}.

Explicitly, we can take the cones in NR(k) to be Hom(Sσ,R
(k)
�0) and glue along faces. In this

way, a fan in NR(k) contains no more information than a fan in NR. One may informally think
of this as a ‘base change’ of the fan along the order-preserving projection R(k) → R.

The star of a polyhedron P in a polyhedral complex P is defined in direct analogy with
the standard definition in the rank-1 case, as the collection of cones of unbounded directions.
These cones glue to form a fan whose cones are indexed by the cells of P that contain P .

3.2. Γ-Admissible fans in NR(k)×E
The pairings (9) and (6) induce a single pairing

(M × Γ) × (NR(k) × E) −→ R(k),

(u, γ)&(v, ϕ) �−→ 〈u, v〉 + ϕ(γ).

When k = 1, we have NR(1) × E = NR × R�0, and the above pairing becomes the pairing that
Gubler employs throughout [9].
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A Γ-admissible halfspace in NR(k) × E is any subset of the form

H�0 = {(v, ϕ) ∈ NR(k) × E : 〈u, v〉 + ϕ(γ) � 0}

for a fixed pair (u, γ) ∈M × Γ. A Γ-admissible cone in NR(k) × E is any subset σ ⊂ NR(k) × E
that is a finite intersection of Γ-admissible halfspaces in NR(k) , such that σ does not contain any
one-dimensional linear subspace of NR(k) × {0} ∼= NR(k) . If σ is a Γ-admissible cone in NR(k) × E
of the form σ = H�0

1 ∩ · · · ∩H�0
m , then a face of σ is any one of the Γ-admissible cones that

we obtain upon replacing any subset of the Γ-admissible halfspaces H�0
� in this intersection

with their corresponding Γ-admissible hyperplanes H0
� . A Γ-admissible fan in NR(k) × E is any

finite collection Σ of Γ-admissible cones σ ⊂ NR(k) × E satisfying the following conditions:

(i) for each σ ∈ Σ, every face of σ is in Σ;
(ii) for any σ1, σ2 ∈ Σ, the intersection σ1 ∩ σ2 is a Γ-admissible cone in Σ.

3.3. Recession complexes

Let σ be a Γ-admissible cone in NR(k) × E . Then, for each 0 � i � n, the ith recession
polyhedron of σ, denoted by reci(σ) ⊂ NR(k) , is the image of the set

σ ∩ (NR(k) × {εi})

under the projection NR(k) × {εi} � NR(k) . If Σ is a Γ-admissible fan in NR(k) × E0, then, for
each 0 � i � n, the ith recession complex of Σ, denoted by reci(Σ), is the collection

reci(Σ) := {reci(σ)}σ∈Σ.

Proposition 3.3. Let Σ be a Γ-admissible fan in NR(k) × E . For each 0 � i � n, let
Γ/Δi ↪→ R(k) be the embedding (8). Then the following conditions are satisfied.

(i) For each 0 � i � n, the ith recession complex reci(Σ) is a Γ/Δi-rational polyhedral
complex in NR(k) .

(ii) The nth recession complex recn(Σ) is a fan in NR(k) .

Note that the second conclusion is a special case of the first, since {0}-rational polyhedral
complexes are fans.

Proof. If H�0 is the Γ-admissible halfspace determined by the pair (u, γ) ∈M × Γ, then
the image of H�0 ∩ (NR(k) × {εi}) under the projection NR(k) × {εi} � NR(k) is the set

{v ∈ NR(k) : 〈u, v〉 � −εi(γ)}.

Clearly −εi(γ) ∈ εi(Γ), and thus part (i) follows from the fact that εi(Γ) is the image of Γ/Δi

under the embedding Γ/Δi ↪→ R(k).
When i = n, we have Γ/Δn = {0}, and recn(Σ) is {0}-rational. If there exists a Γ-admissible

cone σ ∈ Σ such that recn(σ) contains a {0}-admissible line L through the origin in NR(k) , then
L× {εn} is a Γ-admissible line through the origin in NR(k) × E contained in σ. This contradicts
the fact that σ is a Γ-admissible cone.

4. Models associated to polyhedral complexes

Fix a field K with valuation v : K× → R(k), and define Γ := v(Γ) ⊂ R(k). The resulting
inclusion Γ ↪→ R(k) is a Hahn embedding. Let (1) be the maximal tower of convex subgroups in
Γ, so that n = rank Γ, and let Ri and K̃i be the corresponding intermediate valuation subrings
and residue fields of K as described in Subsection 1.2.
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We now connect the combinatorial R(k)-geometry of Sections 2 and 3 to the geometry of
degenerations of toric varieties.

4.1. Models associated to polyhedra

Given a Γ-rational polyhedron P in NR(k) , its associated P -tilted algebra is the R-algebra

R[M ]P :=

{ ∑
u∈M

auχ
u ∈ K[M ] : 〈u, v〉 + ν(au) � 0 for all v ∈ P, u ∈M

}
.

The polyhedral model associated to P is the affine R-scheme

U (P ) := SpecR[M ]P .

If σ ⊂ NR(k) × E is a Γ-admissible cone, then we let U (σ) := U (rec0(σ)) denote the polyhedral
model associated to the 0th recession polyhedron of σ.

Lemma 4.1. If V is the largest linear subspace of P, let P/V denote the image of P under
the map NR(k) � NR(k)/V . Then we have an isomorphism of R-algebras R[M ]P ∼= R[V ⊥]P/V .

Proof. Suppose that auχ
u is a monomial in R[M ]P , that is, that 〈u, v〉 + ν(au) � 0

for all v ∈ P . If u /∈ V ⊥, then there is a homomorphism v1 : M → Z such that v1(u) �= 0,
and v1(u′) = 0 for all u′ ∈ V ⊥. Let v : M → R(k) be the map that returns 〈u′, v〉 =
(v1(u′), 0, . . . , 0) ∈ R(k) at each u′ ∈M . Then v ∈ V , and 〈u, v〉 is in the largest Archimedean
class of R(k). This implies that there exists m ∈ Z so that 〈u,mv〉 � −ν(au), contradicting our
choice of u and v. Thus u ∈ V ⊥. From the isomorphism (10), we see that auχ

u ∈ R[V ⊥]P/V .
The converse follows immediately from (10) and the definition of P/V .

Proposition 4.2. The R-algebra R[M ]P is flat, is an integral domain and is integrally
closed in its fraction field.

Proof. Since R[M ]P is a subring ofK[M ], it is an integral domain. To see that R[M ]P is flat,
it suffices to check that, for any finitely generated ideal I ⊂ R, the map I ⊗R R[M ]P → R[M ]P

is injective [2, Proposition 2.19(iv)]. But R is a valuation ring, so every finitely generated ideal
is principal. Injectivity for such ideals follows from the fact that K[M ] has no torsion elements.
To verify that R[M ]P is integrally closed in its fraction field, first note that, by Lemma 4.1, we
may assume that P is pointed. This implies that every R(k)-valued Γ-affine functional on NR(k)

takes its minimum at a vertex of P . We deduce that the algebra R[M ]P is the intersection
of R[M ]{v} over vertices v of P . It suffices now to show the claim for R[M ]{v}. By modifying
the standard arguments for monomial valuations on polynomial rings [12, Proposition 2.1.2],
one may verify that the assignment ν{v} : R[M ]{v} → R(k) taking aχu �→ 〈u, v〉 + ν(a) is a
valuation. The claim then follows by the usual argument for integral closure of valuation
rings [2, Proposition 5.18(iii)].

Proposition 4.3. If K is algebraically closed, then R[M ]P is of finite presentation over R.

Proof. We follow [3, Proposition 4.11]. By Lemma 4.1, we may assume that P is pointed.
Because every finitely generated flat algebra over an integral domain must be of finite
presentation [19, Corollary 3.4.7], Proposition 4.2 reduces the proof to check that R[M ]P is
finitely generated. Let v1, . . . , vr be the vertices of P . Write σi for the star at vi. The union of
the dual cones σ∨

i is σ∨
P . It is easy to see that R[M ]P is generated by subrings R[M ]P ∩K[Sσj

],
and thus it suffices, for each j, to find a finite set that generates R[M ]P ∩K[Sσj

].
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Figure 1 (colour online). The three recession fans of the Z(2)-rational fan Σ in Example 4.7.

Fix an index j. The monoid Sσj
is finitely generated, say by u1, . . . , us. Consider the element

〈ui, vj〉. Since Γ is divisible, the vertex vj is a to be a Γ-rational point of NR(k) , and thus we
may choose scalars ai ∈ K× such that ν(ai) + 〈ui, vj〉 is zero. The set {aiχ

ui} now generates
Aj over R.

Remark 4.4. Let T denote the R-torus SpecR[M ]. Then, for each Γ-rational polyhedron
P in NR(k) , the diagonal R-morphism R[M ]P → R[M ] ⊗R R[M ]P equips the polyhedral model
U (P ) with a natural T -action. Let T denote the generic torus T := TK = SpecK[M ].

Lemma 4.5. If Q is a face of a Γ-rational polyhedron P in NR(k) , then the inclusion Q ↪→ P
induces a T -equivariant inclusion U (Q) ↪→ U (P ) that identifies U (Q) with a distinguished
affine open inside U (P ).

Proof. The proof is similar to the proof of the analogous result in toric K-varieties. See,
for instance, [9, Proposition 6.12].

Definition 4.6. The model of a Γ-rational polyhedral complex P ⊂ NR(k) is the R-scheme

Y (P) := lim−→P∈PU (P ),

glued via Lemma 4.5. If Σ is a Γ-admissible fan in NR(k) × E , then we let Y (Σ) denote the
model Y (rec0(Σ)) of the 0th recession complex of Σ.

Example 4.7 (A 2-stage degeneration of P1). Let K be the Hahn series field C�R(2)�, and
let N be a rank-1 lattice N ∼= Z. Consider the following polyhedral decomposition P of R(2).

(1) The vertices are given by (0,−1), (0, 1), and (1, 0).
(2) The one-dimensional polyhedral are the intervals (−∞, (0,−1)], [(0,−1), (0, 1)],

[(0, 1), (1, 0)], and [(1, 0),∞).

This decomposition is the 0th recession complex rec0(Σ) of a Z(2)-rational fan Σ in NR(2) × E
given by the cone over P (see Figure 1).

The special fiber of the model Y (Σ) consists of 3 P1 glued in a chain (see Figure 2).
As in Figure 1, the first recession complex rec1(Σ) has two vertices (0,−1) and (0, 1), and,
correspondingly, the intermediate fiber consists of two P1 glued at a single point, whereas the
second recession complex rec2(Σ) is the fan of P1 over the value group R(2).

Example 4.8 (Toric degenerations from toric morphisms). A large class of interesting
examples of multistage toric degenerations, in the spirit of those in [16], may be formed by
the following construction. Consider a separated, flat, equivariant morphism of toric varieties
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Figure 2 (colour online). The model Y (Σ) from Example 4.7. Thick lines represent horizontal,
torus-invariant divisors in the intermediate special fibers.

Y (Σ) → Uσ, where Uσ is an affine toric variety Spec(K[Sσ]). Choose a flag F• of faces

{0} = σ0 ⊂ σ1 ⊂ σ2 ⊂ · · · ⊂ σk,

where dimσk = k. This determines a descending flag of orbit closures

Z0 ⊂ Zk−1 ⊂ · · ·Z0 = Uσ.

There is a sequence of characters χ1, χ2, . . . , χk, such that χi cuts out Zi inside Zi+1. This
determines a valuation

vF• : K[Uσ] −→ Z(k) ↪→ R(k),

obtained by sequentially measuring order of vanishing of a function along the flag of torus
orbits; see, for instance, [18, Subsection 2.1]. Note that any valuation of this form vF• is
naturally a point of the Hahn analytic space UH

σ , in the sense of [7]. Passing to the associated
valuation ring R and base-changing the morphism Y (Σ) → Uσ, we obtain a multistage toric
degeneration

Y −→ Spec(R).

This degeneration can also be obtained using a polyhedral geometry construction. To see this,
we observe that the point vF• determines a point of pF• ∈ Hom(Sσ,R

(k)). By Remark 3.2, any
morphism of fans Σ → σ is equivalent to the data of the corresponding morphism of fans over
R(k), which we continue to denote by Σ → σ. The fiber in Σ over pF• inherits the structure of
a Z(k)-rational polyhedral complex over R(k) in NR(k) . Translating this polyhedral complex, we
obtain an admissible fan in the sense of the previous section and hence a toric degeneration.
The toric degeneration coincides with Y by an explicit calculation of the corresponding monoid
rings.

Proof of part (iii) of the Main Theorem. It suffices to consider the affine case, that is, to
consider the case where P is a single polyhedron. Let P be a polyhedron with recession cone σ
and let R[M ]P be the associated tilted algebra. Consider the K-algebra R[M ]P ⊗R K. Observe
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that the polyhedron P is closed under the addition of points of its recession cone σ. It follows
that any Laurent polynomial satisfying the given inequalities for all v ∈ P must be supported
in σ∨. We conclude R[M ]P ⊗K ⊂ K[Sσ], so we must prove the reverse inclusion. Given a
Laurent polynomial

∑
auχ

u, the minimum over v ∈ P of the affine functional ν(au) + 〈u, v〉
must attain a minimum at a vertex of P . We may find an element λ ∈ K such that λ · (

∑
auχ

u)
lies in R[M ]P , and the desired inclusion follows.

Definition 4.9. For each Γ-rational polyhedron P in NR(k) , the weight function associated
to P is the map νP : K[Srec0(P )] −→ R(k) taking∑

u∈M

auχ
u �−→ inf

w∈P
{ν(au) + 〈u,w〉}.

Remark 4.10. We point out that νP is a natural object in the study of higher rank valued
geometry, it is a point of the Hahn analytic space associated to K[Srec0(P )] (see [7]).

Lemma 4.11. For regular functions f, g ∈ K[Srec0(P )] and scalar a ∈ K, the weight function
νP satisfies the following properties.

(W1) The weight function is supmultiplicative: νP (f · g) � νP (f) + νP (g).
(W2) The weight function is power-multiplicative: νP (fm) = m · νP (f).
(W3) The weight function is linear for K-scalars: νP (a · f) = ν(a) + νP (f).

Proof. As before, we may quotient NR(k) by the largest linear subspace contained in σP ,
and thus assume that P is pointed. For pointed P , every R(k)-valued Γ-affine functional on
NR(k) takes its minimum at a vertex of P . Thus, in Definition 4.9, we have

inf
w∈P

{ν(au) + 〈u,w〉} = min
vertices
w of P

{ν(au) + 〈u,w〉}.

For each vertex w of P , the standard argument shows that νw is a valuation on K[Srec0(P )];
see, for instance, [12, Proposition 2.1.2]. The claims (W1) through (W3) follow.

Theorem 4.12. There is a natural bijection between the vertices of the (k − ji)th recession
polyhedron reck−ji

(P ) and the components of the ith intermediate fiber of the R-scheme UP .
The reduced induced structure of the component corresponding to a vertex w ∈ reck−ji

(P ) is
given by the vanishing of all functions f in the set

{f ∈ Ri ⊗R R[M ]P : prk
k−ji

(νw(f)) > 0}.
The reduced component corresponding to w is equivariantly isomorphic to the toric Ki-variety
given by the star of w in reck−ji

(P ).
If K is algebraically closed, then all intermediate fibers are reduced.

Proof. The ith intermediate fiber of the polyhedral model UP is isomorphic to the special
fiber of the Rpi

-model UP ⊗Rpi
. In turn, Rpi

is the ring of non-negative elements for the
composite valuation

K× −→→ Γ −→→ Γ/Δi.

It is also the ring of non-negative elements for the composition

K× −→→ Γ ↪→ R(k)
prk

k−ji−−−−→ R(k−ji).

For i = 0, the recession polyhedron is the recession cone and the of P , and the fiber is the generic
fiber of the model. In this case the claim is clear, so we assume j � 1. From Lemma 2.2, the
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vertices of recession polyhedron reck−ji
(P ) are in bijection with the vertices of the image of P

under the natural projection

πk
k−ji

: NR(k) −→→ N
R(k−ji)

induced by the continuous projection prk
j : R(k) −→→ R(k−j). To see the bijection between the

vertices of reck−ji
(P ) and components of the jth intermediate fiber, it now suffices to construct

a bijection between the components of this fiber and the vertices of πk
k−ji

(P ).
The fiber of the model UP ⊗Rpi

above the closed point of Rpi
is cut out by I = piRpi

[M ]P

in Rpi
[M ]. From Lemma 4.11, the weight function νP is power-multiplicative, so the radical

ideal
√
I is contained in J = {f ∈ Ri ⊗R R[M ]P : prk

k−ji
(νw(f)) > 0}. To see the reverse

containment, first observe that since J is M -graded, it suffices to check containment for
every (possibly non-pure) monomial αχu ∈ J . Since K has elements with valuation in the
jith Archimedean class, we may choose a scalar a ∈ pi such that ν(a) < L · νreck−ji

(P )(f) for
some integer L > 0. This proves that fL is contained in I, so f ∈

√
I, as desired. If K is

algebraically closed, then we may choose L = 1 by taking Lth roots, so reducedness follows in
this case.

Finally, the isomorphism type of the component is given by the star of the corresponding
vertex of reck−ji

(P ). To see this, observe that the stars of u and πk
k−ji

(u) yield isomorphic
toric varieties. The result follows.

Proof of parts (i) and (ii) of the Main Theorem. Given a Γ-admissible fan Σ, the
degeneration Y (Σ) is obtained by gluing the models associated to individual cones. For each
of these cones, part (i) of the main theorem is an immediate consequence of Theorem 4.12
above. The global version follows by gluing, using Lemma 4.5. The fact that the global model
is separated follows from [9, Lemma 7.8]. Part (ii) follows from Theorem 4.12.
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