
Priority Rules for Multi-Task Due-Date Scheduling
under Varying Processing Costs

Yunjian Xu
Engineering Systems & Design, University of Technology and Design, Singapore City, 487372, Singapore, yunjian_xu@sutd.edu.sg

Cong Shi
Industrial and Operations Engineering, University of Michigan, Ann Arbor, MI 48109, USA, shicong@umich.edu

Izak Duenyas
Technology and Operations, Ross School of Business, University of Michigan, Ann Arbor, MI 48109, USA, duenyas@umich.edu

W e study the scheduling of multiple tasks under varying processing costs and derive a priority rule for optimal
scheduling policies. Each task has a due date, and a non-completion penalty cost is incurred if the task is not com-

pletely processed before its due date. We assume that the task arrival process is stochastic and the processing rate is
capacitated. Our work is motivated by both traditional and emerging application domains, such as construction industry
and freelance consulting industry. We establish the optimality of Shorter Slack time and Longer remaining Processing time
(SSLP) principle that determines the priority among active tasks. Based on the derived structural properties, we also pro-
pose an effective cost-balancing heuristic policy and demonstrate the efficacy of the proposed policy through extensive
numerical experiments. We believe our results provide operators/managers valuable insights on how to devise effective
service scheduling policies under varying costs.

Key words: multi-task due-date scheduling; varying processing costs; make-to-order; priority rule
History: Received: May 2015; Accepted: March 2016 by Michael Pinedo, after 2 revisions.

1. Introduction

We study the scheduling of multiple processors to
perform multiple tasks under varying (and possibly
random) processing costs. The task arrival processes
can be random and intertemporally correlated. Each
task can be processed at a limited rate before its due
date (which is sometimes referred to as deadline in
the literature). Failure to meet the due dates will
result in non-completion penalty costs. The critical
feature of our model is that the processing cost can
also be random and nonstationary. In many practical
settings, the processing cost of each task may fluctuate
over time due to varying labor, energy, or raw mate-
rial costs. The objective is to find a feasible scheduling
policy to process incoming tasks so as to minimize the
total expected costs, that is, the sum of the expected
processing cost and the expected non-completion
penalty for not finishing tasks before their pre-speci-
fied due dates. The main focus of this study is to
derive priority rules for optimal scheduling policies
and also to develop effective heuristic policies based
on these rules.
Our work is primarily motivated by the scheduling

problem faced by subcontractors in the construction

industry. There are many firms that specialize on one
aspect of construction (e.g., cabinet or garage installa-
tion, kitchen remodeling, etc.) that are used by the
contractor who is responsible for the whole construc-
tion project on an as-needed basis. Typically, the sub-
contractors will get requests that have strict due dates
(with penalties for non-completion), and they need to
decide how to schedule their work force across the
multiple projects that are waiting to be completed
before their due dates. The subcontractor has access
to a labor pool that has varying availability (i.e., the
number of total workers available in any given day
varies) and also different pay rates depending on the
day that the work has to be done (e.g., to complete the
project faster the manager can get the workers to
work on a Sunday at a much higher labor cost).
Depending on the nature of the job, energy and mate-
rials costs can significantly vary across time as well.
Thus, the scheduler has to consider all jobs competing
for his available capacity and decide how to schedule
his work force across the different jobs. This study
focuses on the case in which the subcontractor cannot
allocate parallel capacity to a job on the same period
to speed up the job. For example, installing a garage
door cannot be significantly speeded up if the

2086

Vol. 25, No. 12, December 2016, pp. 2086–2102 DOI 10.1111/poms.12606
ISSN 1059-1478|EISSN 1937-5956|16|2512|2086 © 2016 Production and Operations Management Society

scheduler sends multiple teams instead of a single
team to install the garage door. Similarly, installing
kitchen cabinets usually involves one installation
team and sending two teams to a house does not
speed up the work (except in the rare house that has
multiple kitchens). This is in contrast to other activi-
ties like painting or flooring where sending more peo-
ple to one location can accelerate the job.
A similar problem arises in the freelance consulting

industry (e.g., HourlyNerd). Unlike the regular con-
sulting companies, which hire employees for the
whole year and allocate them to client projects, other
consulting companies hire freelance consultants only
on an as-needed basis and allocate them to individual
clients. The problem is that the availability of the
number of freelance consultants available to the firm
at any point in time varies, resulting in the firm hav-
ing to pay higher amounts in certain periods to secure
consulting capacity to serve their clients’ needs. For
example, in the metro Detroit area, there are several
firms that specialize on lean consulting. Most of these
firms do not have the lean consultants on staff but
only contact them on an as-needed basis. Often the
lean consultants are affiliated with these companies
but also have other work that they do on their own.
Depending on the time of year, and industry demand
trends, the daily rate that the firm has to pay for a con-
sultant’s services to allocate them to a given client can
vary significantly (one of the co-authors of this study
has consulted himself and charged highly varying
rates to these firms depending on his level of avail-
ability).
The difficult question that the firms face is to decide

which job(s) should have teams allocated to them on
any given day. A common rule of thumb is to allocate
teams according to the earliest due date first (EDF)
rule. In this study, we show that the EDF rule is not
necessarily optimal when the firm faces varying costs
over time. Instead, we develop an alternative priority
rule and establish its optimality.

1.1. Main Results and Contributions of This Study
The major results and contributions of this study are
summarized as follows.
We study the scheduling of multiple tasks under

demand and cost uncertainty in order to minimize the
expected total cost (the sum of the processing cost
and non-completion penalty). (A non-completion
penalty cost will be incurred if a task is not com-
pletely processed at its due date.) We derive a priority
rule for optimal scheduling policies that provides
managers valuable insight into designing effective
heuristic policies. We demonstrate (via Example 1)
that giving priority to a task with the earliest due date
could be sub-optimal, even if it is feasible to complete
all tasks before their due dates. We further argue that

even the earliest due date together with the shortest
slack time does not guarantee the priority of a task (cf.
Example 2). Here, the slack time (or the laxity inter-
changeably) of a task is defined as the difference
between the remaining time before its due date and
its remaining processing time. Somewhat surpris-
ingly, under a mild assumption that each task’s non-
completion penalty cost is convex in its remaining
processing time at its due date, we establish the opti-
mality of Shorter Slack time and Longer remaining Pro-
cessing time (SSLP) principle: priority should be given
to a task with SSLP, regardless of future system
dynamics, for example, the dynamic processes that
describe future task arrivals and time-varying pro-
cessing cost.
It is worth noting that if a task j has shorter (or

the same) slack time and a later due date than
another task i, then task j must have longer remain-
ing processing time than i, and according to the
SSLP principle task j has the priority. Among two
tasks with the same slack time, our result suggests
that priority should be given to the task with later
due date. The optimality of the latest due date first
(LDF) principle among jobs with the same slack
time is in sharp contrast to the common sense that
the EDF policy is optimal. Although the LDF princi-
ple has been mentioned in the literature (Chen and
Yih 1996, Farzan and Ghodsi 2002), the authors are
not aware of any formal results that establish the
optimality of LDF. We believe that our results pro-
vide managers valuable insights into how to devise
effective service scheduling policies under demand
and cost uncertainty.
The intuition behind the SSLP principle is concep-

tually simple. Consider two tasks with the same slack
time and the same non-completion penalty. Priority
should be given to the task with longer remaining
processing time (and a later due date), which leads to
a larger number of small unfinished tasks in the
future (cf. the discussion following Example 1). Fac-
ing time-varying (and possibly stochastic) processing
costs and processing rate constraint (i.e., each task can
be processed only by a limited amount in each time
period), the operator/manager prefers to have many
small unfinished tasks that could be simultaneously
processed when the processing cost becomes lower.
In other words, the SSLP principle enlarges the
admissible set of actions in future periods, and there-
fore reduces the long-term expected cost by enabling
the operator/manager to better explore cheaper
resources that may become available in the future.
We note that computing exact optimal policies by

brute-force dynamic programming is intractable,
since the number of system states grows exponen-
tially with the number of tasks. Based on the struc-
tural properties of optimal policies derived above, we

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling under Varying Processing Costs
Production and Operations Management 25(12), pp. 2086–2102, © 2016 Production and Operations Management Society 2087

devise an effective cost-balancing heuristic policy,
and our numerical results show that the proposed
policy consistently outperforms existing EDF-based
greedy policies for a large set of demand and parame-
ter instances. We observe that the cost improvement
of our SSLP-based policy over the benchmark EDF-
based policy is most significant when the processing
cost has a stationary or decreasing trend. This is
mainly because in such scenarios our SSLP-based pol-
icy tends to save many small unfinished jobs (with
shorter remaining process time) that could be simulta-
neously processed later with lower cost, which is in
line with our theoretical results.

1.2. Literature Review
Our work is closely related to two streams of on-going
research, namely, production/service scheduling and
stochastic MTO systems.

1.2.1. Production or Service Scheduling. Our
work is intimately related to the large body of litera-
ture on the scheduling of multiple jobs in produc-
tion/service systems with tardiness penalties (see,
e.g., Baker and Scudder 1990, B€ulb€ul et al. 2007,
Cheng and Gupta 1989, Keskinocak and Tayur 2004).
Closer to the present work, a few recent works study
the scheduling in make-to-order environments with
order due dates (see, e.g., Chen 2010, Leung and Chen
2013, Leung et al. 2006, Pundoor and Chen 2005). We
note that this literature usually considers the schedul-
ing of a fixed set of orders, while our model allows for
random order arrival processes. While the aforemen-
tioned literature usually adopts mathematical pro-
gramming based approaches to study the scheduling
of make-to-order systems, to deal with random order
arrivals we resort to dynamic programming which is a
standard approach for sequential decision problems
under uncertainty.
There also exists a substantial body of literature

on due date scheduling models that incorporates
random order arrival processes in the context of
real-time dynamic systems and queuing systems.
For single-processor periodic task scheduling sys-
tems, it is well-known that simple scheduling algo-
rithms, such as the EDF policies (see, e.g., Liu and
Layland 1973) and the least-laxity-first (LLF) policies
(see, e.g., Dertouzos 1974) are optimal, in the sense
that both the EDF and LLF policies must be able to
complete all tasks before their due dates, provided
that completion of all tasks before due dates is feasi-
ble. For a variety of single-server queuing systems,
Panwar et al. (1988) showed that a variation of the
EDF policy maximizes the fraction of customers
served within their respective due dates, and Pinedo
(1983) characterized simple policies that minimize
the expected weighted number of late jobs. We note,

however, that when the completion of all tasks is
not feasible, EDF and LLF policies may perform
poorly (see Locke 1986). Indeed, in this “overload”
setting there does not exist an optimal “on-line” pol-
icy which makes scheduling decision based only on
the states of active tasks that have arrived (see But-
tazzo et al. 1995). There is also a literature on due
date scheduling of multiple processors (see, e.g.,
Davis and Burns 2011 for a comprehensive survey).
To our knowledge, no characterization on optimal
scheduling policies is provided for the multi-proces-
sor setting considered in this study.
Whereas in the aforementioned literature, the pro-

cessing cost is usually assumed to be constant over
the entire operation interval, the key distinction in
our setting is that the processing cost is allowed to
be time-variant and random, which is a more general
and realistic assumption. We show by example that
under time-variant processing cost and processing
capacity constraint, EDF policies could be highly
sub-optimal. Somewhat surprisingly, we further
establish the optimality of a priority rule (the SSLP
principle), which sometimes gives priority to tasks
with later due date, for example, among a set of tasks
with the same slack time. To our knowledge, the pre-
sent work is the first that rigorously investigates
priority rules for due-date scheduling of multiple
processors under varying processing costs and ran-
dom task arrivals.

1.2.2. Stochastic MTO Systems. Dellaert and
Melo (1995) gave heuristic procedures for a stochastic
lot-sizing problem in an MTO manufacturing system.
Duenyas and Van Oyen (1996) designed a heuristic
scheduling policy for an MTO system with heteroge-
neous classes of customers in a queueing context. He
et al. (2002) studied an MTO inventory production
system consisting of a warehouse and a workshop
and also discussed the value of information in this
simple supply chain. More recently, Buchbinder et al.
(2013) studied an online MTO variant of the classical
joint replenishment problem. There is also a stream of
research devoted to the study of joint MTS/MTO sys-
tems (see, e.g., Carr and Duenyas 2000, Dobson and
Yano 2002, Gupta and Wang 2007, Iravani et al. 2012,
Youssef et al. 2004). The aforementioned literature
mainly deals with procurement, job assignment or
production-line assignment decisions in order to min-
imize the waiting (penalty) costs. The present work,
on the other hand, deals with a due date scheduling
problem whose state space is much larger (since for
each active task the manager has to keep track the
start time, the end time, the required processing time,
and how much it has been processed). The resulting
dynamic program is much more complicated to ana-
lyze. We contribute to the existing literature by

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling under Varying Processing Costs
2088 Production and Operations Management 25(12), pp. 2086–2102, © 2016 Production and Operations Management Society

prescribing a set of optimal priority rules for such
complex due-date-based MTO systems under varying
costs.
There is another major stream of scheduling litera-

ture on MTO systems that falls outside the scope of
this study, which focuses on the impact of lead time
and due date quotation. Kaminsky and Kaya (2008)
considered a scheduling model where a manufacturer
in an MTO production environment, is penalized for
long lead time and for missing due dates. Af�eche et al.
(2013) studied revenue-maximizing tariffs that depend
on realized lead times where a provider is serving
multiple time-sensitive types of customers. Zhao et al.
(2012) studied and compared the profits between uni-
form quotation model and differentiated quotation
model in MTO manufacturing industries. Benjaafar
et al. (2011) considered a supplier with finite produc-
tion capacity and stochastic production times, where
customers provide advance demand information
(ADI) to the supplier by announcing orders ahead of
their due dates. In this stream of research, the authors
are interested in the due date quoting, whereas we
take the due dates of tasks as given and are interested
in the optimal sequencing of these tasks.

1.3. Structure of This Study
The remainder of the study is organized as follows.
In section 2, we present the mathematical formula-
tion of our service scheduling problem. In section 3,
we characterize some important structural proper-
ties of optimal policies under our capacity settings.
In section 4, we propose an effective heuristic policy
and also carry out an extensive numerical study. In
section 5, we establish the SSLP principle in a more
general setting with heterogeneous non-completion
penalty, and show the optimality of EDF policies in
an alternative setting without processing rate con-
straint. Finally, we conclude our study and point
out some plausible future research avenues in
section 6. For better readability, we summarize our
major notation in Table 1.

2. Due-Date Scheduling with Random
Processing Cost

We study the scheduling of multiple due-date-con-
strained tasks in a stochastic environment with ran-
dom arrival, stochastic processing cost, and limited
processing rate. Our model focuses on a capacitated
MTO system, where the production/service only
starts after orders are placed by customers. We con-
sider a periodic-review system over a planning hori-
zon of T + 1 periods (possibly infinite), where time
periods are indexed by t = 0, 1, . . ., T. There is a
capacity constraint Nt on the total amount of service
in each period t.

2.1. Demand Structure
The demand sets, denoted by D0; . . .; DT, are random,
where the demand Dt is the set of all new tasks avail-
able to be processed in period t (e.g., the newly
requested installation/remodeling projects in period
t). More specifically, for each new task i 2 Dt, we use
ai to denote its arrival time (We set ai to be t for each
new arriving task i in period t), bi � T þ 1 to denote
its due date, and mi to denote its required processing
time to complete the task. We assume that the task i
can be processed during any periods within ½ai; biÞ.
We use nit to track the time already spent processing
the existing unfinished task i between its arrival ai

and time t. (Note that if i is a new task arriving in per-
iod t, then nit ¼ 0.)
As part of the model, we assume that at the begin-

ning of each period t, we are given what we call an
information set that is denoted by ft. The information

Table 1 Summary of Major Notation

Symbol Type Description

ft State The information set that is available at the
beginning of period t

Ft Parameter The finite set of all possible ft
It State The set of active tasks available for processing

in period t
ai State The arrival time of an active task i 2 It
bi State The due date of an active task i 2 It
mi State The required processing time to complete an

active task i 2 It
nit State The time already spent processing an active

task i 2 It
x it State In period t, the remaining time before task

i’s due date, bi � t
y it State In period t, the remaining processing time

of task i, mi � nit
z it State The state of an active task i 2 It : z it ¼ ðx it ; y it Þ
zt State The state of all active tasks in period t:

zt ¼ fz it : i 2 Itg
sit State The slack of an active task i 2 It , x it � y it
uit Decision The processing amount allocated to an active

task i 2 It in period t
ut Decision The action vector taken in period

t: ut ¼ fuit : i 2 Itg
Uðzt ; ft Þ State The set of admissible action vectors in period t
Dt State The set of newly arrival tasks at the beginning

of period t
Wt State The external information available at the

beginning of period t
J1t State The set of tasks that are successfully completed

in period t
J2t State The set of tasks that are not successfully

completed in their due date t
Nt Parameter The total processing capacity available in period t
ci Parameter The per-unit processing cost of an active

task i 2 It
�ðft Þ Parameter The (random) perturbation on tasks’ per-unit

processing cost under ft
q(�) Parameter The mapping from the remaining processing

time of a task (at its due date) to its
non-completion penalty

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling under Varying Processing Costs
Production and Operations Management 25(12), pp. 2086–2102, © 2016 Production and Operations Management Society 2089

set ft contains all the information that is available at
the beginning of period t. More specifically, the infor-
mation set ft contains the realized demand sets
ðD0; . . .; DtÞ, and possibly some more (external) infor-
mation denoted by ðW0; . . .; WtÞ (e.g., the state of
economy, energy and raw material costs) that may
have influence on demand and cost. The information
set ft in each period t belongs to a finite set consisting
of all possible information sets Ft. In addition, we
assume that in each period t there is a known condi-
tional joint distribution of the future demands
ðDtþ1; . . .; DTÞ, which is determined by ft. This
demand model is very general, allowing for nonsta-
tionarity and correlation between the demands of dif-
ferent periods. In particular, it includes not only
independent demand processes, but also most time-
series demand models such as autoregressive (AR)
and autoregressive moving average demand models,
demand forecast updating models such as Martingale
models for forecast evolution (e.g., Heath and Jackson
1994), demand processes with ADI (e.g., Gallego and
€Ozer 2001), as well as economic-state driven demand
processes such as Markov modulated demand pro-
cesses with state transition matrix.

2.2. State of the System
In each period t, let It be the set of active tasks avail-
able for processing. The state of the system consists of
the information set ft and the states of all active tasks.
It is clear that the state of the active tasks in period t
can by fully described by a set of quadruplets
fðai; bi; mi; nitÞ : i 2 Itg. However, this state variable
is not convenient to work with. It turns out that we
can keep track of the effective state by using only two
variables. Now, for each task i 2 It, we introduce
xit , bi � t as the remaining time before its due date,
where , means “defined as.” We also introduce
yit ,mi � nit as the remaining processing time required to
complete the task. The state of the active tasks in per-
iod t is therefore given by

zt, zit,ðxit; yitÞ : i 2 It
� �

:

In period t, for every task i 2 It, we define its slack
time sit , xit � yit, which is the difference between the
remaining time before the due date and the remain-
ing time required to complete the task. A task’s
slack time is the maximum allowance time for the
system to stay idle if the task has to be eventually
processed before its due date.

2.3. System Dynamics
We now proceed to describe the dynamics of our
model. At the beginning of period t, the information
set ft (containing the new task arrivals Dt) is revealed
to the manager. Let ~It be the set of active tasks

available for processing before the demands arrive in
period t. (We assume that ~I0 ¼ 0.) Then the manager
updates the state of active tasks to be It ¼ ~It [Dt.
Next, the manager decides the processing amount
allocated to each active task i 2 It, denoted by the
decision variable uit. We define ut , fuit : i 2 Itg as our
actions or decisions, and Utðzt; ftÞ as the admissible
set of actions depending on the capacity scenario (de-
fined later in this section). The distribution of ftþ1

(over the set Ftþ1) is determined by the current infor-
mation set ft and does not depend on the action taken
in period t, ut.
It follows that yitþ1 ¼ yit � uit, that is, the remaining

process time for task i in the next period t + 1 is
reduced by how much we process task i in period t,
uit. Also, it is clear that xitþ1 ¼ xit � 1, that is, the
remaining time before its due date reduces by 1 per-
iod (independent of our action). We remove the task i
from the active set It at the end of period t if xitþ1 ¼ 0
(in which we run out of time) or yitþ1 ¼ 0 (in which
the task has been completely processed).
Let J1t be the set of tasks successfully completed in

period t, that is, J1t , fj 2 It : y
j
tþ1 ¼ 0g. Let J2t be the

set of tasks that we are unable to fully process but
have already reached their due dates in period t, that
is, J2t , fj 2 It : x

j
tþ1 ¼ 0 and y

j
tþ1 [0g. Then the

state transition is ~Itþ1 ¼ It n J1t n J2t .

2.4. Capacity Constraints
Since the production or processing rate is limited
(e.g., installation or remodeling projects), we assume
that for each task, zero or one unit of a task can be
processed in each time period. Furthermore, the total
processing capacity assigned to all active tasks in per-
iod t is upper bounded by Nt. Formally, at a state zt,
the feasible action space is defined as

Utðzt; ftÞ, ut : u
i
t 2 f0;1g for all i 2 It and

X
i2It

uit�Nt

()
:

We also consider the uncapacitated counterpart
model in section 2.

2.5. Cost Structure
For each decision uit, we incur a linear processing
cost ðci þ �ðftÞÞuit, where ci is the per-unit process-
ing cost of task i and �ðftÞ is a perturbation term
depending on the information set ft. For simplicity,
we consider aggregate (non-idiosyncratic) random
shock �ðftÞ to reflect the macroeconomic impact of
cost volatility in a given application (e.g., the state
of economy, energy or raw material costs in the
installation or remodeling example). We note that
no assumption is needed on the distribution of the
aggregate random shock, that is, the mapping e(�) is

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling under Varying Processing Costs
2090 Production and Operations Management 25(12), pp. 2086–2102, © 2016 Production and Operations Management Society

allowed to be arbitrary. In practice, the manager
can use past observable costs (from markets or
firms’ own database) or forecasted costs (from mar-
kets or forecasting agencies) to determine an appro-
priate choice of e(�). For example, if the data
suggest that the costs are independent, one may
use Normal or other general-purpose distributions
such as Weibull to fit the random error distribution.
If the data suggest a clear trend, one may use lin-
ear regression model to determine the mapping e(�)
assuming normality of the random error term (see
Draper and Smith 2014).
The total processing cost in period t is given by

X
i2It

ðci þ �ðftÞÞuit: ð1Þ

For each task j 2 J2t that is not completed before
its due date, the firm incurs a nonnegative penalty
cost that is a function of its remaining processing
time, denoted by qðyjt � u

j
tÞ, with q(0) = 0. The func-

tion q(�) maps the remaining processing time of
each task to its non-completion penalty. In our set-
ting, if a particular task is not completed by the
due date, the firm may face severe penalties,
including loss of profit and goodwill, or customers
compensation expenses for the inconvenience. In
practice, the remaining process time at due date
implies an extra delay is required after the due
date. The firm often needs to request the workers
to work overtime, or resort to hiring additional sub-
contractors from other firms to wrap up the task at
more expensive rates. Moreover, the more incom-
plete the task remains at its due date, the heavier
penalty the firm has to pay to compensate cus-
tomers for the inconvenience. For example, if a
housing project is 98% complete (only requiring
some additional finishing touches), the residents
may generally move in and request no compensa-
tion. However, if it is only 80% complete and the
residents are unable to move in, they may need to
stay in a hotel for an extended period of time and
the firm may have to pay all the hotel expenses. In
such scenarios, as the percentage completion
decreases, the service provider tends to incur
higher costs. Thus we model the penalty associated
with the non-completion (of task j), qðyjt � u

j
tÞ, to

be a general convex (including linear as a special
case) function of its remaining processing time. We
note that this general convex tardiness cost assump-
tion has been used in the scheduling literature (see
Federgruen and Mosheiov 1997 and the references
therein). The total non-completion penalty cost
incurred in period t is then given by Rj2J2t qðy

j
t � u

j
tÞ.

Combining the above two types of cost, the total
cost associated with period t is therefore

Ctðzt; ft;utÞ,
X
i2It

ðci þ �ðftÞÞuit þ
X
j2J2t

qðyjt � u
j
tÞ: ð2Þ

We remark that one may also consider the idle costs
of processors and holding costs of completed tasks.
However, to keep the model succinct and bring out
the important insights, we decide not to model them
in our setting, since these costs tend to be much smal-
ler than the processing and non-completion penalty
costs. For example, the idling machines do not con-
sume electricity in a construction project (so the idle
costs are negligible). Also, there is typically no pen-
alty for finishing a construction project earlier (so the
holding costs of completed tasks are also negligible).

2.6. Objective
Our objective is to find a feasible scheduling policy
p ¼ ðu0; u1; . . .Þ to minimize the average per-period
cost for this MTO system. Given any initial states
ðz0; f0Þ, the expected total cost over interval [t, T]
induced by a policy p is given by

Vp
t ðzt; ftÞ ¼ E

XT
k¼t

Ctðzk; fk;ukÞ
()

;

where the expectation is taken over the distribution
of ðftþ1; . . .; fTÞ, conditioned on the current informa-
tion set ft. Our objective is to minimize the expected
total cost over the finite planning horizon [0, T].

2.7. Dynamic Programming Formulation
The dynamic programming formulation is

Vp
t ðzt; ftÞ ¼ minut2Utðzt;ftÞ E Ctðzt; ft;utÞ½ �

þ E Vp
tþ1ðztþ1; ftþ1Þ j ft

� �
8<
:

9=
;;

ð3Þ

with boundary conditions Vp
Tþ1ð�; �Þ ¼ 0. In Equa-

tion (3), the expectation is over ftþ1 (the information
set in period t + 1), conditioned on the current infor-
mation set ft. In every period t, the system state of
the dynamic program consists of the information set
ft and the state of all active tasks zt. Note that the
size of state space grows exponentially with the
number of active tasks. Even for a simple case
where jFtj ¼ 1 for every t (i.e., there is no random-
ness in the demand and cost processes), the process-
ing time of each task is <4 periods, and each task
has to be completed within 8 periods, the size of the
system state space scales with 32maxtjItj, where jItj is
the number of active tasks in period t. Reasonable
numbers of active tasks lead to very high dimen-
sions, which makes brute-force dynamic program-
ming computationally intractable.

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling under Varying Processing Costs
Production and Operations Management 25(12), pp. 2086–2102, © 2016 Production and Operations Management Society 2091

3. Priority Rules for Optimal
Scheduling Policies

In this section, we study the priority rule among
active tasks and derive the main result of This study,
the SSLP principle. First, we provide a simple coun-
ter-example to show that the EDF scheduling may be
suboptimal.

EXAMPLE 1 (A SIMPLE COUNTER-EXAMPLE). Consider the
following problem with capacities N0 ¼ 1 and Nt ¼ 2
for all t ≥ 1. In period 0, suppose that there are two tasks
in the set I0 and that no task will arrive in the future.
The states of the two tasks are z10 ¼ ð2; 1Þ and
z20 ¼ ð3; 2Þ. That is, task 1 can be processed in the two
periods 0 and 1, and requires to be processed for one time
period, while task 2 has a due date at the beginning of
period 3, and requires to be processed for two time
periods. The two tasks have the same slack time, and task
2 has longer remaining processing time.

We assume that the per-unit processing cost is uni-
formly 1 for all tasks in period 0, is zero in period 1,
and is uniformly 2 in period 2. We also assume that the
per-unit non-completion penalty is much higher than
the highest per-unit processing cost 2, and therefore it
is optimal to finish all tasks before their due dates.
Since the processing cost in period 0 is higher than

that in period 1, and is lower than that in period 2, it
is straightforward to check that under the unique
optimal policy, task 2 is processed in period 0, and
both tasks are processed in period 1. This optimal pol-
icy yields a total processing cost of 1 and no non-com-
pletion penalty. We note that this optimal policy is
strictly better than any EDF policy that gives priority
to task 1 in period 0. This is because under EDF, task
1 is finished at the end of period 0, which makes it
impossible to utilize the free resource in period 1 to
process task 1.
In the above counter-example, priority should be

given to task 2 with longer remaining processing
time. This is because processing task 1 in period 0
restricts the admissible set of actions in period 1: the
operator could process at most one task in period 1 if
task 1 were processed in period 0. Facing time-vary-
ing (and possibly stochastic) processing costs, the
manager prefers to have a larger number of small
unfinished tasks that could be simultaneously pro-
cessed when the processing cost becomes lower.
The above example motivates us to consider a dif-

ferent policy based on slack time and remaining process-
ing time. Recall that in period t, for every task i 2 It, its
slack time is defined by sit , xit � yit, which is the max-
imum allowance time for the system to stay idle if the
task has to be eventually processed.

DEFINITION 1. In period t, for two tasks i and j in the
set It, we say i ^ j (task j has priority to task i) if
sit � s

j
t, yit � y

j
t and at least one of these inequalities

strictly holds. If tasks i ^ j or j ^ i, we call the tasks i
and j comparable.

It is clear that the relation ^ is reflexive,
antisymmetric, and transitive, and therefore is a
partial order (among the states of all tasks in the
set It). It is worth noting that if task j has shorter
slack time and a later due date than task i, that is,
if sit � s

j
t and bit � b

j
t, then task j must have longer

remaining processing time than i, and therefore
i ^ j. For two tasks i and j that are comparable (ac-
cording to Definition 1), priority should always be
given to task j, regardless of future demand and
cost processes. This result is referred to as the SSLP
principle, which will be formulated and proved
later in this section.
In period t with task state zt, there are only two

cases where the two tasks i and j are incomparable,
namely, (a) sit � s

j
t and yit [y

j
t; (b) s

i
t [s

j
t, y

i
t � y

j
t. In

this case, which task should have a higher priority is a
decision that depends on future system dynamics.
The following example demonstrates that shorter
slack time together with earlier due date does not
guarantee priority along every sample path.

EXAMPLE 2. In period t, suppose that there are two tasks
in the set It, and that no task will arrive in the future.
The states of the two tasks are z1t ¼ ð2; 1Þ and
z2t ¼ ð4; 2Þ. The total available capacity in each period is
given by: Nt ¼ Ntþ2 ¼ Ntþ3 ¼ 1 and Ntþ1 ¼ 2. They
are incomparable: task 1 has shorter slack time and
shorter remaining processing time (and of course, an
earlier due date).

The per unit processing cost in period t is zero.
Consider two different scenarios after period t. First,
suppose that the per unit processing cost is zero in
periods t + 2 and t + 3, but is q(2) (the non-comple-
tion penalty incurred to task 2 if it were not processed
at all) in period t + 1. As a result, it is optimal to pro-
cess task 1 in period t, and process task 2 in periods
t + 2 and t + 3. On the other hand, if the per unit pro-
cessing cost is zero in period t + 1, but is q(2) in peri-
ods t + 2 and t + 3, then the operator should process
task 2 in period t, and process both tasks in period
t + 1.
We are now in a position to formulate the SSLP

principle. For any given feasible policy p that violates
the SSLP principle, we will define an interchanging pol-
icy ~p that gives priority to a task with SSLP, and then
show that the SSLP-based interchanging policy ~p is
feasible and can improve the expected total cost com-
pared to original feasible policy.

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling under Varying Processing Costs
2092 Production and Operations Management 25(12), pp. 2086–2102, © 2016 Production and Operations Management Society

Table 2 A Simple Scenario for which the Period t22ðs; bisÞ Defined in
Definition 2 exists: t = s + 1

Period (s) s s + 1 s + 2 s + 3 s + 4
Capacity (Ns) 1 1 1 0 0
Task j : ðx js ; y jsÞ (4, 3) (3, 3) (2, 2) (1, 2) Penalized q(2)
Task i : ðx is ; y isÞ (3, 2) (2, 1) (1, 1) Completed –
Policy p : ðujs ; uisÞ (0, 1) (1, 0) (0, 1) (0, 0) (0, 0)
Policy ~p : ð~ujs ; ~uisÞ (1, 0) (0, 1) (0, 1) (0, 0) (0, 0)
Task j : ðx js ; y jsÞ (4, 3) (3, 2) (2, 2) (1, 2) Penalized q(2)
Task i : ðx js ; y jsÞ (3, 2) (2, 2) (1, 1) Completed –

Table 3 A Simple Scenario for which the Period t22ðs; bisÞ Defined in
Definition 2 Does Not Exist

Period (s) s s + 1 s + 2 s + 3 s + 4
Capacity (Ns) 1 2 0 0 0
Task j : ðx js ; y jsÞ (4, 3) (3, 3) (2, 2) (1, 2) Penalized

q(2)
Task i : ðx is ; y isÞ (3, 2) (2, 1) Completed – –
Policy p : ðujs ; uisÞ (0, 1) (1, 1) (0, 0) (0, 0) (0, 0)
Policy ~p : ð~ujs ; ~uisÞ (1, 0) (1, 1) (0, 0) (0, 0) (0, 0)
Task j : ðx js ; y jsÞ (4, 3) (3, 2) (2, 1) (1, 1) Penalized

q(1)
Task i : ðx js ; y jsÞ (3, 2) (2, 2) (1, 1) Penalized

q(1)
–

DEFINITION 2 (AN SSLP-BASED INTERCHANGING

POLICY). Assume that in period s with active tasks zs,
task j has priority to i (i.e., i ^ j), and that a policy
p ¼ fus; usþ1; . . .; uTg processes task i but not j. An
interchanging policy ~p ¼ f~us; ~usþ1; . . .; ~uTg (generated
from policy p with respect to tasks i and j at state zs)
processes the same tasks as the original policy p (i.e.,
copies p), except that:

1. In period s, the interchanging policy ~p processes
task j but not i at task state zs.

2. If there exists a period t 2 ðs; bisÞ such that the
original policy p processes task j but not i, then
the interchanging policy ~p processes task i but not
j. This case results in a complete swap of tasks i
and j between p and ~p.

3. If there does not exist a period t 2 ðs; bisÞ such that
the original policy p processes task j but not i, then
it implies that for each period t 2 ðs; bisÞ, the origi-
nal policy p always processes task i whenever it
processes j. In this case, the interchanging policy ~p
will take the same action as the original policy p
after period s.

Two simple (illustrative) scenarios on the inter-
changing policy defined above are given in Table 2
(corresponding to item 2 above) and Table 3 (corre-
sponding to item 3 above), where the state evolu-
tion of two tasks under the actions taken by two
policies are presented. In period s, task j has prior-
ity over i and policy p processes i but not j. In

Table 2, the original policy p processes task j but
not i in period s + 1. According to Definition 2, the
interchanging policy ~p processes task i but not j in
period t = s + 1. In Table 3, on the other hand, such
a period t does not exist: the original policy p does
not process task i or j in period s + 1. In this case,
the interchanging policy ~p will follow exactly what
the original policy p does after period s. We finally
note that in the second scenario, the interchanging
policy ~p results in a non-completion penalty of
2q(1), which cannot be higher the non-completion
penalty resulting from the original policy p, q(2),
due to the convexity of the non-completion penalty
function q(�).
We are now ready to state our main result below

THEOREM 1 (THE SSLP PRINCIPLE). For the make-to-
order multi-task scheduling problem under varying pro-
cessing costs, suppose that task j has priority to i (cf.
Definition 1) at task state zs, and let ~p be the
interchanging policy generated by a policy p. The
interchanging policy ~p cannot incur higher total costs
than the original policy p along any sample path.

Theorem 1 suggests that among two tasks with the
same slack time, priority should be given to the task
with later due date. (Note that our result holds sample-
pathwise.) This is in sharp contrast to the EDF policy
commonly implemented in practice. Even though this
priority rule is only a partial characterization of opti-
mal policies, it sheds some light on this complex
scheduling problem, and managers can use this
insight to design effective heuristics.
Now we focus on the proof of Theorem 1 in the

remainder of this section. The proof of Theorem 1 is an
immediate consequence of Lemma 1 (showing feasibil-
ity of the interchanging policy ~p) and Lemma 2 (show-
ing improvement of ~p over the original policy p).

LEMMA 1. An interchanging policy ~p is feasible.

We note that the feasibility of policy ~p after period t
follows from Definition 2 (if such a period t does not
exist, we can set t = ∞). To argue the feasibility of the
interchanging policy ~p, we show in the proof that

1. in period t when the original policy p first
processes task j but not i, it is feasible for the
interchanging policy ~p to process task i;

2. in period k = s + 1, . . ., t � 1, whenever the
original policy p processes task j, it is feasible
for the interchanging policy ~p to process task j.

PROOF OF LEMMA 1. It is straightforward to verify
the first point. Within periods [s, t), the interchan-
ging policy ~p has one less unit of i to process than

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling under Varying Processing Costs
Production and Operations Management 25(12), pp. 2086–2102, © 2016 Production and Operations Management Society 2093

p. (This is because p processes i in s but ~p does not,
and within periods (s,t), ~p copies the actions of p.)
This suggests that in period t\ bis, the policy ~p can
process task i since task i still has at least 1 unit to
be processed.

To prove the second point, we consider three cases
as follows.

Case 1: Suppose there exists a period t 2 ðs; bisÞ in
which the original policy p first processes task j but
not i. Since in period s, task j has higher priority to
task i, we have y

j
s � yis (i.e., the remaining process

time of task j is no less than that of task i in period s).
Then in period s + 1, ~y

j
sþ1 ¼ y

j
s � 1 under the inter-

changing policy ~p and yisþ1 ¼ yis � 1 under the origi-
nal policy p. This implies that ~y

j
sþ1 � yisþ1. We also

know that in period k = s + 1, . . ., t � 1, policy p
must process task i whenever it processes task j
(according to the definition of t). Then it is feasible for
the interchanging policy ~p to process task j whenever
the original policy p processes task j.

Case 2: Suppose there does not exist a period

t 2 ðs; bisÞ in which the original policy p first processes
task j but not i, and task j’s due date is no later than

i’s, that is, b
j
s � bis. The argument is identical to that of

Case 1. Still, in period s + 1, the remaining processing

time ~y
j
sþ1 of task j under the interchanging policy is

no less than the remaining processing time yisþ1 of

task i under the original policy p. We also know that

in period k ¼ s þ 1; . . .; bis, policy p must process

task i whenever it processes task j, since b
j
s � bis \ t

¼ 1. Then it is feasible for the interchanging policy ~p
to process task j whenever the original policy p pro-
cesses task j.

Case 3: Suppose there does not exist a period
t 2 ðs; bisÞ in which the original policy p first pro-
cesses task j but not i, and task j’s due date is
later than i’s, that is, b

j
s [bis. In this case, since t

does not exist and b
j
s [bis, so within periods

ðs; bisÞ, the original policy p processes task i when-
ever it processes task j. Since in period s, task j
has higher priority to task i, we have s

j
s � sis (i.e.,

the slack time of task j is no greater than that of
task i in period s). Then in period s + 1, sisþ1 ¼ sis
and s

j
sþ1 ¼ s

j
s � 1 under the original policy p

(since p processes i but not j in period s). This
implies that s

j
sþ1 \ sisþ1 and therefore s

j

bis
\ 0. It

then follows that under the interchanging policy ~p,
the slack time of task j is non-positive in period
bis (i.e., ~s

j

bis
� 0). This suggests that ~p can possibly

process j in every period within ½bis; bjsÞ. Then it is
feasible for the interchanging policy ~p to process
task j whenever the original policy p processes
task j. h

The following lemma shows that a feasible inter-
changing policy ~p weakly dominates p along every
sample path.

LEMMA 2. The interchanging policy ~p cannot incur
higher total costs than the original policy p along any
sample path.

PROOF OF LEMMA 2. Within this proof, we fix a given
sample path fsT ¼ ðfsþ1; . . .; fTÞ. We consider two
cases.

Case 1: Suppose first that there exists a period
t 2 ðs; bisÞ in which the original policy p first pro-
cesses task j but not i. In this case, the two policies ~p
and p always use the same amount of capacity, and
thus these two policies result in the same (ex-post)
total processing cost, along every possible sample
path (cf. the expression of total processing cost in
(1)). Finally, these two policies lead to the same total
non-completion penalty (for all tasks) along every
sample path, since policy ~p can also finish both tasks
i and j before their due dates. As a result, the two
policies ~p and p must result in the same total cost
along the given sample path.

Case 2: The second case is more involved. Suppose
now that there does not exist a period t, that is, the
original policy p processes task i whenever it pro-
cesses task j, for period k ¼ s þ 1; . . .; min
fbis; bjsg � 1. Again, the two policies ~p and p use the
same amount of capacity in every period, and there-
fore result in the same total processing cost along the
sample path.

It is possible that the two policies lead to different
non-completion penalty on tasks i and j. We use ri to
denote the remaining processing time of task i at its
due date (on the beginning of period bis), under the
original policy p along the considered sample path.
We note that under the interchanging policy ~p, task
i’s remaining processing time at its due date must be
ri þ 1. Similarly, if we use rj to denote task j’s
remaining processing time at its due date under pol-
icy p, then task j’s remaining processing time at its
due date under policy ~p must be rj � 1. Since task j’s
remaining processing time is no less than task i’s in
period s, we must have 0 � ri \ rj. Due to the con-
vexity of non-completion penalty costs, it follows
that the total non-completion penalty resulting from
policy ~p cannot be higher than that resulting from p,,
because

qðriÞ þ qðrjÞ� qðri þ 1Þ þ qðrj � 1Þ; for all 0� ri\rj:

Hence, the interchanging policy ~p cannot result in a
higher total cost than the original policy p, along the

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling under Varying Processing Costs
2094 Production and Operations Management 25(12), pp. 2086–2102, © 2016 Production and Operations Management Society

given sample path (~p incurs potentially less non-
completion costs than p). h

4. An Effective Heuristic Policy and
Numerical Experiments

Since computing the optimal policies using brute-
force dynamic programming is intractable due to
the curse of dimensionality (discussed earlier in
section 2), we exploit the structural properties of
optimal policies to devise an effective SSLP-based
policy to approximately solve this class of prob-
lems. The underlying idea of our proposed heuris-
tic policy is conceptually simple—to compute a
processing decision that strikes a good balance
between the potential non-completion penalty costs
(if processing less) and the processing costs (if pro-
cessing more).

4.1. Description of the SSLP-Based Heuristic
Policy
To fully describe the heuristic policy, we introduce
additional notation. Given the information set ft, let rt
be the maximum number of tasks that can be pro-
cessed in period t, that is, rt ¼ minfjItj;Ntg.
We describe a simple and effective way of deter-

mining the number of active tasks (denoted by wt) to
be processed in each period t. First, we quantify the
potential penalty cost for tasks not completed before
due dates if we choose to process wt in period t under
the SSLP principle.
For any time period t, we generate an arbitrary

sample-path fT that contains all the (deterministic)
task arrival and cost information until the end of plan-
ning horizon T. We rank all the active tasks in period
t according to their slack times from shortest to long-
est (tie-breaking in favor of longer remaining process-
ing time), and then choose to process the first wt tasks
from the ranked list. Conditioning on processing wt

number of active tasks in period t, we proceed to the
next period t + 1. We then carry out the same ranking
of active tasks Itþ1 (which depends on wt), and choose
to process the first rtþ1 tasks (maximum possible)
from the ranked list. We then repeat the procedure in
period t + 1 until the end of planning horizon T.
Essentially, we process wt number of active tasks in
period t and then use full capacities to process active
tasks from period t + 1 to period T (under our rank-
ing rule).
We then sum up all the non-completion penalty

costs from t to T along this sampth path fT, and denote
it by Qtðwt; fTÞ. This quantity is in fact the potential
non-completion penalty cost impact caused by the
decision wt made in period t. It is not hard to check
that Qtðwt; fTÞ is decreasing (in the non-strict sense) in

wt under our ranking rule, that is, the more we pro-
cess in period t, the less potential non-completion pen-
alty cost we pay.
Second, we quantify the total processing costs of

producing the first wt tasks from the ranked list in
period t as Sðwt; fTÞ ¼ Ri2wtc

i
t; which is increasing in

the number of tasks wt. Here we slightly abuse the
notation wt (in the summation) to also mean the set of
tasks.
The production amount w�

t in period t can then be
computed as

w�
t ¼ arg min

wt2f0;...;rtg
E½QðwtÞ þ SðwtÞ�; ð4Þ

where the expectation is taken over all possible sam-
ple paths fT. One can approximate the expectation
well by generating sufficiently large number of sam-
ple paths (typically having 1000 sample paths leads to
an error tolerance �0.1% in our examples). Due to
lack of structure of Q(�), one may have to exhaustively
search for w�

t . Implementation-wise, if the non-pen-
alty completion penalty is much more convex than
the (linear) processing cost, one can search the opti-
mal solution w�

t from rt downwards, and stop when
the objective value in Equation (4) does not improve.
Upon computing the production amount wt in each
period t, we then exploit the optimality of SSLP prin-
ciple to devise an effective heuristic policy presented
in Algorithm 1.

4.2. Numerical Experiments
An important question is how our proposed heuristic
policy performs numerically. In this section, we have
conducted extensive numerical experiments, and the
numerical results show that our proposed policy per-
forms consistently well. All algorithms are imple-
mented in Matlab R2014a on an Intel Core i7-3770
3.40 GHz PC.

4.2.1. Choice of Benchmark. The prevalent
strategies in the literature is to use EDF-based poli-
cies (e.g., Doytchinov et al. 2001, Moyal 2013, Stan-
kovic et al. 1998), that is, the decision maker
processes the active tasks that have the earliest due
dates. These types of policies are very easy to imple-
ment and ubiquitous in practice (e.g., Phan et al.
2011 in cloud computing applications). Since T is set
long and Nt is kept time-invariant in our numerical
experiments, we restrict our attention to stationary
EDF-based policies (i.e., processing minfjItj; cNtg
tasks in each period t where c is a given threshold
percentage). For each problem instance, we optimize
on c and choose the best stationary EDF-based policy
as our benchmark to gauge the performance of our
SSLP-based policy.

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling under Varying Processing Costs
Production and Operations Management 25(12), pp. 2086–2102, © 2016 Production and Operations Management Society 2095

Algorithm 1 Procedures for computing the SSLP-based heuristic policy

Require: demand processes, cost processes, information sets
Ensure: total Cost
1: function SSLP-BASED POLICY
2: fort\gets1 to Tdo
3: Compute the production quantity w�

t using (4).
4: Rank all active tasks in It according to their slack times from

shortest to longest
5: (tie-breaking with longer remaining processing time);
6: Process the first w�

t tasks from the ranked list of active tasks.
7: end for
8: return total Cost
9: end function

4.2.2. Performance Measure. Since computing the
exact optimal solution is intractable, we shall compare
the total cost of our proposed policy pSSLP, with that
of the benchmark policy pEDF. Then the improvement
ratio is defined as follows,

Improvement ratiog ¼ 1� CðpSSLPÞ
CðpEDFÞ

� �
	 100%;

where CðpÞ is defined as the total cost incurred by an
arbitrary feasible policy p. That is, the improvement
ratio is the percentage cost improvement of our
SSLP-based policy over the benchmark EDF-based
policy.

4.2.3. Design of Experiments. The numerical
experiments are designed as follows. Since our study
is focused on the multi-task due date scheduling
problem with random processing costs, we keep the
demand process independent and identically dis-
tributed (i.i.d.), and choose to test the following four
stochastic cost processes (including one independent
and three correlated processes) as follows:

(a) Independent and identically distributed (i.i.d.)
cost process (IID);

(b) Markov-modulated cost model with three
states (MMC).

(c) Autoregressive cost model AR(1) with
decreasing trend (ARD);

(d) Autoregressive cost model AR(1) with
increasing trend (ARI);

We set the planning horizon T = 100 periods and
the production capacity Nt ¼ 16 for each period t.
The demand process is initialized as follows: the
number of incoming active tasks follows an i.i.d. Pois-
son distribution with rate k 2 [6, 8] in each period,
which represents a mild overloaded regime; and for
each incoming active task, the remaining processing
time is an i.i.d. discrete uniform distribution on [1, 4]
and the remaining time is its remaining processing

time plus another i.i.d. discrete uniform distribution
on [1, 4]. We consider three types of non-completion
penalty cost functions (convex in remaining process-
ing time y), for example, linear cost function
q(y) = 30y, quadratic cost function qðyÞ ¼ 30y2 and
exponential cost function qðyÞ ¼ ð6Þ5y.
Next we specify our four processing cost models. We

set the base cost ci for each task i dependent on the type
j(i) of task i,that is, ci ¼ cjðiÞ for each task i. For sim-
plicity, we consider two types of tasks: j(i) = 1 if task i
is discounted, j(i) = 2 if task i is regular, and we set
c1 ¼ 15 and c2 ¼ 20. Each incoming task i has equal
probability to be one of the two types defined above.
For the IID model (a), the cost in period t is

c
jðiÞ
t ¼ cjðiÞ þ �t for each task i, where the random
perturbation term �t follows an i.i.d. Normal distri-
bution with mean 0 and standard deviation 2. For
the MMC model (b), the cost is governed by the state
of the economy: low-cost economy (labeled as state
1), and high-cost economy (labeled as state 2). If the
state of the economy in period t is j (j = 1,2), then the
cost in period t is c

jðiÞ;j
t ¼ jðcjðiÞ þ �tÞ for task i where

the random perturbation term �t follows an i.i.d.
Normal distribution with mean 0 and standard devi-
ation 2. We assume that the state of the economy fol-
lows an exogenous Markov chain with transition
probabilities

p11 ¼ p22 ¼ 0:8; p12 ¼ p21 ¼ 0:2:

For the ARD model (c), the cost in period t is
c
jðiÞ
t ¼ acjðiÞt�1 þ �t for each task i, where the drift
term a = 0.99 and the random perturbation term �t
follows an i.i.d. Normal distribution with mean 0
and standard deviation 0.5, and initial value cjðiÞ.
For the ARI model (d), the cost structure is identical
to (c) except that the drift term a = 1.01.

4.2.4. Numerical Results. For brevity in presenta-
tion, we only present the numerical results for the
quadratic and exponential penalty costs, since the lin-
ear case is comparable to the quadratic case. Figures
1–2, 3–4, 5–6 and 7–8 show the average costs of EDF-
and SSLP-based policies for the IID model (a), the
MMC model (b), the ARD model (c) and the ARI
model (d), respectively. In general, we observe that
the improvement ratio g increases as the system gets
more overloaded, that is, more tasks are subject to
non-completion penalty costs. Also, the improvement
ratio g increases as the non-completion penalty cost
becomes more convex.
For the IID and MMC and ARD models, in the mild

overloaded regime, the improvement ratio g can go
up to 20% and 35% for quadratic and exponential
penalty cost functions, respectively.

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling under Varying Processing Costs
2096 Production and Operations Management 25(12), pp. 2086–2102, © 2016 Production and Operations Management Society

For the ARI model, the improvement ratio g is
observed to be much lower, up to 10% and 15% for
quadratic and exponential penalty cost functions,
respectively. The key reason for lower improvement
ratios lies in the processing cost component. As seen
from our theoretical analysis, the benefit of SSLP in the
processing cost component is due to the fact that the
firm prefers to have many small unfinished tasks that
could be simultaneously processed in some future per-
iod when the processing cost becomes lower. As a
result, if the processing cost has a clear increasing
trend, this benefit of saving processing costs becomes
very small. Most of the improvement comes from the
non-completion penalty cost component. We also
remark that, in the case of ARI, both the EDF- and
SSLP-based heuristic policies are expected to work
very well in practical implementations (since any near-

optimal policies should process as many tasks as early
as possible when the processing cost is increasing).
It is worth mentioning that the major advantage of

our SSLP-based heuristic policy is that, based on the
demand and cost information, all the decisions could
be made in an online manner (which avoids recursive
computation), which makes the algorithm especially
appealing in practice.

5. Extensions

In section 5.1, we establish the SSLP principle in a
more general setting with heterogeneous non-comple-
tion penalty. In section 5.2, we consider an alternative
setting where the processing rate constraint is relaxed,
and show that EDF-based policies are optimal under
Assumption 1.

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
250

300

350

400

450

500

Arrival Rate

A
vg

 C
os

t

IID Case with Quadratic Penalty

EDF
SSLP

Figure 1 Independent and identically distributed (i.i.d.) cost process
(IID) with Quadratic qðyÞ ¼ 30y2

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
250

300

350

400

450

500

550

600

Arrival Rate

A
vg

 C
os

t

IID Case with Exponential Penalty

EDF
SSLP

Figure 2 Independent and identically distributed (i.i.d.) cost process
(IID) with Exponential qðyÞ ¼ ð6Þ5y

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
400

450

500

550

600

650

700

Arrival Rate

A
vg

 C
os

t

MMC Case with Quadratic Penalty

EDF
SSLP

Figure 3 Markov-modulated cost model with three states (MMC) with
Quadratic qðyÞ ¼ 30y 2

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
400

450

500

550

600

650

700

750

800

Arrival Rate

A
vg

 C
os

t

MMC Case with Exponential Penalty

EDF
SSLP

Figure 4 Markov-modulated cost model with three states (MMC) with
Exponential qðyÞ ¼ ð6Þ5y

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling under Varying Processing Costs
Production and Operations Management 25(12), pp. 2086–2102, © 2016 Production and Operations Management Society 2097

5.1. Heterogeneous Non-Completion Penalty Cost
We have assumed that all tasks have the same non-
completion penalty function. Now we consider a
more general model where each task has an individ-

ual penalty cost function. For each task j 2 J2t that is
not completed before its due date, the manager incurs
a nonnegative penalty cost in terms of its remaining

processing time, denoted by qjðyjt � u
j
tÞ, with

qjð0Þ ¼ 0. The total non-completion penalty cost

incurred in period t is given by Rj2J2t q
jðyjt � u

j
tÞ.

We first note that the definition of the interchanging
policy ~p as well as Lemma 1 naturally extend to the
generalized setting considered in this subsection. The
following lemma will be useful in the establishment
of the SSLP principle.

LEMMA 3. Suppose that i ^ j at task state zs, a policy
p processes i but not j at system state ðzs; fsÞ, and that

along a given sample path, p can finish both tasks i and j
before their due dates. Then, along this sample path there
exists a period t 2 ðs; bisÞ in which policy p processes task
j but not i.

PROOF OF LEMMA 3. Within this proof, we consider a
fixed sample path ðfsþ1; . . .; fTÞ. Since i ^ j at task state
zs, and policy p processes i but not j at system state
ðzs; fsÞ, task j must have strictly SSLP in period s + 1,
that is, s

j
sþ1 \ sisþ1 and y

j
sþ1 [yisþ1 under policy p.

Suppose that Lemma 3 does not hold, that is, in
period k ¼ s þ 1; . . .; bis � 1, whenever the policy p
processes j, it must also process i. If the due date of
task i is not earlier than that of task j, then the pol-
icy p cannot finish task j before its due date, since in
period s + 1 task j has strictly longer remaining pro-
cessing time than i.

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
150

200

250

300

350

400

Arrival Rate

A
vg

 C
os

t

ARD Case with Quadratic Penalty

EDF
SSLP

Figure 5 Autoregressive cost model AR(1) with decreasing trend
(ARD) with Quadratic qðyÞ ¼ 30y 2

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
150

200

250

300

350

400

450

Arrival Rate

A
vg

 C
os

t

ARD Case with Exponential Penalty

EDF
SSLP

Figure 6 Autoregressive cost model AR(1) with decreasing trend
(ARD) with Exponential qðyÞ ¼ ð6Þ5y

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
500

550

600

650

700

750

Arrival Rate

A
vg

 C
os

t

ARI Case with Quadratic Penalty

EDF
SSLP

Figure 7 Autoregressive cost model AR(1) with increasing trend (ARI)
with Quadratic qðyÞ ¼ 30y2

6 6.2 6.4 6.6 6.8 7 7.2 7.4 7.6 7.8 8
500

550

600

650

700

750

800

Arrival Rate

A
vg

 C
os

t

ARI Case with Exponential Penalty

EDF
SSLP

Figure 8 Autoregressive cost model AR(1) with increasing trend (ARI)
with Exponential qðyÞ ¼ ð6Þ5y

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling under Varying Processing Costs
2098 Production and Operations Management 25(12), pp. 2086–2102, © 2016 Production and Operations Management Society

If, on the other hand, the due date of task i is ear-
lier than that of task j, then before task i’s due date,
whenever the policy p processes j, it must also pro-
cess i. Since in period s + 1 task j has strictly shorter
slack time than i, we conclude that at task i’s due
date bis the slack time of task j must be negative. As
a result, policy p cannot finish task j before its due
date. We have proved the lemma by contradiction.h

If the original policy p can finish both tasks i and j
along a given sample path, Lemma 3 shows the exis-
tence of a period t 2 ðs; bisÞ in which policy p pro-
cesses task j but not i. In this case, we have shown in
the proof of Theorem 1 that the two policies ~p and p
must result in the same total cost on this sample path.

THEOREM 2 (THE SSLP PRINCIPLE). Suppose that task j
has priority to i (cf. Definition 1) at task state zs, and let
~p be the interchanging policy generated by a policy p.
The interchanging policy ~p weakly dominates the original
policy p, that is,

Vp
s ðzs; fsÞ�V~p

s ðzs; fsÞ; 8 fs; ð5Þ

if at least one of the following two conditions holds:

1. the original policy p can finish both tasks i and j
before their due dates with probability one;

2. task j’s incremental non-completion penalty is no
less than task i’s, i.e,

qjðyÞ � qjðy� 1Þ� qiðy0Þ � qiðy0 � 1Þ;
1� y� yjs; 1� y0 � y:

ð6Þ

If the first condition holds, for example, when there
is enough time to complete both tasks, it follows from
Theorem 1 and Lemma 3 that the two policies ~p and p
incur the same total cost with probability one. If the
second condition holds, Theorem 2 shows that the
SSLP principle helps reduce the non-completion pen-
alty cost.

PROOF OF THEOREM 2. If the first condition holds, it
follows from Lemma 3 that there exists a period
t 2 ðs; bisÞ in which the original policy p first pro-
cesses task j but not i with probability one. In this
case, it follows from the proof of Theorem 1 that the
two policies ~p and p must result in the same
expected total cost.

We now consider a sample path ðfsþ1; . . .; fTÞ along
which the original policy p processes task i whenever
it processes task j, for period k ¼ s þ 1; . . .; bis � 1.
Again, the two policies ~p and p use the same amount

of capacity in every period, and therefore result in the
same total processing cost. It is possible that the two
policies lead to different non-completion penalty. We
use ri to denote the remaining processing time of task
i at its due date (on the beginning of period bis), under
the original policy p along the considered sample
path. We note that under the interchanging policy ~p,
task i’s remaining processing time at its due date
must be ri þ 1. Similarly, if we use rj to denote task
j’s remaining processing time at its due date under
policy p, then task j’s remaining processing time at its
due date under policy ~p must be rj � 1. Since task j’s
remaining processing time is no less than task i’s in
period s, we must have 0 � ri � rj � 1. It therefore
follows from the second condition in (6) that the total
non-completion penalty resulting from policy ~p can-
not be higher than that resulting from p, since

qiðriÞ þ qjðrjÞ� qiðri þ 1Þ þ qjðrj � 1Þ:
Hence, the policy ~p cannot result in a higher total
cost than the original policy p, along the given sam-
ple path. h

5.2. The Case without Capacity Constraint
In this subsection, we consider the case where no pro-
cessing rate constraint is imposed on each individual
task. However, the total processing capacity used by
all tasks has to be bounded by Nt in each period t. At
a state zt, the feasible action space is

Uo
t ðzt; ftÞ, ut : u

i
t2 f0; . . .; yitg

for all i 2 It and
X
i2It

uit �Nt

8>>><
>>>:

9>>>=
>>>;
: ð7Þ

DEFINITION 3 (AN EDF-BASED INTERCHANGING

POLICY). Let p be a heuristic policy that can finish all tasks
before their due dates along every possible sample path. In
every period, an EDF-based interchanging policy p̂ uses the
same amount of capacity as the original policy p, and gives
priority to those active tasks with earliest due dates. Under
policy p̂, at every system state ðzt; ftÞ and for every active
task i, we have uit [0 only if for every task j with a due date
earlier than i, its the remaining processing time y

j
t is zero.

Before proceeding, we introduce additional nota-
tion that will be useful in the statement and proof of
Theorem 3. Under one full sample path
fT ¼ ðf0; . . .; fTÞ, we let Gpðz0; fTÞ denote the total (re-
alized) cost under policy p, that is,

Gpðz0; fTÞ ¼
XT
k¼0

Ctðzk; fk;ukÞ j fT:

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling under Varying Processing Costs
Production and Operations Management 25(12), pp. 2086–2102, © 2016 Production and Operations Management Society 2099

In the following Theorem 3, we will prove the feasi-
bility of an EDF-based interchanging policy p̂ defined
above, that is, it is always feasible for the policy p̂ to
process the same amount of orders as the original pol-
icy p. The crux of our argument rests on showing that
the policy p̂ can also finish all orders before their due
dates, along every sample path. This result directly
leads to the main result in Theorem 3.

THEOREM 3. We consider a policy p that can finish all
tasks before their due dates along every sample path. Let
p̂ be an EDF-based interchanging policy generated from
the policy p according to Definition 3. The policy p̂ is
feasible, and achieves the same realized total cost as the
original policy p along every sample path, that is,

Gpðz0; fTÞ ¼ Gp̂ðz0; fTÞ; 8z0; 8fT:

PROOF OF THEOREM 3. Within this proof, we fix an
arbitrary sample path (i.e., a sequence of realizations
fT). We will show by induction that the interchang-
ing policy p̂ can also finish all tasks before their due
dates along this sample path. We note that this
result directly implies that it is feasible for the inter-
changing policy p̂ to utilize the same amount of
capacity as the original policy p in every period.
The desired result then follows from the fact that
the two policies incur the same processing cost in
every period, and both policies yield zero non-com-
pletion penalty.

It is straightforward to check (from Definition 3)
that the above claim holds for t = 0. Now suppose that
the claim holds for t = 0, 1, . . ., k � 1, we now argue
that it holds for period k. We note that since the policy
p̂ finishes all tasks before their due dates in periods
0, 1, . . ., k � 1, it must be feasible for policy p̂ to use
the same amount of capacity as policy p in period k.

Suppose that the desired result does not hold for
period k, that is, the interchanging policy p̂ fails to fin-
ish all tasks before their due dates at the end of period
k, that is, there exists some task j with due date k+1
that is not finished by policy p̂ at the end of period k.
Let wp

k ðzk; fkÞ ¼ Riuik denote the total capacity utilized
in period k by policy p. According to Definition 3, in
period k the EDF policy p̂ must process wp

k ðzk; fkÞ unit
of unfinished tasks with due date k + 1. We therefore
conclude that in period k � 1, the total processing
time of all unfinished tasks with due date k + 1 is
strictly less under the original policy p, that is,

X
i2Ik�1: bi¼kþ1

yik�1\
X

i2Îk�1: b̂i¼kþ1

ŷik�1; ð8Þ

where the hat symbol is used to denote quantities
resulting from the interchanging policy p̂, for

example, Îk�1 is the set of unfinished tasks at period
k � 1, under the policy p̂.

We note that both policies p and p̂ complete all
tasks with due dates no later than k, before their
due dates. Since both policies always use the same
amount of capacity and face the same set of
arrived tasks, the inequality in (8) contradicts with
Definition 3, since the interchanging policy p̂ does
not process any orders with due dates later than
k + 1 before it finishes tasks with due dates no
later than k, and gives highest priority to tasks
with due date k + 1 once it completes all tasks
with due dates no later than k, in every period
t 2 {0, . . ., k � 1}. h

Theorem 3 considers the case where the completion
of all tasks before their due dates is always feasible.
The theorem essentially shows the existence of an
EDF policy that is at least as good as any policy that
always finishes all tasks before their due dates. If each
task’s non-completion penalty is higher than its high-
est possible processing cost (e.g., when the following
Assumption 2 holds), then it is optimal to finish all
tasks before their due dates (provided that it is feasi-
ble to do so), and therefore an optimal EDF policy
must exist (see the formal statement in the following
corollary).

ASSUMPTION 1. Suppose that for every task i, its incre-
mental non-completion penalty is no less than its highest
per-unit processing cost, that is,

qiðyÞ � qiðy� 1Þ� ci þ eðftÞ; y ¼ 1; 2; . . .; 8ft:

We note that if Assumption 1 is violated, then the
operator/manager may prefer to withhold capacity
and pay non-completion penalty. This assumption
may not always hold in practical situations when
the jobs cannot be done in certain periods (due to
factors such as unavailability of workers or unfavor-
able weather conditions) , that is, the processing cost
is infinite in those periods.

COROLLARY 1. Suppose that Assumption 1 holds and
that it is feasible to finish all tasks along every sample
path. There exists an optimal EDF policy that minimizes
the expected total cost.

We note that similar results on the optimality of
EDF policies are well known in periodic task schedul-
ing systems with a single processor (see, e.g., Liu and
Layland 1973) or multiple identical processors (see,
e.g., Goossens et al. 2003 under additional assump-
tions on processor capacity). While processing cost
are usually assumed to be constant in the

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling under Varying Processing Costs
2100 Production and Operations Management 25(12), pp. 2086–2102, © 2016 Production and Operations Management Society

aforementioned literature, in our setting the process-
ing cost is allowed to be time-variant and stochastic.
We would like to emphasize here that for the case
with capacity constraint we have shown (in Example
1) that giving priority to tasks with earlier due dates
could be suboptimal, even if it is feasible to complete
all tasks before their due dates.
When the completion of all tasks is not feasible, on

the other hand, it is well known that EDF policies
may perform poorly (see Locke 1986). In this “over-
load” setting (without capacity constraint) there does
not exist an optimal “on-line” policy which makes
scheduling decision based only on the states of active
tasks that have arrived (see Buttazzo et al. 1995). We
further believe that in this overload setting, there does
not exist an optimal rule that determines the priority
among active tasks without taking into account future
system dynamics (like the SSLP principle established
for the case with capacity constraint). As a result, in
order to efficiently schedule existing active tasks the
manager has to look ahead into future (random) task
arrivals and processing costs, and the design of effec-
tive heuristic policies depends on the pattern of task
arrival and processing cost processes.

6. Conclusion and Future Directions

We have established the optimality of SSLP principle
for capacitated MTO systems under varying process-
ing costs and convex non-completion penalty costs:
priority should be given to a task with shorter slack
time and longer remaining processing time. Our main
result suggests the optimality of the LDF principle
among jobs with the same slack time. This is sharply
contrary to the convention and the common sense that
the EDF policy is optimal. The main methodology
employed in this study is using interchanging argu-
ments to show that the updated policies (with desired
structures) dominate the original ones, which is an
effective tool to analyze systems with huge state
spaces (that render the direct computation using
dynamic programming intractable). We have also
proposed an effective cost-balancing heuristic policy
for this class of problems, based on the derived struc-
tural results. Our computational results show that our
proposed policies significantly outperform the myo-
pic EDF-based benchmark policy.
We believe that this class of optimal production

planning models in capacitated MTO systems under
varying costs represents a fertile area for future
research. To conclude the study, we would like to
point out several plausible future research directions.
(a) The SSLP-based priority rule is still a partial char-
acterization of optimal polices (see Example 2). (b)
The current model only considers processing and
non-completion penalty costs. Other costs, such as the

idle costs of processors and holding costs of com-
pleted tasks, could be considered as well. (c) One may
also consider the options to reject or accept the incom-
ing tasks (where managers can control the production
load by acceptance and rejection of incoming tasks).
This class of problems would require new models
and methodological innovations.

Acknowledgments

We sincerely thank the department editor Michael Pinedo,
the anonymous senior editor, and the anonymous referees
for their constructive comments and suggestions, which
helped significantly improve both the content and the expo-
sition of this study. The research is partially conducted
when Yunjian Xu was visiting the University of Michigan.
The research of Yunjian Xu is partially supported by the
MIT-SUTD International Design Center (IDC) Grant
IDG21400103. The research of Cong Shi is partially sup-
ported by NSF grants CMMI-1362619 and CMMI-1451078.

References
Af�eche, P., O. Baron, Y. Kerner. 2013. Pricing time-sensitive ser-

vices based on realized performance. Manuf. Serv. Oper.
Manag. 15(3): 492–506.

Baker, K. R., G. D. Scudder. 1990. Sequencing with earliness and
tardiness penalties: A review. Oper. Res. 38(1): 22–36.

Benjaafar, S., W. L. Cooper, S. Mardan. 2011. Production-inven-
tory systems with imperfect advance demand information
and updating. Nav. Res. Log. 58(2): 88–106.

Buchbinder, N., T. Kimbrel, R. Levi, K. Makarychev, M. Sviri-
denko. 2013. Online make-to-order joint replenishment model:
Primal-dual competitive algorithms. Oper. Res. 61(4): 1014–
1029.

B€ulb€ul, K., P. Kaminsky, C. Yano. 2007. Preemption in single
machine earliness/tardiness scheduling. J. Sched. 10(4–5): 271–
292.

Buttazzo, G., M. Spuri, F. Sensini. 1995. Value vs. deadline
scheduling in overload conditions. Proceedings of the 1995
IEEE Real-Time Systems Symposium. Pisa, Italy, 90–99.

Carr, S., I. Duenyas. 2000. Optimal admission control and
sequencing in a make-to-stock/make-to-order production sys-
tem. Oper. Res. 48(5): 709–720.

Chen, Z. L. 2010. Integrated production and outbound distribu-
tion scheduling: Review and extensions. Oper. Res. 58(1): 130–
148.

Chen, C. C., Y. Yih. 1996. Indentifying attributes for knowledge-
based development in dynamic scheduling environments. Int.
J. Prod. Res. 34(6): 1739–1755.

Cheng, T. C. E., M. C. Gupta. 1989. Survey of scheduling research
involving due date determination decisions. Eur. J. Oper. Res.
38(2): 156–166.

Davis, R. I., A. Burns. 2011. A survey of hard real-time scheduling
for multiprocessor systems. ACM Comput. Surv. 43(4): 35:1–
35:44.

Dellaert, N. P., M. T. Melo. 1995. Heuristic procedures for a
stochastic lot-sizing problem in make-to-order manufacturing.
Ann. Oper. Res. 59(1): 227–258.

Dertouzos, M. 1974. Control robotics: The procedural control of
physical processes. J. L. Rosenfeld, ed. Proceedings of IFIP

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling under Varying Processing Costs
Production and Operations Management 25(12), pp. 2086–2102, © 2016 Production and Operations Management Society 2101

Congress. North Holland Publishing Company, Stockholm,
Sweden, 807–813.

Dobson, G., C. A. Yano. 2002. Product offering, pricing, and
make-to-stock/make-to-order decisions with shared capacity.
Prod. Oper. Manag. 11(3): 293–312.

Doytchinov, B., J. Lehoczky, S. Shreve. 2001. Real-time queues in
heavy traffic with earliest-deadline-first queue discipline.
Ann. Appl. Prob. 11(2): 332–378.

Draper, N. R., H. Smith. 2014. Applied regression analysis, 3rd edn.
John Wiley & Sons, New York.

Duenyas, I., M. P. Van Oyen. 1996. Heuristic scheduling of parallel
heterogeneous queues with set-ups.Management Sci. 42(6): 814–829.

Farzan, A., M. Ghodsi. 2002. New results for lazy bureaucrat
scheduling problem. Proceedings of the 7th CSI Computer Con-
ference. CSICC ‘02, Iran Telecommunication Research Center,
Tehran, Iran, 66–71.

Federgruen, A., G. Mosheiov. 1997. Single machine scheduling
problems with general breakdowns, earliness and tardiness
costs. Oper. Res. 45(1): 66–71.

Gallego, G., €O. €Ozer. 2001. Integrating replenishment decisions
with advance demand information. Management Sci. 47(10):
1344–1360.

Goossens, J., S. Funk, S. Baruah. 2003. Priority-driven scheduling
of periodic task systems on multiprocessors. Real Time Syst.
25(2): 187–205.

Gupta, D., L. Wang. 2007. Capacity management for contract
manufacturing. Oper. Res. 55(2): 367–377.

He, Q.-M., E. M. Jewkes, J. Buzacott. 2002. The value of informa-
tion used in inventory control of a make-to-order inventory-
production system. IIE Trans. 34(11): 999–1013.

Heath, D. C., P. L. Jackson. 1994. Modeling the evolution of
demand forecasts with application to safety stock analysis in
production/distribution system. IIE Trans. 26(3): 17–30.

Iravani, S. M. R., T. Liu, D. Simchi-Levi. 2012. Optimal production
and admission policies in make-to-stock/make-to-order man-
ufacturing systems. Prod. Oper. Manag. 21(2): 224–235.

Kaminsky, P., O. Kaya. 2008. Scheduling and due-date quotation
in a make-to-order supply chain. Nav. Res. Log. 55(5): 444–458.

Keskinocak, P., S. Tayur. 2004. Due date management policies.
D. Simchi-Levi, S. D. Wu, Z.-J. Shen, eds.Handbook of Quantitative

Supply Chain Analysis, International Series in Operations
Research & Management Science, vol. 74. Springer, Boston, MA,
485–554.

Leung, J. Y. T., Z. L. Chen. 2013. Integrated production and distri-
bution with fixed delivery departure dates. Oper. Res. Lett. 41
(3): 290–293.

Leung, J. Y. T., H. Li, M. Pinedo. 2006. Scheduling orders for mul-
tiple product types with due date related objectives. Eur. J.
Oper. Res. 168(2): 370–389.

Liu, C. L., J. W. Layland. 1973. Scheduling algorithms for multi-
programming in a hard-real-time environment. J. ACM 20(1):
46–61.

Locke, C. D. 1986. Best-effort decision-making for real-time
scheduling. Ph.D Thesis, Carnegie Mellon University.

Moyal, P. 2013. On queues with impatience: Stability, and the
optimality of earliest deadline first. Queueing Syst. 75(2–4):
211–242.

Panwar, S. S., D. Towsley, J. K. Wolf. 1988. Optimal scheduling
policies for a class of queues with customer deadlines to the
beginning of service. J. ACM 35(4): 832–844.

Phan, L. T., Z. Zhang, Q. Zheng, B. T. Loo, I. Lee. 2011. An empir-
ical analysis of scheduling techniques for real-time
cloud-based data processing. Proceedings of the 2011 IEEE
International Conference on Service-Oriented Computing and
Applications. SOCA ’11, IEEE Computer Society, Washington,
DC, USA, 1–8.

Pinedo, M. 1983. Stochastic scheduling with release dates and due
dates. Oper. Res. 31(3): 559–572.

Pundoor, G., Z. L. Chen. 2005. Scheduling a production-distribu-
tion system to optimize the tradeoff between delivery tardi-
ness and distribution cost. Nav. Res. Log. 52(6): 571–589.

Stankovic, J. A., K. Ramamritham, M. Spuri. 1998. Deadline
scheduling for real-time systems: EDF and related algorithms.
Kluwer Academic Publishers, Norwell, MA.

Youssef, K. H., C. Van Delft, Y. Dallery. 2004. Efficient scheduling
rules in a combined make-to-stock and make-to-order manu-
facturing system. Ann. Oper. Res. 126(1–4): 103–134.

Zhao, X., K. E. Stecke, A. Prasad. 2012. Lead time and price quo-
tation mode selection: Uniform or differentiated? Prod. Oper.
Manag. 21(1): 177–193.

Xu, Shi, and Duenyas: Priority Rules for Multi-Task Due-Date Scheduling under Varying Processing Costs
2102 Production and Operations Management 25(12), pp. 2086–2102, © 2016 Production and Operations Management Society

